clang 19.0.0git
SystemZ.cpp
Go to the documentation of this file.
1//===- SystemZ.cpp --------------------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "ABIInfoImpl.h"
10#include "TargetInfo.h"
12#include "llvm/IR/IntrinsicsS390.h"
13
14using namespace clang;
15using namespace clang::CodeGen;
16
17//===----------------------------------------------------------------------===//
18// SystemZ ABI Implementation
19//===----------------------------------------------------------------------===//
20
21namespace {
22
23class SystemZABIInfo : public ABIInfo {
24 bool HasVector;
25 bool IsSoftFloatABI;
26
27public:
28 SystemZABIInfo(CodeGenTypes &CGT, bool HV, bool SF)
29 : ABIInfo(CGT), HasVector(HV), IsSoftFloatABI(SF) {}
30
32 bool isCompoundType(QualType Ty) const;
33 bool isVectorArgumentType(QualType Ty) const;
34 bool isFPArgumentType(QualType Ty) const;
35 QualType GetSingleElementType(QualType Ty) const;
36
39
40 void computeInfo(CGFunctionInfo &FI) const override;
42 QualType Ty) const override;
43};
44
45class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
46 ASTContext &Ctx;
47
48 // These are used for speeding up the search for a visible vector ABI.
49 mutable bool HasVisibleVecABIFlag = false;
50 mutable std::set<const Type *> SeenTypes;
51
52 // Returns true (the first time) if Ty is, or is found to include, a vector
53 // type that exposes the vector ABI. This is any vector >=16 bytes which
54 // with vector support are aligned to only 8 bytes. When IsParam is true,
55 // the type belongs to a value as passed between functions. If it is a
56 // vector <=16 bytes it will be passed in a vector register (if supported).
57 bool isVectorTypeBased(const Type *Ty, bool IsParam) const;
58
59public:
60 SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector, bool SoftFloatABI)
62 std::make_unique<SystemZABIInfo>(CGT, HasVector, SoftFloatABI)),
63 Ctx(CGT.getContext()) {
64 SwiftInfo =
65 std::make_unique<SwiftABIInfo>(CGT, /*SwiftErrorInRegister=*/false);
66 }
67
68 // The vector ABI is different when the vector facility is present and when
69 // a module e.g. defines an externally visible vector variable, a flag
70 // indicating a visible vector ABI is added. Eventually this will result in
71 // a GNU attribute indicating the vector ABI of the module. Ty is the type
72 // of a variable or function parameter that is globally visible.
73 void handleExternallyVisibleObjABI(const Type *Ty, CodeGen::CodeGenModule &M,
74 bool IsParam) const {
75 if (!HasVisibleVecABIFlag && isVectorTypeBased(Ty, IsParam)) {
76 M.getModule().addModuleFlag(llvm::Module::Warning,
77 "s390x-visible-vector-ABI", 1);
78 HasVisibleVecABIFlag = true;
79 }
80 }
81
82 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
83 CodeGen::CodeGenModule &M) const override {
84 if (!D)
85 return;
86
87 // Check if the vector ABI becomes visible by an externally visible
88 // variable or function.
89 if (const auto *VD = dyn_cast<VarDecl>(D)) {
90 if (VD->isExternallyVisible())
91 handleExternallyVisibleObjABI(VD->getType().getTypePtr(), M,
92 /*IsParam*/false);
93 }
94 else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
95 if (FD->isExternallyVisible())
96 handleExternallyVisibleObjABI(FD->getType().getTypePtr(), M,
97 /*IsParam*/false);
98 }
99 }
100
101 llvm::Value *testFPKind(llvm::Value *V, unsigned BuiltinID,
102 CGBuilderTy &Builder,
103 CodeGenModule &CGM) const override {
104 assert(V->getType()->isFloatingPointTy() && "V should have an FP type.");
105 // Only use TDC in constrained FP mode.
