clang  7.0.0svn
CGObjC.cpp
Go to the documentation of this file.
1 //===---- CGObjC.cpp - Emit LLVM Code for Objective-C ---------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Objective-C code as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGDebugInfo.h"
15 #include "CGObjCRuntime.h"
16 #include "CodeGenFunction.h"
17 #include "CodeGenModule.h"
18 #include "TargetInfo.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/StmtObjC.h"
22 #include "clang/Basic/Diagnostic.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/IR/CallSite.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/InlineAsm.h"
28 using namespace clang;
29 using namespace CodeGen;
30 
31 typedef llvm::PointerIntPair<llvm::Value*,1,bool> TryEmitResult;
32 static TryEmitResult
35  QualType ET,
36  RValue Result);
37 
38 /// Given the address of a variable of pointer type, find the correct
39 /// null to store into it.
40 static llvm::Constant *getNullForVariable(Address addr) {
41  llvm::Type *type = addr.getElementType();
42  return llvm::ConstantPointerNull::get(cast<llvm::PointerType>(type));
43 }
44 
45 /// Emits an instance of NSConstantString representing the object.
47 {
48  llvm::Constant *C =
50  // FIXME: This bitcast should just be made an invariant on the Runtime.
51  return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType()));
52 }
53 
54 /// EmitObjCBoxedExpr - This routine generates code to call
55 /// the appropriate expression boxing method. This will either be
56 /// one of +[NSNumber numberWith<Type>:], or +[NSString stringWithUTF8String:],
57 /// or [NSValue valueWithBytes:objCType:].
58 ///
61  // Generate the correct selector for this literal's concrete type.
62  // Get the method.
63  const ObjCMethodDecl *BoxingMethod = E->getBoxingMethod();
64  const Expr *SubExpr = E->getSubExpr();
65  assert(BoxingMethod && "BoxingMethod is null");
66  assert(BoxingMethod->isClassMethod() && "BoxingMethod must be a class method");
67  Selector Sel = BoxingMethod->getSelector();
68 
69  // Generate a reference to the class pointer, which will be the receiver.
70  // Assumes that the method was introduced in the class that should be
71  // messaged (avoids pulling it out of the result type).
72  CGObjCRuntime &Runtime = CGM.getObjCRuntime();
73  const ObjCInterfaceDecl *ClassDecl = BoxingMethod->getClassInterface();
74  llvm::Value *Receiver = Runtime.GetClass(*this, ClassDecl);
75 
76  CallArgList Args;
77  const ParmVarDecl *ArgDecl = *BoxingMethod->param_begin();
78  QualType ArgQT = ArgDecl->getType().getUnqualifiedType();
79 
80  // ObjCBoxedExpr supports boxing of structs and unions
81  // via [NSValue valueWithBytes:objCType:]
82  const QualType ValueType(SubExpr->getType().getCanonicalType());
83  if (ValueType->isObjCBoxableRecordType()) {
84  // Emit CodeGen for first parameter
85  // and cast value to correct type
86  Address Temporary = CreateMemTemp(SubExpr->getType());
87  EmitAnyExprToMem(SubExpr, Temporary, Qualifiers(), /*isInit*/ true);
88  Address BitCast = Builder.CreateBitCast(Temporary, ConvertType(ArgQT));
89  Args.add(RValue::get(BitCast.getPointer()), ArgQT);
90 
91  // Create char array to store type encoding
92  std::string Str;
93  getContext().getObjCEncodingForType(ValueType, Str);
94  llvm::Constant *GV = CGM.GetAddrOfConstantCString(Str).getPointer();
95 
96  // Cast type encoding to correct type
97  const ParmVarDecl *EncodingDecl = BoxingMethod->parameters()[1];
98  QualType EncodingQT = EncodingDecl->getType().getUnqualifiedType();
99  llvm::Value *Cast = Builder.CreateBitCast(GV, ConvertType(EncodingQT));
100 
101  Args.add(RValue::get(Cast), EncodingQT);
102  } else {
103  Args.add(EmitAnyExpr(SubExpr), ArgQT);
104  }
105 
106  RValue result = Runtime.GenerateMessageSend(
107  *this, ReturnValueSlot(), BoxingMethod->getReturnType(), Sel, Receiver,
108  Args, ClassDecl, BoxingMethod);
109  return Builder.CreateBitCast(result.getScalarVal(),
110  ConvertType(E->getType()));
111 }
112 
114  const ObjCMethodDecl *MethodWithObjects) {
115  ASTContext &Context = CGM.getContext();
116  const ObjCDictionaryLiteral *DLE = nullptr;
117  const ObjCArrayLiteral *ALE = dyn_cast<ObjCArrayLiteral>(E);
118  if (!ALE)
119  DLE = cast<ObjCDictionaryLiteral>(E);
120 
121  // Optimize empty collections by referencing constants, when available.
122  uint64_t NumElements =
123  ALE ? ALE->getNumElements() : DLE->getNumElements();
124  if (NumElements == 0 && CGM.getLangOpts().ObjCRuntime.hasEmptyCollections()) {
125  StringRef ConstantName = ALE ? "__NSArray0__" : "__NSDictionary0__";
127  llvm::Constant *Constant =
128  CGM.CreateRuntimeVariable(ConvertType(IdTy), ConstantName);
129  LValue LV = MakeNaturalAlignAddrLValue(Constant, IdTy);
130  llvm::Value *Ptr = EmitLoadOfScalar(LV, E->getLocStart());
131  cast<llvm::LoadInst>(Ptr)->setMetadata(
132  CGM.getModule().getMDKindID("invariant.load"),
133  llvm::MDNode::get(getLLVMContext(), None));
134  return Builder.CreateBitCast(Ptr, ConvertType(E->getType()));
135  }
136 
137  // Compute the type of the array we're initializing.
138  llvm::APInt APNumElements(Context.getTypeSize(Context.getSizeType()),
139  NumElements);
140  QualType ElementType = Context.getObjCIdType().withConst();
141  QualType ElementArrayType
142  = Context.getConstantArrayType(ElementType, APNumElements,
143  ArrayType::Normal, /*IndexTypeQuals=*/0);
144 
145  // Allocate the temporary array(s).
146  Address Objects = CreateMemTemp(ElementArrayType, "objects");
147  Address Keys = Address::invalid();
148  if (DLE)
149  Keys = CreateMemTemp(ElementArrayType, "keys");
150 
151  // In ARC, we may need to do extra work to keep all the keys and
152  // values alive until after the call.
153  SmallVector<llvm::Value *, 16> NeededObjects;
154  bool TrackNeededObjects =
155  (getLangOpts().ObjCAutoRefCount &&
156  CGM.getCodeGenOpts().OptimizationLevel != 0);
157 
158  // Perform the actual initialialization of the array(s).
159  for (uint64_t i = 0; i < NumElements; i++) {
160  if (ALE) {
161  // Emit the element and store it to the appropriate array slot.
162  const Expr *Rhs = ALE->getElement(i);
163  LValue LV = MakeAddrLValue(
165  ElementType, AlignmentSource::Decl);
166 
167  llvm::Value *value = EmitScalarExpr(Rhs);
168  EmitStoreThroughLValue(RValue::get(value), LV, true);
169  if (TrackNeededObjects) {
170  NeededObjects.push_back(value);
171  }
172  } else {
173  // Emit the key and store it to the appropriate array slot.
174  const Expr *Key = DLE->getKeyValueElement(i).Key;
175  LValue KeyLV = MakeAddrLValue(
177  ElementType, AlignmentSource::Decl);
178  llvm::Value *keyValue = EmitScalarExpr(Key);
179  EmitStoreThroughLValue(RValue::get(keyValue), KeyLV, /*isInit=*/true);
180 
181  // Emit the value and store it to the appropriate array slot.
182  const Expr *Value = DLE->getKeyValueElement(i).Value;
183  LValue ValueLV = MakeAddrLValue(
185  ElementType, AlignmentSource::Decl);
186  llvm::Value *valueValue = EmitScalarExpr(Value);
187  EmitStoreThroughLValue(RValue::get(valueValue), ValueLV, /*isInit=*/true);
188  if (TrackNeededObjects) {
189  NeededObjects.push_back(keyValue);
190  NeededObjects.push_back(valueValue);
191  }
192  }
193  }
194 
195  // Generate the argument list.
196  CallArgList Args;
197  ObjCMethodDecl::param_const_iterator PI = MethodWithObjects->param_begin();
198  const ParmVarDecl *argDecl = *PI++;
199  QualType ArgQT = argDecl->getType().getUnqualifiedType();
200  Args.add(RValue::get(Objects.getPointer()), ArgQT);
201  if (DLE) {
202  argDecl = *PI++;
203  ArgQT = argDecl->getType().getUnqualifiedType();
204  Args.add(RValue::get(Keys.getPointer()), ArgQT);
205  }
206  argDecl = *PI;
207  ArgQT = argDecl->getType().getUnqualifiedType();
208  llvm::Value *Count =
209  llvm::ConstantInt::get(CGM.getTypes().ConvertType(ArgQT), NumElements);
210  Args.add(RValue::get(Count), ArgQT);
211 
212  // Generate a reference to the class pointer, which will be the receiver.
213  Selector Sel = MethodWithObjects->getSelector();
214  QualType ResultType = E->getType();
215  const ObjCObjectPointerType *InterfacePointerType
216  = ResultType->getAsObjCInterfacePointerType();
217  ObjCInterfaceDecl *Class
218  = InterfacePointerType->getObjectType()->getInterface();
219  CGObjCRuntime &Runtime = CGM.getObjCRuntime();
220  llvm::Value *Receiver = Runtime.GetClass(*this, Class);
221 
222  // Generate the message send.
223  RValue result = Runtime.GenerateMessageSend(
224  *this, ReturnValueSlot(), MethodWithObjects->getReturnType(), Sel,
225  Receiver, Args, Class, MethodWithObjects);
226 
227  // The above message send needs these objects, but in ARC they are
228  // passed in a buffer that is essentially __unsafe_unretained.
229  // Therefore we must prevent the optimizer from releasing them until
230  // after the call.
231  if (TrackNeededObjects) {
232  EmitARCIntrinsicUse(NeededObjects);
233  }
234 
235  return Builder.CreateBitCast(result.getScalarVal(),
236  ConvertType(E->getType()));
237 }
238 
241 }
242 
244  const ObjCDictionaryLiteral *E) {
246 }
247 
248 /// Emit a selector.
250  // Untyped selector.
251  // Note that this implementation allows for non-constant strings to be passed
252  // as arguments to @selector(). Currently, the only thing preventing this
253  // behaviour is the type checking in the front end.
254  return CGM.getObjCRuntime().GetSelector(*this, E->getSelector());
255 }
256 
258  // FIXME: This should pass the Decl not the name.
259  return CGM.getObjCRuntime().GenerateProtocolRef(*this, E->getProtocol());
260 }
261 
262 /// Adjust the type of an Objective-C object that doesn't match up due
263 /// to type erasure at various points, e.g., related result types or the use
264 /// of parameterized classes.
266  RValue Result) {
267  if (!ExpT->isObjCRetainableType())
268  return Result;
269 
270  // If the converted types are the same, we're done.
271  llvm::Type *ExpLLVMTy = CGF.ConvertType(ExpT);
272  if (ExpLLVMTy == Result.getScalarVal()->getType())
273  return Result;
274 
275  // We have applied a substitution. Cast the rvalue appropriately.
276  return RValue::get(CGF.Builder.CreateBitCast(Result.getScalarVal(),
277  ExpLLVMTy));
278 }
279 
280 /// Decide whether to extend the lifetime of the receiver of a
281 /// returns-inner-pointer message.
282 static bool
284  switch (message->getReceiverKind()) {
285 
286  // For a normal instance message, we should extend unless the
287  // receiver is loaded from a variable with precise lifetime.
289  const Expr *receiver = message->getInstanceReceiver();
290 
291  // Look through OVEs.
292  if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) {
293  if (opaque->getSourceExpr())
294  receiver = opaque->getSourceExpr()->IgnoreParens();
295  }
296 
297  const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(receiver);
298  if (!ice || ice->getCastKind() != CK_LValueToRValue) return true;
299  receiver = ice->getSubExpr()->IgnoreParens();
300 
301  // Look through OVEs.
302  if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) {
303  if (opaque->getSourceExpr())
304  receiver = opaque->getSourceExpr()->IgnoreParens();
305  }
306 
307  // Only __strong variables.
308  if (receiver->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
309  return true;
310 
311  // All ivars and fields have precise lifetime.
312  if (isa<MemberExpr>(receiver) || isa<ObjCIvarRefExpr>(receiver))
313  return false;
314 
315  // Otherwise, check for variables.
316  const DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(ice->getSubExpr());
317  if (!declRef) return true;
318  const VarDecl *var = dyn_cast<VarDecl>(declRef->getDecl());
319  if (!var) return true;
320 
321  // All variables have precise lifetime except local variables with
322  // automatic storage duration that aren't specially marked.
323  return (var->hasLocalStorage() &&
324  !var->hasAttr<ObjCPreciseLifetimeAttr>());
325  }
326 
329  // It's never necessary for class objects.
330  return false;
331 
333  // We generally assume that 'self' lives throughout a method call.
334  return false;
335  }
336 
337  llvm_unreachable("invalid receiver kind");
338 }
339 
340 /// Given an expression of ObjC pointer type, check whether it was
341 /// immediately loaded from an ARC __weak l-value.
342 static const Expr *findWeakLValue(const Expr *E) {
343  assert(E->getType()->isObjCRetainableType());
344  E = E->IgnoreParens();
345  if (auto CE = dyn_cast<CastExpr>(E)) {
346  if (CE->getCastKind() == CK_LValueToRValue) {
347  if (CE->getSubExpr()->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
348  return CE->getSubExpr();
349  }
350  }
351 
352  return nullptr;
353 }
354 
356  ReturnValueSlot Return) {
357  // Only the lookup mechanism and first two arguments of the method
358  // implementation vary between runtimes. We can get the receiver and
359  // arguments in generic code.
360 
361  bool isDelegateInit = E->isDelegateInitCall();
362 
363  const ObjCMethodDecl *method = E->getMethodDecl();
364 
365  // If the method is -retain, and the receiver's being loaded from
366  // a __weak variable, peephole the entire operation to objc_loadWeakRetained.
367  if (method && E->getReceiverKind() == ObjCMessageExpr::Instance &&
368  method->getMethodFamily() == OMF_retain) {
369  if (auto lvalueExpr = findWeakLValue(E->getInstanceReceiver())) {
370  LValue lvalue = EmitLValue(lvalueExpr);
371  llvm::Value *result = EmitARCLoadWeakRetained(lvalue.getAddress());
372  return AdjustObjCObjectType(*this, E->getType(), RValue::get(result));
373  }
374  }
375 
376  // We don't retain the receiver in delegate init calls, and this is
377  // safe because the receiver value is always loaded from 'self',
378  // which we zero out. We don't want to Block_copy block receivers,
379  // though.
380  bool retainSelf =
381  (!isDelegateInit &&
382  CGM.getLangOpts().ObjCAutoRefCount &&
383  method &&
384  method->hasAttr<NSConsumesSelfAttr>());
385 
386  CGObjCRuntime &Runtime = CGM.getObjCRuntime();
387  bool isSuperMessage = false;
388  bool isClassMessage = false;
389  ObjCInterfaceDecl *OID = nullptr;
390  // Find the receiver
391  QualType ReceiverType;
392  llvm::Value *Receiver = nullptr;
393  switch (E->getReceiverKind()) {
395  ReceiverType = E->getInstanceReceiver()->getType();
396  if (retainSelf) {
398  E->getInstanceReceiver());
399  Receiver = ter.getPointer();
400  if (ter.getInt()) retainSelf = false;
401  } else
402  Receiver = EmitScalarExpr(E->getInstanceReceiver());
403  break;
404 
405  case ObjCMessageExpr::Class: {
406  ReceiverType = E->getClassReceiver();
407  const ObjCObjectType *ObjTy = ReceiverType->getAs<ObjCObjectType>();
408  assert(ObjTy && "Invalid Objective-C class message send");
409  OID = ObjTy->getInterface();
410  assert(OID && "Invalid Objective-C class message send");
411  Receiver = Runtime.GetClass(*this, OID);
412  isClassMessage = true;
413  break;
414  }
415 
417  ReceiverType = E->getSuperType();
418  Receiver = LoadObjCSelf();
419  isSuperMessage = true;
420  break;
421 
423  ReceiverType = E->getSuperType();
424  Receiver = LoadObjCSelf();
425  isSuperMessage = true;
426  isClassMessage = true;
427  break;
428  }
429 
430  if (retainSelf)
431  Receiver = EmitARCRetainNonBlock(Receiver);
432 
433  // In ARC, we sometimes want to "extend the lifetime"
434  // (i.e. retain+autorelease) of receivers of returns-inner-pointer
435  // messages.
436  if (getLangOpts().ObjCAutoRefCount && method &&
437  method->hasAttr<ObjCReturnsInnerPointerAttr>() &&
439  Receiver = EmitARCRetainAutorelease(ReceiverType, Receiver);
440 
441  QualType ResultType = method ? method->getReturnType() : E->getType();
442 
443  CallArgList Args;
444  EmitCallArgs(Args, method, E->arguments(), /*AC*/AbstractCallee(method));
445 
446  // For delegate init calls in ARC, do an unsafe store of null into
447  // self. This represents the call taking direct ownership of that
448  // value. We have to do this after emitting the other call
449  // arguments because they might also reference self, but we don't
450  // have to worry about any of them modifying self because that would
451  // be an undefined read and write of an object in unordered
452  // expressions.
453  if (isDelegateInit) {
454  assert(getLangOpts().ObjCAutoRefCount &&
455  "delegate init calls should only be marked in ARC");
456 
457  // Do an unsafe store of null into self.
458  Address selfAddr =
459  GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl());
460  Builder.CreateStore(getNullForVariable(selfAddr), selfAddr);
461  }
462 
463  RValue result;
464  if (isSuperMessage) {
465  // super is only valid in an Objective-C method
466  const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
467  bool isCategoryImpl = isa<ObjCCategoryImplDecl>(OMD->getDeclContext());
468  result = Runtime.GenerateMessageSendSuper(*this, Return, ResultType,
469  E->getSelector(),
470  OMD->getClassInterface(),
471  isCategoryImpl,
472  Receiver,
473  isClassMessage,
474  Args,
475  method);
476  } else {
477  result = Runtime.GenerateMessageSend(*this, Return, ResultType,
478  E->getSelector(),
479  Receiver, Args, OID,
480  method);
481  }
482 
483  // For delegate init calls in ARC, implicitly store the result of
484  // the call back into self. This takes ownership of the value.
485  if (isDelegateInit) {
486  Address selfAddr =
487  GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl());
488  llvm::Value *newSelf = result.getScalarVal();
489 
490  // The delegate return type isn't necessarily a matching type; in
491  // fact, it's quite likely to be 'id'.
492  llvm::Type *selfTy = selfAddr.getElementType();
493  newSelf = Builder.CreateBitCast(newSelf, selfTy);
494 
495  Builder.CreateStore(newSelf, selfAddr);
496  }
497 
498  return AdjustObjCObjectType(*this, E->getType(), result);
499 }
500 
501 namespace {
502 struct FinishARCDealloc final : EHScopeStack::Cleanup {
503  void Emit(CodeGenFunction &CGF, Flags flags) override {
504  const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CGF.CurCodeDecl);
505 
506  const ObjCImplDecl *impl = cast<ObjCImplDecl>(method->getDeclContext());
507  const ObjCInterfaceDecl *iface = impl->getClassInterface();
508  if (!iface->getSuperClass()) return;
509 
510  bool isCategory = isa<ObjCCategoryImplDecl>(impl);
511 
512  // Call [super dealloc] if we have a superclass.
513  llvm::Value *self = CGF.LoadObjCSelf();
514 
515  CallArgList args;
517  CGF.getContext().VoidTy,
518  method->getSelector(),
519  iface,
520  isCategory,
521  self,
522  /*is class msg*/ false,
523  args,
524  method);
525  }
526 };
527 }
528 
529 /// StartObjCMethod - Begin emission of an ObjCMethod. This generates
530 /// the LLVM function and sets the other context used by
531 /// CodeGenFunction.
533  const ObjCContainerDecl *CD) {
534  SourceLocation StartLoc = OMD->getLocStart();
535  FunctionArgList args;
536  // Check if we should generate debug info for this method.
537  if (OMD->hasAttr<NoDebugAttr>())
538  DebugInfo = nullptr; // disable debug info indefinitely for this function
539 
540  llvm::Function *Fn = CGM.getObjCRuntime().GenerateMethod(OMD, CD);
541 
543  CGM.SetInternalFunctionAttributes(OMD, Fn, FI);
544 
545  args.push_back(OMD->getSelfDecl());
546  args.push_back(OMD->getCmdDecl());
547 
548  args.append(OMD->param_begin(), OMD->param_end());
549 
550  CurGD = OMD;
551  CurEHLocation = OMD->getLocEnd();
552 
553  StartFunction(OMD, OMD->getReturnType(), Fn, FI, args,
554  OMD->getLocation(), StartLoc);
555 
556  // In ARC, certain methods get an extra cleanup.
557  if (CGM.getLangOpts().ObjCAutoRefCount &&
558  OMD->isInstanceMethod() &&
559  OMD->getSelector().isUnarySelector()) {
560  const IdentifierInfo *ident =
562  if (ident->isStr("dealloc"))
563  EHStack.pushCleanup<FinishARCDealloc>(getARCCleanupKind());
564  }
565 }
566 
568  LValue lvalue, QualType type);
569 
570 /// Generate an Objective-C method. An Objective-C method is a C function with
571 /// its pointer, name, and types registered in the class struture.
573  StartObjCMethod(OMD, OMD->getClassInterface());
574  PGO.assignRegionCounters(GlobalDecl(OMD), CurFn);
575  assert(isa<CompoundStmt>(OMD->getBody()));
577  EmitCompoundStmtWithoutScope(*cast<CompoundStmt>(OMD->getBody()));
579 }
580 
581 /// emitStructGetterCall - Call the runtime function to load a property
582 /// into the return value slot.
584  bool isAtomic, bool hasStrong) {
585  ASTContext &Context = CGF.getContext();
586 
587  Address src =
588  CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0)
589  .getAddress();
590 
591  // objc_copyStruct (ReturnValue, &structIvar,
592  // sizeof (Type of Ivar), isAtomic, false);
593  CallArgList args;
594 
595  Address dest = CGF.Builder.CreateBitCast(CGF.ReturnValue, CGF.VoidPtrTy);
596  args.add(RValue::get(dest.getPointer()), Context.VoidPtrTy);
597 
598  src = CGF.Builder.CreateBitCast(src, CGF.VoidPtrTy);
599  args.add(RValue::get(src.getPointer()), Context.VoidPtrTy);
600 
601  CharUnits size = CGF.getContext().getTypeSizeInChars(ivar->getType());
602  args.add(RValue::get(CGF.CGM.getSize(size)), Context.getSizeType());
603  args.add(RValue::get(CGF.Builder.getInt1(isAtomic)), Context.BoolTy);
604  args.add(RValue::get(CGF.Builder.getInt1(hasStrong)), Context.BoolTy);
605 
606  llvm::Constant *fn = CGF.CGM.getObjCRuntime().GetGetStructFunction();
607  CGCallee callee = CGCallee::forDirect(fn);
608  CGF.EmitCall(CGF.getTypes().arrangeBuiltinFunctionCall(Context.VoidTy, args),
609  callee, ReturnValueSlot(), args);
610 }
611 
612 /// Determine whether the given architecture supports unaligned atomic
613 /// accesses. They don't have to be fast, just faster than a function
614 /// call and a mutex.
615 static bool hasUnalignedAtomics(llvm::Triple::ArchType arch) {
616  // FIXME: Allow unaligned atomic load/store on x86. (It is not
617  // currently supported by the backend.)
618  return 0;
619 }
620 
621 /// Return the maximum size that permits atomic accesses for the given
622 /// architecture.
624  llvm::Triple::ArchType arch) {
625  // ARM has 8-byte atomic accesses, but it's not clear whether we
626  // want to rely on them here.