106 if (!Builder.getIsFPConstrained())
107 return nullptr;
108
109 llvm::Type *Ty = V->getType();
110 if (Ty->isFloatTy() || Ty->isDoubleTy() || Ty->isFP128Ty()) {
111 llvm::Module &M = CGM.getModule();
112 auto &Ctx = M.getContext();
113 llvm::Function *TDCFunc =
114 llvm::Intrinsic::getDeclaration(&M, llvm::Intrinsic::s390_tdc, Ty);
115 unsigned TDCBits = 0;
116 switch (BuiltinID) {
117 case Builtin::BI__builtin_isnan:
118 TDCBits = 0xf;
119 break;
120 case Builtin::BIfinite:
121 case Builtin::BI__finite:
122 case Builtin::BIfinitef:
123 case Builtin::BI__finitef:
124 case Builtin::BIfinitel:
125 case Builtin::BI__finitel:
126 case Builtin::BI__builtin_isfinite:
127 TDCBits = 0xfc0;
128 break;
129 case Builtin::BI__builtin_isinf:
130 TDCBits = 0x30;
131 break;
132 default:
133 break;
134 }
135 if (TDCBits)
136 return Builder.CreateCall(
137 TDCFunc,
138 {V, llvm::ConstantInt::get(llvm::Type::getInt64Ty(Ctx), TDCBits)});
139 }
140 return nullptr;
141 }
142};
143}
144
145bool SystemZABIInfo::isPromotableIntegerTypeForABI(QualType Ty) const {
146 // Treat an enum type as its underlying type.
147 if (const EnumType *EnumTy = Ty->getAs<EnumType>())
148 Ty = EnumTy->getDecl()->getIntegerType();
149
150 // Promotable integer types are required to be promoted by the ABI.
152 return true;
153
154 if (const auto *EIT = Ty->getAs<BitIntType>())
155 if (EIT->getNumBits() < 64)
156 return true;
157
158 // 32-bit values must also be promoted.
159 if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
160 switch (BT->getKind()) {
161 case BuiltinType::Int:
162 case BuiltinType::UInt:
163 return true;
164 default:
165 return false;
166 }
167 return false;
168}
169
170bool SystemZABIInfo::isCompoundType(QualType Ty) const {
171 return (Ty->isAnyComplexType() ||
172 Ty->isVectorType() ||
174}
175
176bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const {
177 return (HasVector &&
178 Ty->isVectorType() &&
179 getContext().getTypeSize(Ty) <= 128);
180}
181
182bool SystemZABIInfo::isFPArgumentType(QualType Ty) const {
183 if (IsSoftFloatABI)
184 return false;
185
186 if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
187 switch (BT->getKind()) {
188 case BuiltinType::Float:
189 case BuiltinType::Double:
190 return true;
191 default:
192 return false;
193 }
194
195 return false;
196}
197
198QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const {
199 const RecordType *RT = Ty->getAs<RecordType>();
200
201 if (RT && RT->isStructureOrClassType()) {
202 const RecordDecl *RD = RT->getDecl();
203 QualType Found;
204
205 // If this is a C++ record, check the bases first.
206 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
207 if (CXXRD->hasDefinition())
208 for (const auto &I : CXXRD->bases()) {
209 QualType Base = I.getType();
210
211 // Empty bases don't affect things either way.
212 if (isEmptyRecord(getContext(), Base, true))
213 continue;
214
215 if (!Found.isNull())
216 return Ty;
217 Found = GetSingleElementType(Base);
218 }
219
220 // Check the fields.
221 for (const auto *FD : RD->fields()) {
222 // Unlike isSingleElementStruct(), empty structure and array fields
223 // do count. So do anonymous bitfields that aren't zero-sized.
224
225 // Like isSingleElementStruct(), ignore C++20 empty data members.
226 if (FD->hasAttr<NoUniqueAddressAttr>() &&
227 isEmptyRecord(getContext(), FD->getType(), true))
228 continue;
229
230 // Unlike isSingleElementStruct(), arrays do not count.
231 // Nested structures still do though.