627 
628  // In the default case, just assume that any size up to a pointer is
629  // fine given adequate alignment.
631 }
632 
633 namespace {
634  class PropertyImplStrategy {
635  public:
636  enum StrategyKind {
637  /// The 'native' strategy is to use the architecture's provided
638  /// reads and writes.
639  Native,
640 
641  /// Use objc_setProperty and objc_getProperty.
642  GetSetProperty,
643 
644  /// Use objc_setProperty for the setter, but use expression
645  /// evaluation for the getter.
646  SetPropertyAndExpressionGet,
647 
648  /// Use objc_copyStruct.
649  CopyStruct,
650 
651  /// The 'expression' strategy is to emit normal assignment or
652  /// lvalue-to-rvalue expressions.
653  Expression
654  };
655 
656  StrategyKind getKind() const { return StrategyKind(Kind); }
657 
658  bool hasStrongMember() const { return HasStrong; }
659  bool isAtomic() const { return IsAtomic; }
660  bool isCopy() const { return IsCopy; }
661 
662  CharUnits getIvarSize() const { return IvarSize; }
663  CharUnits getIvarAlignment() const { return IvarAlignment; }
664 
665  PropertyImplStrategy(CodeGenModule &CGM,
666  const ObjCPropertyImplDecl *propImpl);
667 
668  private:
669  unsigned Kind : 8;
670  unsigned IsAtomic : 1;
671  unsigned IsCopy : 1;
672  unsigned HasStrong : 1;
673 
674  CharUnits IvarSize;
675  CharUnits IvarAlignment;
676  };
677 }
678 
679 /// Pick an implementation strategy for the given property synthesis.
680 PropertyImplStrategy::PropertyImplStrategy(CodeGenModule &CGM,
681  const ObjCPropertyImplDecl *propImpl) {
682  const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
683  ObjCPropertyDecl::SetterKind setterKind = prop->getSetterKind();
684 
685  IsCopy = (setterKind == ObjCPropertyDecl::Copy);
686  IsAtomic = prop->isAtomic();
687  HasStrong = false; // doesn't matter here.
688 
689  // Evaluate the ivar's size and alignment.
690  ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
691  QualType ivarType = ivar->getType();
692  std::tie(IvarSize, IvarAlignment) =
693  CGM.getContext().getTypeInfoInChars(ivarType);
694 
695  // If we have a copy property, we always have to use getProperty/setProperty.
696  // TODO: we could actually use setProperty and an expression for non-atomics.
697  if (IsCopy) {
698  Kind = GetSetProperty;
699  return;
700  }
701 
702  // Handle retain.
703  if (setterKind == ObjCPropertyDecl::Retain) {
704  // In GC-only, there's nothing special that needs to be done.
705  if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
706  // fallthrough
707 
708  // In ARC, if the property is non-atomic, use expression emission,
709  // which translates to objc_storeStrong. This isn't required, but
710  // it's slightly nicer.
711  } else if (CGM.getLangOpts().ObjCAutoRefCount && !IsAtomic) {
712  // Using standard expression emission for the setter is only
713  // acceptable if the ivar is __strong, which won't be true if
714  // the property is annotated with __attribute__((NSObject)).
715  // TODO: falling all the way back to objc_setProperty here is
716  // just laziness, though; we could still use objc_storeStrong
717  // if we hacked it right.
718  if (ivarType.getObjCLifetime() == Qualifiers::OCL_Strong)
719  Kind = Expression;
720  else
721  Kind = SetPropertyAndExpressionGet;
722  return;
723 
724  // Otherwise, we need to at least use setProperty. However, if
725  // the property isn't atomic, we can use normal expression
726  // emission for the getter.
727  } else if (!IsAtomic) {
728  Kind = SetPropertyAndExpressionGet;
729  return;
730 
731  // Otherwise, we have to use both setProperty and getProperty.
732  } else {
733  Kind = GetSetProperty;
734  return;
735  }
736  }
737 
738  // If we're not atomic, just use expression accesses.
739  if (!IsAtomic) {
740  Kind = Expression;
741  return;
742  }
743 
744  // Properties on bitfield ivars need to be emitted using expression
745  // accesses even if they're nominally atomic.
746  if (ivar->isBitField()) {
747  Kind = Expression;
748  return;
749  }
750 
751  // GC-qualified or ARC-qualified ivars need to be emitted as
752  // expressions. This actually works out to being atomic anyway,
753  // except for ARC __strong, but that should trigger the above code.
754  if (ivarType.hasNonTrivialObjCLifetime() ||
755  (CGM.getLangOpts().getGC() &&
756  CGM.getContext().getObjCGCAttrKind(ivarType))) {
757  Kind = Expression;
758  return;
759  }
760 
761  // Compute whether the ivar has strong members.
762  if (CGM.getLangOpts().getGC())
763  if (const RecordType *recordType = ivarType->getAs<RecordType>())
764  HasStrong = recordType->getDecl()->hasObjectMember();
765 
766  // We can never access structs with object members with a native
767  // access, because we need to use write barriers. This is what
768  // objc_copyStruct is for.
769  if (HasStrong) {
770  Kind = CopyStruct;
771  return;
772  }
773 
774  // Otherwise, this is target-dependent and based on the size and
775  // alignment of the ivar.
776 
777  // If the size of the ivar is not a power of two, give up. We don't
778  // want to get into the business of doing compare-and-swaps.
779  if (!IvarSize.isPowerOfTwo()) {
780  Kind = CopyStruct;
781  return;
782  }
783 
784  llvm::Triple::ArchType arch =
785  CGM.getTarget().getTriple().getArch();
786 
787  // Most architectures require memory to fit within a single cache
788  // line, so the alignment has to be at least the size of the access.
789  // Otherwise we have to grab a lock.
790  if (IvarAlignment < IvarSize && !hasUnalignedAtomics(arch)) {
791  Kind = CopyStruct;
792  return;
793  }
794 
795  // If the ivar's size exceeds the architecture's maximum atomic
796  // access size, we have to use CopyStruct.
797  if (IvarSize > getMaxAtomicAccessSize(CGM, arch)) {
798  Kind = CopyStruct;
799  return;
800  }
801 
802  // Otherwise, we can use native loads and stores.
803  Kind = Native;
804 }
805 
806 /// Generate an Objective-C property getter function.
807 ///
808 /// The given Decl must be an ObjCImplementationDecl. \@synthesize
809 /// is illegal within a category.
811  const ObjCPropertyImplDecl *PID) {
812  llvm::Constant *AtomicHelperFn =
814  const ObjCPropertyDecl *PD = PID->getPropertyDecl();
815  ObjCMethodDecl *OMD = PD->getGetterMethodDecl();
816  assert(OMD && "Invalid call to generate getter (empty method)");
817  StartObjCMethod(OMD, IMP->getClassInterface());
818 
819  generateObjCGetterBody(IMP, PID, OMD, AtomicHelperFn);
820 
821  FinishFunction();
822 }
823 
824 static bool hasTrivialGetExpr(const ObjCPropertyImplDecl *propImpl) {
825  const Expr *getter = propImpl->getGetterCXXConstructor();
826  if (!getter) return true;
827 
828  // Sema only makes only of these when the ivar has a C++ class type,
829  // so the form is pretty constrained.
830 
831  // If the property has a reference type, we might just be binding a
832  // reference, in which case the result will be a gl-value. We should
833  // treat this as a non-trivial operation.
834  if (getter->isGLValue())
835  return false;
836 
837  // If we selected a trivial copy-constructor, we're okay.
838  if (const CXXConstructExpr *construct = dyn_cast<CXXConstructExpr>(getter))
839  return (construct->getConstructor()->isTrivial());
840 
841  // The constructor might require cleanups (in which case it's never
842  // trivial).
843  assert(isa<ExprWithCleanups>(getter));
844  return false;
845 }
846 
847 /// emitCPPObjectAtomicGetterCall - Call the runtime function to
848 /// copy the ivar into the resturn slot.
850  llvm::Value *returnAddr,
851  ObjCIvarDecl *ivar,
852  llvm::Constant *AtomicHelperFn) {
853  // objc_copyCppObjectAtomic (&returnSlot, &CppObjectIvar,
854  // AtomicHelperFn);
855  CallArgList args;
856 
857  // The 1st argument is the return Slot.
858  args.add(RValue::get(returnAddr), CGF.getContext().VoidPtrTy);
859 
860  // The 2nd argument is the address of the ivar.
861  llvm::Value *ivarAddr =
863  CGF.LoadObjCSelf(), ivar, 0).getPointer();
864  ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
865  args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
866 
867  // Third argument is the helper function.
868  args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
869 
870  llvm::Constant *copyCppAtomicObjectFn =
872  CGCallee callee = CGCallee::forDirect(copyCppAtomicObjectFn);
873  CGF.EmitCall(
875  callee, ReturnValueSlot(), args);
876 }
877 
878 void
880  const ObjCPropertyImplDecl *propImpl,
881  const ObjCMethodDecl *GetterMethodDecl,
882  llvm::Constant *AtomicHelperFn) {
883  // If there's a non-trivial 'get' expression, we just have to emit that.
884  if (!hasTrivialGetExpr(propImpl)) {
885  if (!AtomicHelperFn) {
887  /*nrvo*/ nullptr);
888  EmitReturnStmt(ret);
889  }
890  else {
891  ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
893  ivar, AtomicHelperFn);
894  }
895  return;
896  }
897 
898  const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
899  QualType propType = prop->getType();
900  ObjCMethodDecl *getterMethod = prop->getGetterMethodDecl();
901 
902  ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
903 
904  // Pick an implementation strategy.
905  PropertyImplStrategy strategy(CGM, propImpl);
906  switch (strategy.getKind()) {
907  case PropertyImplStrategy::Native: {
908  // We don't need to do anything for a zero-size struct.
909  if (strategy.getIvarSize().isZero())
910  return;
911 
913 
914  // Currently, all atomic accesses have to be through integer
915  // types, so there's no point in trying to pick a prettier type.
916  uint64_t ivarSize = getContext().toBits(strategy.getIvarSize());
917  llvm::Type *bitcastType = llvm::Type::getIntNTy(getLLVMContext(), ivarSize);
918  bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay
919 
920  // Perform an atomic load. This does not impose ordering constraints.
921  Address ivarAddr = LV.getAddress();
922  ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType);
923  llvm::LoadInst *load = Builder.CreateLoad(ivarAddr, "load");
924  load->setAtomic(llvm::AtomicOrdering::Unordered);
925 
926  // Store that value into the return address. Doing this with a
927  // bitcast is likely to produce some pretty ugly IR, but it's not
928  // the *most* terrible thing in the world.
929  llvm::Type *retTy = ConvertType(getterMethod->getReturnType());
930  uint64_t retTySize = CGM.getDataLayout().getTypeSizeInBits(retTy);
931  llvm::Value *ivarVal = load;
932  if (ivarSize > retTySize) {
933  llvm::Type *newTy = llvm::Type::getIntNTy(getLLVMContext(), retTySize);
934  ivarVal = Builder.CreateTrunc(load, newTy);
935  bitcastType = newTy->getPointerTo();
936  }
937  Builder.CreateStore(ivarVal,
938  Builder.CreateBitCast(ReturnValue, bitcastType));
939 
940  // Make sure we don't do an autorelease.
941  AutoreleaseResult = false;
942  return;
943  }
944 
945  case PropertyImplStrategy::GetSetProperty: {
946  llvm::Constant *getPropertyFn =
948  if (!getPropertyFn) {
949  CGM.ErrorUnsupported(propImpl, "Obj-C getter requiring atomic copy");
950  return;
951  }
952  CGCallee callee = CGCallee::forDirect(getPropertyFn);
953 
954  // Return (ivar-type) objc_getProperty((id) self, _cmd, offset, true).
955  // FIXME: Can't this be simpler? This might even be worse than the
956  // corresponding gcc code.
957  llvm::Value *cmd =
958  Builder.CreateLoad(GetAddrOfLocalVar(getterMethod->getCmdDecl()), "cmd");
960  llvm::Value *ivarOffset =
961  EmitIvarOffset(classImpl->getClassInterface(), ivar);
962 
963  CallArgList args;
964  args.add(RValue::get(self), getContext().getObjCIdType());
965  args.add(RValue::get(cmd), getContext().getObjCSelType());
966  args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
967  args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
968  getContext().BoolTy);
969 
970  // FIXME: We shouldn't need to get the function info here, the
971  // runtime already should have computed it to build the function.