232 if (!Found.isNull())
233 return Ty;
234 Found = GetSingleElementType(FD->getType());
235 }
236
237 // Unlike isSingleElementStruct(), trailing padding is allowed.
238 // An 8-byte aligned struct s { float f; } is passed as a double.
239 if (!Found.isNull())
240 return Found;
241 }
242
243 return Ty;
244}
245
246Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
247 QualType Ty) const {
248 // Assume that va_list type is correct; should be pointer to LLVM type:
249 // struct {
250 // i64 __gpr;
251 // i64 __fpr;
252 // i8 *__overflow_arg_area;
253 // i8 *__reg_save_area;
254 // };
255
256 // Every non-vector argument occupies 8 bytes and is passed by preference
257 // in either GPRs or FPRs. Vector arguments occupy 8 or 16 bytes and are
258 // always passed on the stack.
259 const SystemZTargetCodeGenInfo &SZCGI =
260 static_cast<const SystemZTargetCodeGenInfo &>(
261 CGT.getCGM().getTargetCodeGenInfo());
262 Ty = getContext().getCanonicalType(Ty);
263 auto TyInfo = getContext().getTypeInfoInChars(Ty);
264 llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty);
265 llvm::Type *DirectTy = ArgTy;
267 bool IsIndirect = AI.isIndirect();
268 bool InFPRs = false;
269 bool IsVector = false;
270 CharUnits UnpaddedSize;
271 CharUnits DirectAlign;
272 SZCGI.handleExternallyVisibleObjABI(Ty.getTypePtr(), CGT.getCGM(),
273 /*IsParam*/true);
274 if (IsIndirect) {
275 DirectTy = llvm::PointerType::getUnqual(DirectTy);
276 UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8);
277 } else {
278 if (AI.getCoerceToType())
279 ArgTy = AI.getCoerceToType();
280 InFPRs = (!IsSoftFloatABI && (ArgTy->isFloatTy() || ArgTy->isDoubleTy()));
281 IsVector = ArgTy->isVectorTy();
282 UnpaddedSize = TyInfo.Width;
283 DirectAlign = TyInfo.Align;
284 }
285 CharUnits PaddedSize = CharUnits::fromQuantity(8);
286 if (IsVector && UnpaddedSize > PaddedSize)
287 PaddedSize = CharUnits::fromQuantity(16);
288 assert((UnpaddedSize <= PaddedSize) && "Invalid argument size.");
289
290 CharUnits Padding = (PaddedSize - UnpaddedSize);
291
292 llvm::Type *IndexTy = CGF.Int64Ty;
293 llvm::Value *PaddedSizeV =
294 llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity());
295
296 if (IsVector) {
297 // Work out the address of a vector argument on the stack.
298 // Vector arguments are always passed in the high bits of a
299 // single (8 byte) or double (16 byte) stack slot.
300 Address OverflowArgAreaPtr =
301 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr");
302 Address OverflowArgArea =
303 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
304 CGF.Int8Ty, TyInfo.Align);
305 Address MemAddr = OverflowArgArea.withElementType(DirectTy);
306
307 // Update overflow_arg_area_ptr pointer
308 llvm::Value *NewOverflowArgArea = CGF.Builder.CreateGEP(
309 OverflowArgArea.getElementType(), OverflowArgArea.emitRawPointer(CGF),
310 PaddedSizeV, "overflow_arg_area");
311 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
312
313 return MemAddr;
314 }
315
316 assert(PaddedSize.getQuantity() == 8);
317
318 unsigned MaxRegs, RegCountField, RegSaveIndex;
319 CharUnits RegPadding;
320 if (InFPRs) {
321 MaxRegs = 4; // Maximum of 4 FPR arguments
322 RegCountField = 1; // __fpr
323 RegSaveIndex = 16; // save offset for f0
324 RegPadding = CharUnits(); // floats are passed in the high bits of an FPR
325 } else {
326 MaxRegs = 5; // Maximum of 5 GPR arguments
327 RegCountField = 0; // __gpr
328 RegSaveIndex = 2; // save offset for r2
329 RegPadding = Padding; // values are passed in the low bits of a GPR
330 }
331
332 Address RegCountPtr =
333 CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr");
334 llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count");
335 llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs);
336 llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV,
337 "fits_in_regs");
338
339 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
340 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
341 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
342 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
343
344 // Emit code to load the value if it was passed in registers.