972  llvm::Instruction *CallInstruction;
973  RValue RV = EmitCall(
974  getTypes().arrangeBuiltinFunctionCall(propType, args),
975  callee, ReturnValueSlot(), args, &CallInstruction);
976  if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(CallInstruction))
977  call->setTailCall();
978 
979  // We need to fix the type here. Ivars with copy & retain are
980  // always objects so we don't need to worry about complex or
981  // aggregates.
983  RV.getScalarVal(),
984  getTypes().ConvertType(getterMethod->getReturnType())));
985 
986  EmitReturnOfRValue(RV, propType);
987 
988  // objc_getProperty does an autorelease, so we should suppress ours.
989  AutoreleaseResult = false;
990 
991  return;
992  }
993 
994  case PropertyImplStrategy::CopyStruct:
995  emitStructGetterCall(*this, ivar, strategy.isAtomic(),
996  strategy.hasStrongMember());
997  return;
998 
999  case PropertyImplStrategy::Expression:
1000  case PropertyImplStrategy::SetPropertyAndExpressionGet: {
1002 
1003  QualType ivarType = ivar->getType();
1004  switch (getEvaluationKind(ivarType)) {
1005  case TEK_Complex: {
1008  /*init*/ true);
1009  return;
1010  }
1011  case TEK_Aggregate: {
1012  // The return value slot is guaranteed to not be aliased, but
1013  // that's not necessarily the same as "on the stack", so
1014  // we still potentially need objc_memmove_collectable.
1015  EmitAggregateCopy(/* Dest= */ MakeAddrLValue(ReturnValue, ivarType),
1016  /* Src= */ LV, ivarType, overlapForReturnValue());
1017  return;
1018  }
1019  case TEK_Scalar: {
1020  llvm::Value *value;
1021  if (propType->isReferenceType()) {
1022  value = LV.getAddress().getPointer();
1023  } else {
1024  // We want to load and autoreleaseReturnValue ARC __weak ivars.
1026  if (getLangOpts().ObjCAutoRefCount) {
1027  value = emitARCRetainLoadOfScalar(*this, LV, ivarType);
1028  } else {
1029  value = EmitARCLoadWeak(LV.getAddress());
1030  }
1031 
1032  // Otherwise we want to do a simple load, suppressing the
1033  // final autorelease.
1034  } else {
1035  value = EmitLoadOfLValue(LV, SourceLocation()).getScalarVal();
1036  AutoreleaseResult = false;
1037  }
1038 
1039  value = Builder.CreateBitCast(
1040  value, ConvertType(GetterMethodDecl->getReturnType()));
1041  }
1042 
1043  EmitReturnOfRValue(RValue::get(value), propType);
1044  return;
1045  }
1046  }
1047  llvm_unreachable("bad evaluation kind");
1048  }
1049 
1050  }
1051  llvm_unreachable("bad @property implementation strategy!");
1052 }
1053 
1054 /// emitStructSetterCall - Call the runtime function to store the value
1055 /// from the first formal parameter into the given ivar.
1057  ObjCIvarDecl *ivar) {
1058  // objc_copyStruct (&structIvar, &Arg,
1059  // sizeof (struct something), true, false);
1060  CallArgList args;
1061 
1062  // The first argument is the address of the ivar.
1063  llvm::Value *ivarAddr = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
1064  CGF.LoadObjCSelf(), ivar, 0)
1065  .getPointer();
1066  ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
1067  args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
1068 
1069  // The second argument is the address of the parameter variable.
1070  ParmVarDecl *argVar = *OMD->param_begin();
1071  DeclRefExpr argRef(argVar, false, argVar->getType().getNonReferenceType(),
1073  llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer();
1074  argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
1075  args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
1076 
1077  // The third argument is the sizeof the type.
1078  llvm::Value *size =
1079  CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(ivar->getType()));
1080  args.add(RValue::get(size), CGF.getContext().getSizeType());
1081 
1082  // The fourth argument is the 'isAtomic' flag.
1083  args.add(RValue::get(CGF.Builder.getTrue()), CGF.getContext().BoolTy);
1084 
1085  // The fifth argument is the 'hasStrong' flag.
1086  // FIXME: should this really always be false?
1087  args.add(RValue::get(CGF.Builder.getFalse()), CGF.getContext().BoolTy);
1088 
1089  llvm::Constant *fn = CGF.CGM.getObjCRuntime().GetSetStructFunction();
1090  CGCallee callee = CGCallee::forDirect(fn);
1091  CGF.EmitCall(
1093  callee, ReturnValueSlot(), args);
1094 }
1095 
1096 /// emitCPPObjectAtomicSetterCall - Call the runtime function to store
1097 /// the value from the first formal parameter into the given ivar, using
1098 /// the Cpp API for atomic Cpp objects with non-trivial copy assignment.
1100  ObjCMethodDecl *OMD,
1101  ObjCIvarDecl *ivar,
1102  llvm::Constant *AtomicHelperFn) {
1103  // objc_copyCppObjectAtomic (&CppObjectIvar, &Arg,
1104  // AtomicHelperFn);
1105  CallArgList args;
1106 
1107  // The first argument is the address of the ivar.
1108  llvm::Value *ivarAddr =
1110  CGF.LoadObjCSelf(), ivar, 0).getPointer();
1111  ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
1112  args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
1113 
1114  // The second argument is the address of the parameter variable.
1115  ParmVarDecl *argVar = *OMD->param_begin();
1116  DeclRefExpr argRef(argVar, false, argVar->getType().getNonReferenceType(),
1118  llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer();
1119  argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
1120  args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
1121 
1122  // Third argument is the helper function.
1123  args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
1124 
1125  llvm::Constant *fn =
1127  CGCallee callee = CGCallee::forDirect(fn);
1128  CGF.EmitCall(
1130  callee, ReturnValueSlot(), args);
1131 }
1132 
1133 
1134 static bool hasTrivialSetExpr(const ObjCPropertyImplDecl *PID) {
1135  Expr *setter = PID->getSetterCXXAssignment();
1136  if (!setter) return true;
1137 
1138  // Sema only makes only of these when the ivar has a C++ class type,
1139  // so the form is pretty constrained.
1140 
1141  // An operator call is trivial if the function it calls is trivial.
1142  // This also implies that there's nothing non-trivial going on with
1143  // the arguments, because operator= can only be trivial if it's a
1144  // synthesized assignment operator and therefore both parameters are
1145  // references.
1146  if (CallExpr *call = dyn_cast<CallExpr>(setter)) {
1147  if (const FunctionDecl *callee
1148  = dyn_cast_or_null<FunctionDecl>(call->getCalleeDecl()))
1149  if (callee->isTrivial())
1150  return true;
1151  return false;
1152  }
1153 
1154  assert(isa<ExprWithCleanups>(setter));
1155  return false;
1156 }
1157 
1159  if (CGM.getLangOpts().getGC() != LangOptions::NonGC)
1160  return false;
1162 }
1163 
1164 void
1166  const ObjCPropertyImplDecl *propImpl,
1167  llvm::Constant *AtomicHelperFn) {
1168  const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
1169  ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1170  ObjCMethodDecl *setterMethod = prop->getSetterMethodDecl();
1171 
1172  // Just use the setter expression if Sema gave us one and it's
1173  // non-trivial.
1174  if (!hasTrivialSetExpr(propImpl)) {
1175  if (!AtomicHelperFn)
1176  // If non-atomic, assignment is called directly.
1177  EmitStmt(propImpl->getSetterCXXAssignment());
1178  else
1179  // If atomic, assignment is called via a locking api.
1180  emitCPPObjectAtomicSetterCall(*this, setterMethod, ivar,
1181  AtomicHelperFn);
1182  return;
1183  }
1184 
1185  PropertyImplStrategy strategy(CGM, propImpl);
1186  switch (strategy.getKind()) {
1187  case PropertyImplStrategy::Native: {
1188  // We don't need to do anything for a zero-size struct.
1189  if (strategy.getIvarSize().isZero())
1190  return;
1191 
1192  Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin());
1193 
1194  LValue ivarLValue =
1195  EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, /*quals*/ 0);
1196  Address ivarAddr = ivarLValue.getAddress();
1197 
1198  // Currently, all atomic accesses have to be through integer
1199  // types, so there's no point in trying to pick a prettier type.
1200  llvm::Type *bitcastType =
1201  llvm::Type::getIntNTy(getLLVMContext(),
1202  getContext().toBits(strategy.getIvarSize()));
1203 
1204  // Cast both arguments to the chosen operation type.
1205  argAddr = Builder.CreateElementBitCast(argAddr, bitcastType);
1206  ivarAddr = Builder.CreateElementBitCast(ivarAddr, bitcastType);
1207 
1208  // This bitcast load is likely to cause some nasty IR.
1209  llvm::Value *load = Builder.CreateLoad(argAddr);
1210 
1211  // Perform an atomic store. There are no memory ordering requirements.
1212  llvm::StoreInst *store = Builder.CreateStore(load, ivarAddr);
1213  store->setAtomic(llvm::AtomicOrdering::Unordered);
1214  return;
1215  }
1216 
1217  case PropertyImplStrategy::GetSetProperty:
1218  case PropertyImplStrategy::SetPropertyAndExpressionGet: {
1219 
1220  llvm::Constant *setOptimizedPropertyFn = nullptr;
1221  llvm::Constant *setPropertyFn = nullptr;
1222  if (UseOptimizedSetter(CGM)) {
1223  // 10.8 and iOS 6.0 code and GC is off
1224  setOptimizedPropertyFn =
1225  CGM.getObjCRuntime()
1226  .GetOptimizedPropertySetFunction(strategy.isAtomic(),
1227  strategy.isCopy());
1228  if (!setOptimizedPropertyFn) {
1229  CGM.ErrorUnsupported(propImpl, "Obj-C optimized setter - NYI");
1230  return;
1231  }
1232  }
1233  else {
1234  setPropertyFn = CGM.getObjCRuntime().GetPropertySetFunction();
1235  if (!setPropertyFn) {
1236  CGM.ErrorUnsupported(propImpl, "Obj-C setter requiring atomic copy");
1237  return;
1238  }
1239  }
1240 
1241  // Emit objc_setProperty((id) self, _cmd, offset, arg,
1242  // <is-atomic>, <is-copy>).
1243  llvm::Value *cmd =
1244  Builder.CreateLoad(GetAddrOfLocalVar(setterMethod->getCmdDecl()));
1245  llvm::Value *self =
1247  llvm::Value *ivarOffset =
1248  EmitIvarOffset(classImpl->getClassInterface(), ivar);
1249  Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin());
1250  llvm::Value *arg = Builder.CreateLoad(argAddr, "arg");
1251  arg = Builder.CreateBitCast(arg, VoidPtrTy);
1252 
1253  CallArgList args;
1254  args.add(RValue::get(self), getContext().getObjCIdType());
1255  args.add(RValue::get(cmd), getContext().getObjCSelType());
1256  if (setOptimizedPropertyFn) {
1257  args.add(RValue::get(arg), getContext().getObjCIdType());
1258  args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1259  CGCallee callee = CGCallee::forDirect(setOptimizedPropertyFn);
1260  EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args),
1261  callee, ReturnValueSlot(), args);
1262  } else {
1263  args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1264  args.add(RValue::get(arg), getContext().getObjCIdType());
1265  args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
1266  getContext().BoolTy);
1267  args.add(RValue::get(Builder.getInt1(strategy.isCopy())),
1268  getContext().BoolTy);
1269  // FIXME: We shouldn't need to get the function info here, the runtime
1270  // already should have computed it to build the function.
1271  CGCallee callee = CGCallee::forDirect(setPropertyFn);
1272  EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args),
1273  callee, ReturnValueSlot(), args);
1274  }
1275 
1276  return;
1277  }
1278 
1279  case PropertyImplStrategy::CopyStruct:
1280  emitStructSetterCall(*this, setterMethod, ivar);
1281  return;
1282 
1283  case PropertyImplStrategy::Expression:
1284  break;
1285  }
1286 
1287  // Otherwise, fake up some ASTs and emit a normal assignment.