345 CGF.EmitBlock(InRegBlock);
346
347 // Work out the address of an argument register.
348 llvm::Value *ScaledRegCount =
349 CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count");
350 llvm::Value *RegBase =
351 llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity()
352 + RegPadding.getQuantity());
353 llvm::Value *RegOffset =
354 CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset");
355 Address RegSaveAreaPtr =
356 CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr");
357 llvm::Value *RegSaveArea =
358 CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area");
359 Address RawRegAddr(
360 CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, RegOffset, "raw_reg_addr"),
361 CGF.Int8Ty, PaddedSize);
362 Address RegAddr = RawRegAddr.withElementType(DirectTy);
363
364 // Update the register count
365 llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1);
366 llvm::Value *NewRegCount =
367 CGF.Builder.CreateAdd(RegCount, One, "reg_count");
368 CGF.Builder.CreateStore(NewRegCount, RegCountPtr);
369 CGF.EmitBranch(ContBlock);
370
371 // Emit code to load the value if it was passed in memory.
372 CGF.EmitBlock(InMemBlock);
373
374 // Work out the address of a stack argument.
375 Address OverflowArgAreaPtr =
376 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr");
377 Address OverflowArgArea =
378 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
379 CGF.Int8Ty, PaddedSize);
380 Address RawMemAddr =
381 CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr");
382 Address MemAddr = RawMemAddr.withElementType(DirectTy);
383
384 // Update overflow_arg_area_ptr pointer
385 llvm::Value *NewOverflowArgArea = CGF.Builder.CreateGEP(
386 OverflowArgArea.getElementType(), OverflowArgArea.emitRawPointer(CGF),
387 PaddedSizeV, "overflow_arg_area");
388 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
389 CGF.EmitBranch(ContBlock);
390
391 // Return the appropriate result.
392 CGF.EmitBlock(ContBlock);
393 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock,
394 "va_arg.addr");
395
396 if (IsIndirect)
397 ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"), ArgTy,
398 TyInfo.Align);
399
400 return ResAddr;
401}
402
403ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const {
404 if (RetTy->isVoidType())
405 return ABIArgInfo::getIgnore();
406 if (isVectorArgumentType(RetTy))
407 return ABIArgInfo::getDirect();
408 if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64)
409 return getNaturalAlignIndirect(RetTy);
410 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
412}
413
414ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const {
415 // Handle the generic C++ ABI.
416 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
417 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
418
419 // Integers and enums are extended to full register width.
420 if (isPromotableIntegerTypeForABI(Ty))
421 return ABIArgInfo::getExtend(Ty);
422
423 // Handle vector types and vector-like structure types. Note that
424 // as opposed to float-like structure types, we do not allow any
425 // padding for vector-like structures, so verify the sizes match.
426 uint64_t Size = getContext().getTypeSize(Ty);
427 QualType SingleElementTy = GetSingleElementType(Ty);
428 if (isVectorArgumentType(SingleElementTy) &&
429 getContext().getTypeSize(SingleElementTy) == Size)
430 return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy));
431
432 // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly.
433 if (Size != 8 && Size != 16 && Size != 32 && Size != 64)
434 return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
435
436 // Handle small structures.
437 if (const RecordType *RT = Ty->getAs<RecordType>()) {
438 // Structures with flexible arrays have variable length, so really
439 // fail the size test above.
440 const RecordDecl *RD = RT->getDecl();
441 if (RD->hasFlexibleArrayMember())
442 return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
443
444 // The structure is passed as an unextended integer, a float, or a double.