1288  ValueDecl *selfDecl = setterMethod->getSelfDecl();
1289  DeclRefExpr self(selfDecl, false, selfDecl->getType(),
1292  selfDecl->getType(), CK_LValueToRValue, &self,
1293  VK_RValue);
1294  ObjCIvarRefExpr ivarRef(ivar, ivar->getType().getNonReferenceType(),
1296  &selfLoad, true, true);
1297 
1298  ParmVarDecl *argDecl = *setterMethod->param_begin();
1299  QualType argType = argDecl->getType().getNonReferenceType();
1300  DeclRefExpr arg(argDecl, false, argType, VK_LValue, SourceLocation());
1302  argType.getUnqualifiedType(), CK_LValueToRValue,
1303  &arg, VK_RValue);
1304 
1305  // The property type can differ from the ivar type in some situations with
1306  // Objective-C pointer types, we can always bit cast the RHS in these cases.
1307  // The following absurdity is just to ensure well-formed IR.
1308  CastKind argCK = CK_NoOp;
1309  if (ivarRef.getType()->isObjCObjectPointerType()) {
1310  if (argLoad.getType()->isObjCObjectPointerType())
1311  argCK = CK_BitCast;
1312  else if (argLoad.getType()->isBlockPointerType())
1313  argCK = CK_BlockPointerToObjCPointerCast;
1314  else
1315  argCK = CK_CPointerToObjCPointerCast;
1316  } else if (ivarRef.getType()->isBlockPointerType()) {
1317  if (argLoad.getType()->isBlockPointerType())
1318  argCK = CK_BitCast;
1319  else
1320  argCK = CK_AnyPointerToBlockPointerCast;
1321  } else if (ivarRef.getType()->isPointerType()) {
1322  argCK = CK_BitCast;
1323  }
1325  ivarRef.getType(), argCK, &argLoad,
1326  VK_RValue);
1327  Expr *finalArg = &argLoad;
1328  if (!getContext().hasSameUnqualifiedType(ivarRef.getType(),
1329  argLoad.getType()))
1330  finalArg = &argCast;
1331 
1332 
1333  BinaryOperator assign(&ivarRef, finalArg, BO_Assign,
1334  ivarRef.getType(), VK_RValue, OK_Ordinary,
1335  SourceLocation(), FPOptions());
1336  EmitStmt(&assign);
1337 }
1338 
1339 /// Generate an Objective-C property setter function.
1340 ///
1341 /// The given Decl must be an ObjCImplementationDecl. \@synthesize
1342 /// is illegal within a category.
1344  const ObjCPropertyImplDecl *PID) {
1345  llvm::Constant *AtomicHelperFn =
1347  const ObjCPropertyDecl *PD = PID->getPropertyDecl();
1348  ObjCMethodDecl *OMD = PD->getSetterMethodDecl();
1349  assert(OMD && "Invalid call to generate setter (empty method)");
1350  StartObjCMethod(OMD, IMP->getClassInterface());
1351 
1352  generateObjCSetterBody(IMP, PID, AtomicHelperFn);
1353 
1354  FinishFunction();
1355 }
1356 
1357 namespace {
1358  struct DestroyIvar final : EHScopeStack::Cleanup {
1359  private:
1360  llvm::Value *addr;
1361  const ObjCIvarDecl *ivar;
1362  CodeGenFunction::Destroyer *destroyer;
1363  bool useEHCleanupForArray;
1364  public:
1365  DestroyIvar(llvm::Value *addr, const ObjCIvarDecl *ivar,
1366  CodeGenFunction::Destroyer *destroyer,
1367  bool useEHCleanupForArray)
1368  : addr(addr), ivar(ivar), destroyer(destroyer),
1369  useEHCleanupForArray(useEHCleanupForArray) {}
1370 
1371  void Emit(CodeGenFunction &CGF, Flags flags) override {
1372  LValue lvalue
1373  = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), addr, ivar, /*CVR*/ 0);
1374  CGF.emitDestroy(lvalue.getAddress(), ivar->getType(), destroyer,
1375  flags.isForNormalCleanup() && useEHCleanupForArray);
1376  }
1377  };
1378 }
1379 
1380 /// Like CodeGenFunction::destroyARCStrong, but do it with a call.
1382  Address addr,
1383  QualType type) {
1384  llvm::Value *null = getNullForVariable(addr);
1385  CGF.EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
1386 }
1387 
1389  ObjCImplementationDecl *impl) {
1391 
1392  llvm::Value *self = CGF.LoadObjCSelf();
1393 
1394  const ObjCInterfaceDecl *iface = impl->getClassInterface();
1395  for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
1396  ivar; ivar = ivar->getNextIvar()) {
1397  QualType type = ivar->getType();
1398 
1399  // Check whether the ivar is a destructible type.
1400  QualType::DestructionKind dtorKind = type.isDestructedType();
1401  if (!dtorKind) continue;
1402 
1403  CodeGenFunction::Destroyer *destroyer = nullptr;
1404 
1405  // Use a call to objc_storeStrong to destroy strong ivars, for the
1406  // general benefit of the tools.
1407  if (dtorKind == QualType::DK_objc_strong_lifetime) {
1408  destroyer = destroyARCStrongWithStore;
1409 
1410  // Otherwise use the default for the destruction kind.
1411  } else {
1412  destroyer = CGF.getDestroyer(dtorKind);
1413  }
1414 
1415  CleanupKind cleanupKind = CGF.getCleanupKind(dtorKind);
1416 
1417  CGF.EHStack.pushCleanup<DestroyIvar>(cleanupKind, self, ivar, destroyer,
1418  cleanupKind & EHCleanup);
1419  }
1420 
1421  assert(scope.requiresCleanups() && "nothing to do in .cxx_destruct?");
1422 }
1423 
1425  ObjCMethodDecl *MD,
1426  bool ctor) {
1428  StartObjCMethod(MD, IMP->getClassInterface());
1429 
1430  // Emit .cxx_construct.
1431  if (ctor) {
1432  // Suppress the final autorelease in ARC.
1433  AutoreleaseResult = false;
1434 
1435  for (const auto *IvarInit : IMP->inits()) {
1436  FieldDecl *Field = IvarInit->getAnyMember();
1437  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(Field);
1439  LoadObjCSelf(), Ivar, 0);
1440  EmitAggExpr(IvarInit->getInit(),
1445  }
1446  // constructor returns 'self'.
1447  CodeGenTypes &Types = CGM.getTypes();
1448  QualType IdTy(CGM.getContext().getObjCIdType());
1449  llvm::Value *SelfAsId =
1450  Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy));
1451  EmitReturnOfRValue(RValue::get(SelfAsId), IdTy);
1452 
1453  // Emit .cxx_destruct.
1454  } else {
1455  emitCXXDestructMethod(*this, IMP);
1456  }
1457  FinishFunction();
1458 }
1459 
1461  VarDecl *Self = cast<ObjCMethodDecl>(CurFuncDecl)->getSelfDecl();
1462  DeclRefExpr DRE(Self, /*is enclosing local*/ (CurFuncDecl != CurCodeDecl),
1463  Self->getType(), VK_LValue, SourceLocation());
1465 }
1466 
1468  const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
1469  ImplicitParamDecl *selfDecl = OMD->getSelfDecl();
1470  const ObjCObjectPointerType *PTy = cast<ObjCObjectPointerType>(
1471  getContext().getCanonicalType(selfDecl->getType()));
1472  return PTy->getPointeeType();
1473 }
1474 
1476  llvm::Constant *EnumerationMutationFnPtr =
1478  if (!EnumerationMutationFnPtr) {
1479  CGM.ErrorUnsupported(&S, "Obj-C fast enumeration for this runtime");
1480  return;
1481  }
1482  CGCallee EnumerationMutationFn =
1483  CGCallee::forDirect(EnumerationMutationFnPtr);
1484 
1485  CGDebugInfo *DI = getDebugInfo();
1486  if (DI)
1488 
1489  RunCleanupsScope ForScope(*this);
1490 
1491  // The local variable comes into scope immediately.
1493  if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement()))
1494  variable = EmitAutoVarAlloca(*cast<VarDecl>(SD->getSingleDecl()));
1495 
1496  JumpDest LoopEnd = getJumpDestInCurrentScope("forcoll.end");
1497 
1498  // Fast enumeration state.
1499  QualType StateTy = CGM.getObjCFastEnumerationStateType();
1500  Address StatePtr = CreateMemTemp(StateTy, "state.ptr");
1501  EmitNullInitialization(StatePtr, StateTy);
1502 
1503  // Number of elements in the items array.
1504  static const unsigned NumItems = 16;
1505 
1506  // Fetch the countByEnumeratingWithState:objects:count: selector.
1507  IdentifierInfo *II[] = {
1508  &CGM.getContext().Idents.get("countByEnumeratingWithState"),
1509  &CGM.getContext().Idents.get("objects"),
1510  &CGM.getContext().Idents.get("count")
1511  };
1512  Selector FastEnumSel =
1513  CGM.getContext().Selectors.getSelector(llvm::array_lengthof(II), &II[0]);
1514 
1515  QualType ItemsTy =
1516  getContext().getConstantArrayType(getContext().getObjCIdType(),
1517  llvm::APInt(32, NumItems),
1518  ArrayType::Normal, 0);
1519  Address ItemsPtr = CreateMemTemp(ItemsTy, "items.ptr");
1520 
1521  // Emit the collection pointer. In ARC, we do a retain.
1522  llvm::Value *Collection;
1523  if (getLangOpts().ObjCAutoRefCount) {
1524  Collection = EmitARCRetainScalarExpr(S.getCollection());
1525 
1526  // Enter a cleanup to do the release.
1527  EmitObjCConsumeObject(S.getCollection()->getType(), Collection);
1528  } else {
1529  Collection = EmitScalarExpr(S.getCollection());
1530  }
1531 
1532  // The 'continue' label needs to appear within the cleanup for the
1533  // collection object.
1534  JumpDest AfterBody = getJumpDestInCurrentScope("forcoll.next");
1535 
1536  // Send it our message:
1537  CallArgList Args;
1538 
1539  // The first argument is a temporary of the enumeration-state type.
1540  Args.add(RValue::get(StatePtr.getPointer()),
1541  getContext().getPointerType(StateTy));
1542 
1543  // The second argument is a temporary array with space for NumItems
1544  // pointers. We'll actually be loading elements from the array
1545  // pointer written into the control state; this buffer is so that
1546  // collections that *aren't* backed by arrays can still queue up
1547  // batches of elements.
1548  Args.add(RValue::get(ItemsPtr.getPointer()),
1549  getContext().getPointerType(ItemsTy));
1550 
1551  // The third argument is the capacity of that temporary array.
1552  llvm::Type *NSUIntegerTy = ConvertType(getContext().getNSUIntegerType());
1553  llvm::Constant *Count = llvm::ConstantInt::get(NSUIntegerTy, NumItems);
1554  Args.add(RValue::get(Count), getContext().getNSUIntegerType());
1555 
1556  // Start the enumeration.
1557  RValue CountRV =
1559  getContext().getNSUIntegerType(),
1560  FastEnumSel, Collection, Args);
1561 
1562  // The initial number of objects that were returned in the buffer.
1563  llvm::Value *initialBufferLimit = CountRV.getScalarVal();
1564 
1565  llvm::BasicBlock *EmptyBB = createBasicBlock("forcoll.empty");
1566  llvm::BasicBlock *LoopInitBB = createBasicBlock("forcoll.loopinit");
1567 
1568  llvm::Value *zero = llvm::Constant::getNullValue(NSUIntegerTy);
1569 
1570  // If the limit pointer was zero to begin with, the collection is
1571  // empty; skip all this. Set the branch weight assuming this has the same
1572  // probability of exiting the loop as any other loop exit.
1573  uint64_t EntryCount = getCurrentProfileCount();
1574  Builder.CreateCondBr(
1575  Builder.CreateICmpEQ(initialBufferLimit, zero, "iszero"), EmptyBB,
1576  LoopInitBB,
1577  createProfileWeights(EntryCount, getProfileCount(S.getBody())));
1578 
1579  // Otherwise, initialize the loop.