445 llvm::Type *PassTy;
446 if (isFPArgumentType(SingleElementTy)) {
447 assert(Size == 32 || Size == 64);
448 if (Size == 32)
449 PassTy = llvm::Type::getFloatTy(getVMContext());
450 else
451 PassTy = llvm::Type::getDoubleTy(getVMContext());
452 } else
453 PassTy = llvm::IntegerType::get(getVMContext(), Size);
454 return ABIArgInfo::getDirect(PassTy);
455 }
456
457 // Non-structure compounds are passed indirectly.
458 if (isCompoundType(Ty))
459 return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
460
461 return ABIArgInfo::getDirect(nullptr);
462}
463
464void SystemZABIInfo::computeInfo(CGFunctionInfo &FI) const {
465 const SystemZTargetCodeGenInfo &SZCGI =
466 static_cast<const SystemZTargetCodeGenInfo &>(
467 CGT.getCGM().getTargetCodeGenInfo());
468 if (!getCXXABI().classifyReturnType(FI))
470 unsigned Idx = 0;
471 for (auto &I : FI.arguments()) {
472 I.info = classifyArgumentType(I.type);
473 if (FI.isVariadic() && Idx++ >= FI.getNumRequiredArgs())
474 // Check if a vararg vector argument is passed, in which case the
475 // vector ABI becomes visible as the va_list could be passed on to
476 // other functions.
477 SZCGI.handleExternallyVisibleObjABI(I.type.getTypePtr(), CGT.getCGM(),
478 /*IsParam*/true);
479 }
480}
481
482bool SystemZTargetCodeGenInfo::isVectorTypeBased(const Type *Ty,
483 bool IsParam) const {
484 if (!SeenTypes.insert(Ty).second)
485 return false;
486
487 if (IsParam) {
488 // A narrow (<16 bytes) vector will as a parameter also expose the ABI as
489 // it will be passed in a vector register. A wide (>16 bytes) vector will
490 // be passed via "hidden" pointer where any extra alignment is not
491 // required (per GCC).
492 const Type *SingleEltTy = getABIInfo<SystemZABIInfo>()
493 .GetSingleElementType(QualType(Ty, 0))
494 .getTypePtr();
495 bool SingleVecEltStruct = SingleEltTy != Ty && SingleEltTy->isVectorType() &&
496 Ctx.getTypeSize(SingleEltTy) == Ctx.getTypeSize(Ty);
497 if (Ty->isVectorType() || SingleVecEltStruct)
498 return Ctx.getTypeSize(Ty) / 8 <= 16;
499 }
500
501 // Assume pointers are dereferenced.
502 while (Ty->isPointerType() || Ty->isArrayType())
504
505 // Vectors >= 16 bytes expose the ABI through alignment requirements.
506 if (Ty->isVectorType() && Ctx.getTypeSize(Ty) / 8 >= 16)
507 return true;
508
509 if (const auto *RecordTy = Ty->getAs<RecordType>()) {
510 const RecordDecl *RD = RecordTy->getDecl();
511 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
512 if (CXXRD->hasDefinition())
513 for (const auto &I : CXXRD->bases())
514 if (isVectorTypeBased(I.getType().getTypePtr(), /*IsParam*/false))
515 return true;
516 for (const auto *FD : RD->fields())
517 if (isVectorTypeBased(FD->getType().getTypePtr(), /*IsParam*/false))
518 return true;
519 }
520
521 if (const auto *FT = Ty->getAs<FunctionType>())
522 if (isVectorTypeBased(FT->getReturnType().getTypePtr(), /*IsParam*/true))
523 return true;
524 if (const FunctionProtoType *Proto = Ty->getAs<FunctionProtoType>())
525 for (const auto &ParamType : Proto->getParamTypes())
526 if (isVectorTypeBased(ParamType.getTypePtr(), /*IsParam*/true))
527 return true;
528
529 return false;
530}
531
532std::unique_ptr<TargetCodeGenInfo>
534 bool SoftFloatABI) {
535 return std::make_unique<SystemZTargetCodeGenInfo>(CGM.getTypes(), HasVector,
536 SoftFloatABI);
537}
#define V(N, I)
Definition: ASTContext.h:3284
Defines enum values for all the target-independent builtin functions.
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition: ASTContext.h:182
uint64_t getTypeSize(QualType T) const
Return the size of the specified (complete) type T, in bits.
Definition: ASTContext.h:2340
A fixed int type of a specified bitwidth.
Definition: Type.h:7242
This class is used for builtin types like 'int'.
Definition: Type.h:2981
Represents a C++ struct/union/class.
Definition: DeclCXX.h:258
CharUnits - This is an opaque type for sizes expressed in character units.
Definition: CharUnits.h:38
QuantityType getQuantity() const
getQuantity - Get the raw integer representation of this quantity.
Definition: CharUnits.h:185
static CharUnits fromQuantity(QuantityType Quantity)
fromQuantity - Construct a CharUnits quantity from a raw integer type.
Definition: CharUnits.h:63
ABIArgInfo - Helper class to encapsulate information about how a specific C type should be passed to ...
static ABIArgInfo getIgnore()
static ABIArgInfo getDirect(llvm::Type *T=nullptr, unsigned Offset=0, llvm::Type *Padding=nullptr, bool CanBeFlattened=true, unsigned Align=0)
static ABIArgInfo getExtend(QualType Ty, llvm::Type *T=nullptr)
llvm::Type * getCoerceToType() const
ABIInfo - Target specific hooks for defining how a type should be passed or returned from functions.
Definition: ABIInfo.h:45
bool isPromotableIntegerTypeForABI(QualType Ty) const
Definition: ABIInfo.cpp:163
virtual CodeGen::Address EmitVAArg(CodeGen::CodeGenFunction &CGF, CodeGen::Address VAListAddr, QualType Ty) const =0
EmitVAArg - Emit the target dependent code to load a value of.
virtual void computeInfo(CodeGen::CGFunctionInfo &FI) const =0
Like RawAddress, an abstract representation of an aligned address, but the pointer contained in this ...
Definition: Address.h:111
llvm::Value * emitRawPointer(CodeGenFunction &CGF) const
Return the pointer contained in this class after authenticating it and adding offset to it if necessa...
Definition: Address.h:220
llvm::Type * getElementType() const
Return the type of the values stored in this address.
Definition: Address.h:184
Address withElementType(llvm::Type *ElemTy) const
Return address with different element type, but same pointer and alignment.
Definition: Address.h:241
llvm::StoreInst * CreateStore(llvm::Value *Val, Address Addr, bool IsVolatile=false)
Definition: CGBuilder.h:136
Address CreateGEP(CodeGenFunction &CGF, Address Addr, llvm::Value *Index, const llvm::Twine &Name="")
Definition: CGBuilder.h:292
Address CreateStructGEP(Address Addr, unsigned Index, const llvm::Twine &Name="")
Definition: CGBuilder.h:219
llvm::LoadInst * CreateLoad(Address Addr, const llvm::Twine &Name="")
Definition: CGBuilder.h:108
Address CreateConstByteGEP(Address Addr, CharUnits Offset, const llvm::Twine &Name="")
Definition: CGBuilder.h:315
RecordArgABI
Specify how one should pass an argument of a record type.
Definition: CGCXXABI.h:150
@ RAA_DirectInMemory
Pass it on the stack using its defined layout.
Definition: CGCXXABI.h:158
CGFunctionInfo - Class to encapsulate the information about a function definition.
CanQualType getReturnType() const
MutableArrayRef< ArgInfo > arguments()
unsigned getNumRequiredArgs() const
CodeGenFunction - This class organizes the per-function state that is used while generating LLVM code...
llvm::BasicBlock * createBasicBlock(const Twine &name="", llvm::Function *parent=nullptr, llvm::BasicBlock *before=nullptr)
createBasicBlock - Create an LLVM basic block.
void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false)
EmitBlock - Emit the given block.
llvm::Type * ConvertTypeForMem(QualType T)
void EmitBranch(llvm::BasicBlock *Block)
EmitBranch - Emit a branch to the specified basic block from the current insert block,...