1580  EmitBlock(LoopInitBB);
1581 
1582  // Save the initial mutations value. This is the value at an
1583  // address that was written into the state object by
1584  // countByEnumeratingWithState:objects:count:.
1585  Address StateMutationsPtrPtr = Builder.CreateStructGEP(
1586  StatePtr, 2, 2 * getPointerSize(), "mutationsptr.ptr");
1587  llvm::Value *StateMutationsPtr
1588  = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr");
1589 
1590  llvm::Value *initialMutations =
1591  Builder.CreateAlignedLoad(StateMutationsPtr, getPointerAlign(),
1592  "forcoll.initial-mutations");
1593 
1594  // Start looping. This is the point we return to whenever we have a
1595  // fresh, non-empty batch of objects.
1596  llvm::BasicBlock *LoopBodyBB = createBasicBlock("forcoll.loopbody");
1597  EmitBlock(LoopBodyBB);
1598 
1599  // The current index into the buffer.
1600  llvm::PHINode *index = Builder.CreatePHI(NSUIntegerTy, 3, "forcoll.index");
1601  index->addIncoming(zero, LoopInitBB);
1602 
1603  // The current buffer size.
1604  llvm::PHINode *count = Builder.CreatePHI(NSUIntegerTy, 3, "forcoll.count");
1605  count->addIncoming(initialBufferLimit, LoopInitBB);
1606 
1608 
1609  // Check whether the mutations value has changed from where it was
1610  // at start. StateMutationsPtr should actually be invariant between
1611  // refreshes.
1612  StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr");
1613  llvm::Value *currentMutations
1614  = Builder.CreateAlignedLoad(StateMutationsPtr, getPointerAlign(),
1615  "statemutations");
1616 
1617  llvm::BasicBlock *WasMutatedBB = createBasicBlock("forcoll.mutated");
1618  llvm::BasicBlock *WasNotMutatedBB = createBasicBlock("forcoll.notmutated");
1619 
1620  Builder.CreateCondBr(Builder.CreateICmpEQ(currentMutations, initialMutations),
1621  WasNotMutatedBB, WasMutatedBB);
1622 
1623  // If so, call the enumeration-mutation function.
1624  EmitBlock(WasMutatedBB);
1625  llvm::Value *V =
1626  Builder.CreateBitCast(Collection,
1627  ConvertType(getContext().getObjCIdType()));
1628  CallArgList Args2;
1629  Args2.add(RValue::get(V), getContext().getObjCIdType());
1630  // FIXME: We shouldn't need to get the function info here, the runtime already
1631  // should have computed it to build the function.
1632  EmitCall(
1634  EnumerationMutationFn, ReturnValueSlot(), Args2);
1635 
1636  // Otherwise, or if the mutation function returns, just continue.
1637  EmitBlock(WasNotMutatedBB);
1638 
1639  // Initialize the element variable.
1640  RunCleanupsScope elementVariableScope(*this);
1641  bool elementIsVariable;
1642  LValue elementLValue;
1643  QualType elementType;
1644  if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) {
1645  // Initialize the variable, in case it's a __block variable or something.
1646  EmitAutoVarInit(variable);
1647 
1648  const VarDecl* D = cast<VarDecl>(SD->getSingleDecl());
1649  DeclRefExpr tempDRE(const_cast<VarDecl*>(D), false, D->getType(),
1651  elementLValue = EmitLValue(&tempDRE);
1652  elementType = D->getType();
1653  elementIsVariable = true;
1654 
1655  if (D->isARCPseudoStrong())
1656  elementLValue.getQuals().setObjCLifetime(Qualifiers::OCL_ExplicitNone);
1657  } else {
1658  elementLValue = LValue(); // suppress warning
1659  elementType = cast<Expr>(S.getElement())->getType();
1660  elementIsVariable = false;
1661  }
1662  llvm::Type *convertedElementType = ConvertType(elementType);
1663 
1664  // Fetch the buffer out of the enumeration state.
1665  // TODO: this pointer should actually be invariant between
1666  // refreshes, which would help us do certain loop optimizations.
1667  Address StateItemsPtr = Builder.CreateStructGEP(
1668  StatePtr, 1, getPointerSize(), "stateitems.ptr");
1669  llvm::Value *EnumStateItems =
1670  Builder.CreateLoad(StateItemsPtr, "stateitems");
1671 
1672  // Fetch the value at the current index from the buffer.
1673  llvm::Value *CurrentItemPtr =
1674  Builder.CreateGEP(EnumStateItems, index, "currentitem.ptr");
1675  llvm::Value *CurrentItem =
1676  Builder.CreateAlignedLoad(CurrentItemPtr, getPointerAlign());
1677 
1678  // Cast that value to the right type.
1679  CurrentItem = Builder.CreateBitCast(CurrentItem, convertedElementType,
1680  "currentitem");
1681 
1682  // Make sure we have an l-value. Yes, this gets evaluated every
1683  // time through the loop.
1684  if (!elementIsVariable) {
1685  elementLValue = EmitLValue(cast<Expr>(S.getElement()));
1686  EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue);
1687  } else {
1688  EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue,
1689  /*isInit*/ true);
1690  }
1691 
1692  // If we do have an element variable, this assignment is the end of
1693  // its initialization.
1694  if (elementIsVariable)
1695  EmitAutoVarCleanups(variable);
1696 
1697  // Perform the loop body, setting up break and continue labels.
1698  BreakContinueStack.push_back(BreakContinue(LoopEnd, AfterBody));
1699  {
1700  RunCleanupsScope Scope(*this);
1701  EmitStmt(S.getBody());
1702  }
1703  BreakContinueStack.pop_back();
1704 
1705  // Destroy the element variable now.
1706  elementVariableScope.ForceCleanup();
1707 
1708  // Check whether there are more elements.
1709  EmitBlock(AfterBody.getBlock());
1710 
1711  llvm::BasicBlock *FetchMoreBB = createBasicBlock("forcoll.refetch");
1712 
1713  // First we check in the local buffer.
1714  llvm::Value *indexPlusOne =
1715  Builder.CreateAdd(index, llvm::ConstantInt::get(NSUIntegerTy, 1));
1716 
1717  // If we haven't overrun the buffer yet, we can continue.
1718  // Set the branch weights based on the simplifying assumption that this is
1719  // like a while-loop, i.e., ignoring that the false branch fetches more
1720  // elements and then returns to the loop.
1721  Builder.CreateCondBr(
1722  Builder.CreateICmpULT(indexPlusOne, count), LoopBodyBB, FetchMoreBB,
1723  createProfileWeights(getProfileCount(S.getBody()), EntryCount));
1724 
1725  index->addIncoming(indexPlusOne, AfterBody.getBlock());
1726  count->addIncoming(count, AfterBody.getBlock());
1727 
1728  // Otherwise, we have to fetch more elements.
1729  EmitBlock(FetchMoreBB);
1730 
1731  CountRV =
1733  getContext().getNSUIntegerType(),
1734  FastEnumSel, Collection, Args);
1735 
1736  // If we got a zero count, we're done.
1737  llvm::Value *refetchCount = CountRV.getScalarVal();
1738 
1739  // (note that the message send might split FetchMoreBB)
1740  index->addIncoming(zero, Builder.GetInsertBlock());
1741  count->addIncoming(refetchCount, Builder.GetInsertBlock());
1742 
1743  Builder.CreateCondBr(Builder.CreateICmpEQ(refetchCount, zero),
1744  EmptyBB, LoopBodyBB);
1745 
1746  // No more elements.
1747  EmitBlock(EmptyBB);
1748 
1749  if (!elementIsVariable) {
1750  // If the element was not a declaration, set it to be null.
1751 
1752  llvm::Value *null = llvm::Constant::getNullValue(convertedElementType);
1753  elementLValue = EmitLValue(cast<Expr>(S.getElement()));
1754  EmitStoreThroughLValue(RValue::get(null), elementLValue);
1755  }
1756 
1757  if (DI)
1759 
1760  ForScope.ForceCleanup();
1761  EmitBlock(LoopEnd.getBlock());
1762 }
1763 
1765  CGM.getObjCRuntime().EmitTryStmt(*this, S);
1766 }
1767 
1769  CGM.getObjCRuntime().EmitThrowStmt(*this, S);
1770 }
1771 
1773  const ObjCAtSynchronizedStmt &S) {
1774  CGM.getObjCRuntime().EmitSynchronizedStmt(*this, S);
1775 }
1776 
1777 namespace {
1778  struct CallObjCRelease final : EHScopeStack::Cleanup {
1779  CallObjCRelease(llvm::Value *object) : object(object) {}
1780  llvm::Value *object;
1781 
1782  void Emit(CodeGenFunction &CGF, Flags flags) override {
1783  // Releases at the end of the full-expression are imprecise.
1784  CGF.EmitARCRelease(object, ARCImpreciseLifetime);
1785  }
1786  };
1787 }
1788 
1789 /// Produce the code for a CK_ARCConsumeObject. Does a primitive
1790 /// release at the end of the full-expression.
1792  llvm::Value *object) {
1793  // If we're in a conditional branch, we need to make the cleanup
1794  // conditional.
1795  pushFullExprCleanup<CallObjCRelease>(getARCCleanupKind(), object);
1796  return object;
1797 }
1798 
1800  llvm::Value *value) {
1801  return EmitARCRetainAutorelease(type, value);
1802 }
1803 
1804 /// Given a number of pointers, inform the optimizer that they're
1805 /// being intrinsically used up until this point in the program.
1807  llvm::Constant *&fn = CGM.getObjCEntrypoints().clang_arc_use;
1808  if (!fn) {
1809  llvm::FunctionType *fnType =
1810  llvm::FunctionType::get(CGM.VoidTy, None, true);
1811  fn = CGM.CreateRuntimeFunction(fnType, "clang.arc.use");
1812  }
1813 
1814  // This isn't really a "runtime" function, but as an intrinsic it
1815  // doesn't really matter as long as we align things up.
1816  EmitNounwindRuntimeCall(fn, values);
1817 }
1818 
1819 
1820 static llvm::Constant *createARCRuntimeFunction(CodeGenModule &CGM,
1821  llvm::FunctionType *FTy,
1822  StringRef Name) {
1823  llvm::Constant *RTF = CGM.CreateRuntimeFunction(FTy, Name);
1824 
1825  if (auto *F = dyn_cast<llvm::Function>(RTF)) {
1826  // If the target runtime doesn't naturally support ARC, emit weak
1827  // references to the runtime support library. We don't really
1828  // permit this to fail, but we need a particular relocation style.
1829  if (!CGM.getLangOpts().ObjCRuntime.hasNativeARC() &&
1830  !CGM.getTriple().isOSBinFormatCOFF()) {
1831  F->setLinkage(llvm::Function::ExternalWeakLinkage);
1832  } else if (Name == "objc_retain" || Name == "objc_release") {
1833  // If we have Native ARC, set nonlazybind attribute for these APIs for
1834  // performance.
1835  F->addFnAttr(llvm::Attribute::NonLazyBind);
1836  }
1837  }
1838 
1839  return RTF;
1840 }
1841 
1842 /// Perform an operation having the signature
1843 /// i8* (i8*)
1844 /// where a null input causes a no-op and returns null.
1846  llvm::Value *value,
1847  llvm::Constant *&fn,
1848  StringRef fnName,
1849  bool isTailCall = false) {
1850  if (isa<llvm::ConstantPointerNull>(value))
1851  return value;
1852 
1853  if (!fn) {
1854  llvm::FunctionType *fnType =
1855  llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrTy, false);
1856  fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1857  }
1858 
1859  // Cast the argument to 'id'.
1860  llvm::Type *origType = value->getType();
1861  value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy);
1862 
1863  // Call the function.
1864  llvm::CallInst *call = CGF.EmitNounwindRuntimeCall(fn, value);
1865  if (isTailCall)
1866  call->setTailCall();
1867 
1868  // Cast the result back to the original type.
1869  return CGF.Builder.CreateBitCast(call, origType);
1870 }
1871 
1872 /// Perform an operation having the following signature:
1873 /// i8* (i8**)
1875  Address addr,
1876  llvm::Constant *&fn,
1877  StringRef fnName) {
1878  if (!fn) {
1879  llvm::FunctionType *fnType =
1880  llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrPtrTy, false);
1881  fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1882  }
1883 
1884  // Cast the argument to 'id*'.