This class organizes the cross-function state that is used while generating LLVM code.
llvm::Module & getModule() const
This class organizes the cross-module state that is used while lowering AST types to LLVM types.
Definition: CodeGenTypes.h:54
TargetCodeGenInfo - This class organizes various target-specific codegeneration issues,...
Definition: TargetInfo.h:46
virtual void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const
setTargetAttributes - Provides a convenient hook to handle extra target-specific attributes for the g...
Definition: TargetInfo.h:75
virtual llvm::Value * testFPKind(llvm::Value *V, unsigned BuiltinID, CGBuilderTy &Builder, CodeGenModule &CGM) const
Performs a target specific test of a floating point value for things like IsNaN, Infinity,...
Definition: TargetInfo.h:159
Decl - This represents one declaration (or definition), e.g.
Definition: DeclBase.h:86
A helper class that allows the use of isa/cast/dyncast to detect TagType objects of enums.
Definition: Type.h:5575
Represents a function declaration or definition.
Definition: Decl.h:1971
Represents a prototype with parameter type info, e.g.
Definition: Type.h:4656
FunctionType - C99 6.7.5.3 - Function Declarators.
Definition: Type.h:4256
A (possibly-)qualified type.
Definition: Type.h:940
bool isNull() const
Return true if this QualType doesn't point to a type yet.
Definition: Type.h:1007
const Type * getTypePtr() const
Retrieves a pointer to the underlying (unqualified) type.
Definition: Type.h:7359
QualType getCanonicalType() const
Definition: Type.h:7411
Represents a struct/union/class.
Definition: Decl.h:4169
bool hasFlexibleArrayMember() const
Definition: Decl.h:4202
field_range fields() const
Definition: Decl.h:4375
A helper class that allows the use of isa/cast/dyncast to detect TagType objects of structs/unions/cl...
Definition: Type.h:5549
RecordDecl * getDecl() const
Definition: Type.h:5559
The base class of the type hierarchy.
Definition: Type.h:1813
bool isVoidType() const
Definition: Type.h:7905
const Type * getPointeeOrArrayElementType() const
If this is a pointer type, return the pointee type.
Definition: Type.h:8080
bool isArrayType() const
Definition: Type.h:7678
bool isPointerType() const
Definition: Type.h:7612
bool isAnyComplexType() const
Definition: Type.h:7714
bool isStructureOrClassType() const
Definition: Type.cpp:646
bool isVectorType() const
Definition: Type.h:7718
const T * getAs() const
Member-template getAs<specific type>'.
Definition: Type.h:8123
ABIArgInfo classifyArgumentType(CodeGenModule &CGM, CanQualType type)
Classify the rules for how to pass a particular type.
CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT, CGCXXABI &CXXABI)
bool classifyReturnType(const CGCXXABI &CXXABI, CGFunctionInfo &FI, const ABIInfo &Info)
std::unique_ptr< TargetCodeGenInfo > createSystemZTargetCodeGenInfo(CodeGenModule &CGM, bool HasVector, bool SoftFloatABI)
Definition: SystemZ.cpp:533
Address emitMergePHI(CodeGenFunction &CGF, Address Addr1, llvm::BasicBlock *Block1, Address Addr2, llvm::BasicBlock *Block2, const llvm::Twine &Name="")
bool isAggregateTypeForABI(QualType T)
bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays, bool AsIfNoUniqueAddr=false)
isEmptyRecord - Return true iff a structure contains only empty fields.
The JSON file list parser is used to communicate input to InstallAPI.
unsigned long uint64_t
Definition: Format.h:5394
llvm::IntegerType * Int8Ty
i8, i16, i32, and i64