1885  llvm::Type *origType = addr.getElementType();
1886  addr = CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy);
1887 
1888  // Call the function.
1889  llvm::Value *result = CGF.EmitNounwindRuntimeCall(fn, addr.getPointer());
1890 
1891  // Cast the result back to a dereference of the original type.
1892  if (origType != CGF.Int8PtrTy)
1893  result = CGF.Builder.CreateBitCast(result, origType);
1894 
1895  return result;
1896 }
1897 
1898 /// Perform an operation having the following signature:
1899 /// i8* (i8**, i8*)
1901  Address addr,
1902  llvm::Value *value,
1903  llvm::Constant *&fn,
1904  StringRef fnName,
1905  bool ignored) {
1906  assert(addr.getElementType() == value->getType());
1907 
1908  if (!fn) {
1909  llvm::Type *argTypes[] = { CGF.Int8PtrPtrTy, CGF.Int8PtrTy };
1910 
1911  llvm::FunctionType *fnType
1912  = llvm::FunctionType::get(CGF.Int8PtrTy, argTypes, false);
1913  fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1914  }
1915 
1916  llvm::Type *origType = value->getType();
1917 
1918  llvm::Value *args[] = {
1919  CGF.Builder.CreateBitCast(addr.getPointer(), CGF.Int8PtrPtrTy),
1920  CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy)
1921  };
1922  llvm::CallInst *result = CGF.EmitNounwindRuntimeCall(fn, args);
1923 
1924  if (ignored) return nullptr;
1925 
1926  return CGF.Builder.CreateBitCast(result, origType);
1927 }
1928 
1929 /// Perform an operation having the following signature:
1930 /// void (i8**, i8**)
1932  Address dst,
1933  Address src,
1934  llvm::Constant *&fn,
1935  StringRef fnName) {
1936  assert(dst.getType() == src.getType());
1937 
1938  if (!fn) {
1939  llvm::Type *argTypes[] = { CGF.Int8PtrPtrTy, CGF.Int8PtrPtrTy };
1940 
1941  llvm::FunctionType *fnType
1942  = llvm::FunctionType::get(CGF.Builder.getVoidTy(), argTypes, false);
1943  fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1944  }
1945 
1946  llvm::Value *args[] = {
1947  CGF.Builder.CreateBitCast(dst.getPointer(), CGF.Int8PtrPtrTy),
1949  };
1950  CGF.EmitNounwindRuntimeCall(fn, args);
1951 }
1952 
1953 /// Produce the code to do a retain. Based on the type, calls one of:
1954 /// call i8* \@objc_retain(i8* %value)
1955 /// call i8* \@objc_retainBlock(i8* %value)
1957  if (type->isBlockPointerType())
1958  return EmitARCRetainBlock(value, /*mandatory*/ false);
1959  else
1960  return EmitARCRetainNonBlock(value);
1961 }
1962 
1963 /// Retain the given object, with normal retain semantics.
1964 /// call i8* \@objc_retain(i8* %value)
1966  return emitARCValueOperation(*this, value,
1968  "objc_retain");
1969 }
1970 
1971 /// Retain the given block, with _Block_copy semantics.
1972 /// call i8* \@objc_retainBlock(i8* %value)
1973 ///
1974 /// \param mandatory - If false, emit the call with metadata
1975 /// indicating that it's okay for the optimizer to eliminate this call
1976 /// if it can prove that the block never escapes except down the stack.
1978  bool mandatory) {
1979  llvm::Value *result
1980  = emitARCValueOperation(*this, value,
1982  "objc_retainBlock");
1983 
1984  // If the copy isn't mandatory, add !clang.arc.copy_on_escape to
1985  // tell the optimizer that it doesn't need to do this copy if the
1986  // block doesn't escape, where being passed as an argument doesn't
1987  // count as escaping.
1988  if (!mandatory && isa<llvm::Instruction>(result)) {
1989  llvm::CallInst *call
1990  = cast<llvm::CallInst>(result->stripPointerCasts());
1991  assert(call->getCalledValue() == CGM.getObjCEntrypoints().objc_retainBlock);
1992 
1993  call->setMetadata("clang.arc.copy_on_escape",
1994  llvm::MDNode::get(Builder.getContext(), None));
1995  }
1996 
1997  return result;
1998 }
1999 
2001  // Fetch the void(void) inline asm which marks that we're going to
2002  // do something with the autoreleased return value.
2003  llvm::InlineAsm *&marker
2005  if (!marker) {
2006  StringRef assembly
2007  = CGF.CGM.getTargetCodeGenInfo()
2009 
2010  // If we have an empty assembly string, there's nothing to do.
2011  if (assembly.empty()) {
2012 
2013  // Otherwise, at -O0, build an inline asm that we're going to call
2014  // in a moment.
2015  } else if (CGF.CGM.getCodeGenOpts().OptimizationLevel == 0) {
2016  llvm::FunctionType *type =
2017  llvm::FunctionType::get(CGF.VoidTy, /*variadic*/false);
2018 
2019  marker = llvm::InlineAsm::get(type, assembly, "", /*sideeffects*/ true);
2020 
2021  // If we're at -O1 and above, we don't want to litter the code
2022  // with this marker yet, so leave a breadcrumb for the ARC
2023  // optimizer to pick up.
2024  } else {
2025  llvm::NamedMDNode *metadata =
2026  CGF.CGM.getModule().getOrInsertNamedMetadata(
2027  "clang.arc.retainAutoreleasedReturnValueMarker");
2028  assert(metadata->getNumOperands() <= 1);
2029  if (metadata->getNumOperands() == 0) {
2030  auto &ctx = CGF.getLLVMContext();
2031  metadata->addOperand(llvm::MDNode::get(ctx,
2032  llvm::MDString::get(ctx, assembly)));
2033  }
2034  }
2035  }
2036 
2037  // Call the marker asm if we made one, which we do only at -O0.
2038  if (marker)
2039  CGF.Builder.CreateCall(marker, None, CGF.getBundlesForFunclet(marker));
2040 }
2041 
2042 /// Retain the given object which is the result of a function call.
2043 /// call i8* \@objc_retainAutoreleasedReturnValue(i8* %value)
2044 ///
2045 /// Yes, this function name is one character away from a different
2046 /// call with completely different semantics.
2047 llvm::Value *
2050  return emitARCValueOperation(*this, value,
2052  "objc_retainAutoreleasedReturnValue");
2053 }
2054 
2055 /// Claim a possibly-autoreleased return value at +0. This is only
2056 /// valid to do in contexts which do not rely on the retain to keep
2057 /// the object valid for all of its uses; for example, when
2058 /// the value is ignored, or when it is being assigned to an
2059 /// __unsafe_unretained variable.
2060 ///
2061 /// call i8* \@objc_unsafeClaimAutoreleasedReturnValue(i8* %value)
2062 llvm::Value *
2065  return emitARCValueOperation(*this, value,
2067  "objc_unsafeClaimAutoreleasedReturnValue");
2068 }
2069 
2070 /// Release the given object.
2071 /// call void \@objc_release(i8* %value)
2073  ARCPreciseLifetime_t precise) {
2074  if (isa<llvm::ConstantPointerNull>(value)) return;
2075 
2076  llvm::Constant *&fn = CGM.getObjCEntrypoints().objc_release;
2077  if (!fn) {
2078  llvm::FunctionType *fnType =
2079  llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false);
2080  fn = createARCRuntimeFunction(CGM, fnType, "objc_release");
2081  }
2082 
2083  // Cast the argument to 'id'.
2084  value = Builder.CreateBitCast(value, Int8PtrTy);
2085 
2086  // Call objc_release.
2087  llvm::CallInst *call = EmitNounwindRuntimeCall(fn, value);
2088 
2089  if (precise == ARCImpreciseLifetime) {
2090  call->setMetadata("clang.imprecise_release",
2091  llvm::MDNode::get(Builder.getContext(), None));
2092  }
2093 }
2094 
2095 /// Destroy a __strong variable.
2096 ///
2097 /// At -O0, emit a call to store 'null' into the address;
2098 /// instrumenting tools prefer this because the address is exposed,
2099 /// but it's relatively cumbersome to optimize.
2100 ///
2101 /// At -O1 and above, just load and call objc_release.
2102 ///
2103 /// call void \@objc_storeStrong(i8** %addr, i8* null)
2105  ARCPreciseLifetime_t precise) {
2106  if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
2107  llvm::Value *null = getNullForVariable(addr);
2108  EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
2109  return;
2110  }
2111 
2112  llvm::Value *value = Builder.CreateLoad(addr);
2113  EmitARCRelease(value, precise);
2114 }
2115 
2116 /// Store into a strong object. Always calls this:
2117 /// call void \@objc_storeStrong(i8** %addr, i8* %value)
2119  llvm::Value *value,
2120  bool ignored) {
2121  assert(addr.getElementType() == value->getType());
2122 
2123  llvm::Constant *&fn = CGM.getObjCEntrypoints().objc_storeStrong;
2124  if (!fn) {
2125  llvm::Type *argTypes[] = { Int8PtrPtrTy, Int8PtrTy };
2126  llvm::FunctionType *fnType
2127  = llvm::FunctionType::get(Builder.getVoidTy(), argTypes, false);
2128  fn = createARCRuntimeFunction(CGM, fnType, "objc_storeStrong");
2129  }
2130 
2131  llvm::Value *args[] = {
2134  };
2135  EmitNounwindRuntimeCall(fn, args);
2136 
2137  if (ignored) return nullptr;
2138  return value;
2139 }
2140 
2141 /// Store into a strong object. Sometimes calls this:
2142 /// call void \@objc_storeStrong(i8** %addr, i8* %value)
2143 /// Other times, breaks it down into components.
2145  llvm::Value *newValue,
2146  bool ignored) {
2147  QualType type = dst.getType();
2148  bool isBlock = type->isBlockPointerType();
2149 
2150  // Use a store barrier at -O0 unless this is a block type or the
2151  // lvalue is inadequately aligned.
2152  if (shouldUseFusedARCCalls() &&
2153  !isBlock &&
2154  (dst.getAlignment().isZero() ||
2156  return EmitARCStoreStrongCall(dst.getAddress(), newValue, ignored);
2157  }
2158 
2159  // Otherwise, split it out.
2160 
2161  // Retain the new value.
2162  newValue = EmitARCRetain(type, newValue);
2163 
2164  // Read the old value.
2165  llvm::Value *oldValue = EmitLoadOfScalar(dst, SourceLocation());
2166 
2167  // Store. We do this before the release so that any deallocs won't
2168  // see the old value.
2169  EmitStoreOfScalar(newValue, dst);
2170 
2171  // Finally, release the old value.
2172  EmitARCRelease(oldValue, dst.isARCPreciseLifetime());
2173 
2174  return newValue;
2175 }
2176 
2177 /// Autorelease the given object.
2178 /// call i8* \@objc_autorelease(i8* %value)
2180  return emitARCValueOperation(*this, value,
2182  "objc_autorelease");
2183 }
2184 
2185 /// Autorelease the given object.
2186 /// call i8* \@objc_autoreleaseReturnValue(i8* %value)
2187 llvm::Value *
2189  return emitARCValueOperation(*this, value,
2191  "objc_autoreleaseReturnValue",
2192  /*isTailCall*/ true);
2193 }
2194 
2195 /// Do a fused retain/autorelease of the given object.
2196 /// call i8* \@objc_retainAutoreleaseReturnValue(i8* %value)
2197 llvm::Value *
2199  return emitARCValueOperation(*this, value,
2201  "objc_retainAutoreleaseReturnValue",
2202  /*isTailCall*/ true);
2203 }
2204 
2205 /// Do a fused retain/autorelease of the given object.
2206 /// call i8* \@objc_retainAutorelease(i8* %value)
2207 /// or
2208 /// %retain = call i8* \@objc_retainBlock(i8* %value)
2209 /// call i8* \@objc_autorelease(i8* %retain)
2211  llvm::Value *value) {
2212  if (!type->isBlockPointerType())
2213  return EmitARCRetainAutoreleaseNonBlock(value);
2214 
2215  if (isa<llvm::ConstantPointerNull>(value)) return value;
2216 
2217  llvm::Type *origType = value->getType();
2218  value = Builder.CreateBitCast(value, Int8PtrTy);
2219  value = EmitARCRetainBlock(value, /*mandatory*/ true);
2220  value = EmitARCAutorelease(value);
2221  return Builder.CreateBitCast(value, origType);
2222 }
2223 
2224 /// Do a fused retain/autorelease of the given object.
2225 /// call i8* \@objc_retainAutorelease(i8* %value)
2226 llvm::Value *
2228  return emitARCValueOperation(*this, value,
2230  "objc_retainAutorelease");
2231 }
2232 
2233 /// i8* \@objc_loadWeak(i8** %addr)
2234 /// Essentially objc_autorelease(objc_loadWeakRetained(addr)).
2236  return emitARCLoadOperation(*this, addr,
2238  "objc_loadWeak");
2239 }
2240 
2241 /// i8* \@objc_loadWeakRetained(i8** %addr)
2243  return emitARCLoadOperation(*this, addr,
2245  "objc_loadWeakRetained");
2246 }
2247 
2248 /// i8* \@objc_storeWeak(i8** %addr, i8* %value)
2249 /// Returns %value.
2251  llvm::Value *value,
2252  bool ignored) {
2253  return emitARCStoreOperation(*this, addr, value,
2255  "objc_storeWeak", ignored);
2256 }
2257 
2258 /// i8* \@objc_initWeak(i8** %addr, i8* %value)
2259 /// Returns %value. %addr is known to not have a current weak entry.
2260 /// Essentially equivalent to:
2261 /// *addr = nil; objc_storeWeak(addr, value);
2263  // If we're initializing to null, just write null to memory; no need
2264  // to get the runtime involved. But don't do this if optimization
2265  // is enabled, because accounting for this would make the optimizer
2266  // much more complicated.
2267  if (isa<llvm::ConstantPointerNull>(value) &&
2268  CGM.getCodeGenOpts().OptimizationLevel == 0) {
2269  Builder.CreateStore(value, addr);
2270  return;
2271  }
2272 
2273  emitARCStoreOperation(*this, addr, value,
2275  "objc_initWeak", /*ignored*/ true);
2276 }
2277 
2278 /// void \@objc_destroyWeak(i8** %addr)
2279 /// Essentially objc_storeWeak(addr, nil).
2281  llvm::Constant *&fn = CGM.getObjCEntrypoints().objc_destroyWeak;
2282  if (!fn) {
2283  llvm::FunctionType *fnType =
2284  llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrPtrTy, false);
2285  fn = createARCRuntimeFunction(CGM, fnType, "objc_destroyWeak");
2286  }
2287 
2288  // Cast the argument to 'id*'.
2289  addr = Builder.CreateBitCast(addr, Int8PtrPtrTy);
2290 
2291  EmitNounwindRuntimeCall(fn, addr.getPointer());
2292 }
2293 
2294 /// void \@objc_moveWeak(i8** %dest, i8** %src)
2295 /// Disregards the current value in %dest. Leaves %src pointing to nothing.
2296 /// Essentially (objc_copyWeak(dest, src), objc_destroyWeak(src)).
2298  emitARCCopyOperation(*this, dst, src,
2300  "objc_moveWeak");
2301 }
2302 
2303 /// void \@objc_copyWeak(i8** %dest, i8** %src)
2304 /// Disregards the current value in %dest. Essentially
2305 /// objc_release(objc_initWeak(dest, objc_readWeakRetained(src)))
2307  emitARCCopyOperation(*this, dst, src,
2309  "objc_copyWeak");
2310 }
2311 
2313  Address SrcAddr) {
2314  llvm::Value *Object = EmitARCLoadWeakRetained(SrcAddr);
2315  Object = EmitObjCConsumeObject(Ty, Object);
2316  EmitARCStoreWeak(DstAddr, Object, false);
2317 }
2318 
2320  Address SrcAddr) {
2321  llvm::Value *Object = EmitARCLoadWeakRetained(SrcAddr);
2322  Object = EmitObjCConsumeObject(Ty, Object);
2323  EmitARCStoreWeak(DstAddr, Object, false);
2324  EmitARCDestroyWeak(SrcAddr);
2325 }
2326 
2327 /// Produce the code to do a objc_autoreleasepool_push.
2328 /// call i8* \@objc_autoreleasePoolPush(void)
2330  llvm::Constant *&fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPush;
2331  if (!fn) {
2332  llvm::FunctionType *fnType =
2333  llvm::FunctionType::get(Int8PtrTy, false);
2334  fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPush");
2335  }
2336 
2337  return EmitNounwindRuntimeCall(fn);
2338 }
2339 
2340 /// Produce the code to do a primitive release.
2341 /// call void \@objc_autoreleasePoolPop(i8* %ptr)
2343  assert(value->getType() == Int8PtrTy);
2344 
2345  llvm::Constant *&fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPop;
2346  if (!fn) {
2347  llvm::FunctionType *fnType =
2348  llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false);
2349 
2350  // We don't want to use a weak import here; instead we should not
2351  // fall into this path.
2352  fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPop");
2353  }
2354 
2355  // objc_autoreleasePoolPop can throw.
2356  EmitRuntimeCallOrInvoke(fn, value);
2357 }
2358 
2359 /// Produce the code to do an MRR version objc_autoreleasepool_push.
2360 /// Which is: [[NSAutoreleasePool alloc] init];
2361 /// Where alloc is declared as: + (id) alloc; in NSAutoreleasePool class.
2362 /// init is declared as: - (id) init; in its NSObject super class.
2363 ///
2365  CGObjCRuntime &Runtime = CGM.getObjCRuntime();
2366  llvm::Value *Receiver = Runtime.EmitNSAutoreleasePoolClassRef(*this);
2367  // [NSAutoreleasePool alloc]
2368  IdentifierInfo *II = &CGM.getContext().Idents.get("alloc");
2369  Selector AllocSel = getContext().Selectors.getSelector(0, &II);
2370  CallArgList Args;
2371  RValue AllocRV =
2372  Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2373  getContext().getObjCIdType(),
2374  AllocSel, Receiver, Args);
2375 
2376  // [Receiver init]
2377  Receiver = AllocRV.getScalarVal();
2378  II = &CGM.getContext().Idents.get("init");
2379  Selector InitSel = getContext().Selectors.getSelector(0, &II);
2380  RValue InitRV =
2381  Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2382  getContext().getObjCIdType(),
2383  InitSel, Receiver, Args);
2384  return InitRV.getScalarVal();
2385 }
2386 
2387 /// Produce the code to do a primitive release.
2388 /// [tmp drain];
2390  IdentifierInfo *II = &CGM.getContext().Idents.get("drain");
2391  Selector DrainSel = getContext().Selectors.getSelector(0, &II);
2392  CallArgList Args;
2394  getContext().VoidTy, DrainSel, Arg, Args);
2395 }
2396 
2398  Address addr,
2399  QualType type) {
2401 }
2402 
2404  Address addr,
2405  QualType type) {
2407 }
2408 
2410  Address addr,
2411  QualType type) {
2412  CGF.EmitARCDestroyWeak(addr);
2413 }
2414 
2416  QualType type) {
2417  llvm::Value *value = CGF.Builder.CreateLoad(addr);
2418  CGF.EmitARCIntrinsicUse(value);
2419 }
2420 
2421 namespace {
2422  struct CallObjCAutoreleasePoolObject final : EHScopeStack::Cleanup {
2423  llvm::Value *Token;
2424 
2425  CallObjCAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2426 
2427  void Emit(CodeGenFunction &CGF, Flags flags) override {
2428  CGF.EmitObjCAutoreleasePoolPop(Token);
2429  }
2430  };
2431  struct CallObjCMRRAutoreleasePoolObject final : EHScopeStack::Cleanup {
2432  llvm::Value *Token;
2433 
2434  CallObjCMRRAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2435 
2436  void Emit(CodeGenFunction &CGF, Flags flags) override {
2437  CGF.EmitObjCMRRAutoreleasePoolPop(Token);
2438  }
2439  };
2440 }
2441 
2443  if (CGM.getLangOpts().ObjCAutoRefCount)
2444  EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, Ptr);
2445  else
2446  EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, Ptr);
2447 }
2448 
2450  LValue lvalue,
2451  QualType type) {
2452  switch (type.getObjCLifetime()) {
2453  case Qualifiers::OCL_None:
2457  return TryEmitResult(CGF.EmitLoadOfLValue(lvalue,
2459  false);
2460 
2461  case Qualifiers::OCL_Weak:
2462  return TryEmitResult(CGF.EmitARCLoadWeakRetained(lvalue.getAddress()),
2463  true);
2464  }
2465 
2466  llvm_unreachable("impossible lifetime!");
2467 }
2468 
2470  const Expr *e) {
2471  e = e->IgnoreParens();
2472  QualType type = e->getType();
2473 
2474  // If we're loading retained from a __strong xvalue, we can avoid
2475  // an extra retain/release pair by zeroing out the source of this
2476  // "move" operation.
2477  if (e->isXValue() &&
2478  !type.isConstQualified() &&
2480  // Emit the lvalue.
2481  LValue lv = CGF.EmitLValue(e);
2482 
2483  // Load the object pointer.
2484  llvm::Value *result = CGF.EmitLoadOfLValue(lv,
2486 
2487  // Set the source pointer to NULL.
2489 
2490  return TryEmitResult(result, true);
2491  }
2492 
2493  // As a very special optimization, in ARC++, if the l-value is the
2494  // result of a non-volatile assignment, do a simple retain of the
2495  // result of the call to objc_storeWeak instead of reloading.
2496  if (CGF.getLangOpts().CPlusPlus &&
2497  !type.isVolatileQualified() &&
2499  isa<BinaryOperator>(e) &&
2500  cast<BinaryOperator>(e)->getOpcode() == BO_Assign)
2501  return TryEmitResult(CGF.EmitScalarExpr(e), false);
2502 
2503  return tryEmitARCRetainLoadOfScalar(CGF, CGF.EmitLValue(e), type);
2504 }
2505 
2506 typedef llvm::function_ref<llvm::Value *(CodeGenFunction &CGF,
2507  llvm::Value *value)>
2509 
2510 /// Insert code immediately after a call.
2512  llvm::Value *value,
2513  ValueTransform doAfterCall,
2514  ValueTransform doFallback) {
2515  if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(value)) {
2516  CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
2517 
2518  // Place the retain immediately following the call.
2519  CGF.Builder.SetInsertPoint(call->getParent(),
2520  ++llvm::BasicBlock::iterator(call));
2521  value = doAfterCall(CGF, value);
2522 
2523  CGF.Builder.restoreIP(ip);
2524  return value;
2525  } else if (llvm::InvokeInst *invoke = dyn_cast<llvm::InvokeInst>(value)) {
2526  CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
2527 
2528  // Place the retain at the beginning of the normal destination block.
2529  llvm::BasicBlock *BB = invoke->getNormalDest();
2530  CGF.Builder.SetInsertPoint(BB, BB->begin());
2531  value = doAfterCall(CGF, value);
2532 
2533  CGF.Builder.restoreIP(ip);
2534  return value;
2535 
2536  // Bitcasts can arise because of related-result returns. Rewrite
2537  // the operand.
2538  } else if (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(value)) {
2539  llvm::Value *operand = bitcast->getOperand(0);
2540  operand = emitARCOperationAfterCall(CGF, operand, doAfterCall, doFallback);
2541  bitcast->setOperand(0, operand);
2542  return bitcast;
2543 
2544  // Generic fall-back case.
2545  } else {
2546  // Retain using the non-block variant: we never need to do a copy
2547  // of a block that's been returned to us.
2548  return doFallback(CGF, value);
2549  }
2550 }
2551 
2552 /// Given that the given expression is some sort of call (which does
2553 /// not return retained), emit a retain following it.
2555  const Expr *e) {
2556  llvm::Value *value = CGF.EmitScalarExpr(e);
2557  return emitARCOperationAfterCall(CGF, value,
2558  [](CodeGenFunction &CGF, llvm::Value *value) {
2559  return CGF.EmitARCRetainAutoreleasedReturnValue(value);
2560  },
2561  [](CodeGenFunction &CGF, llvm::Value *value) {
2562  return CGF.EmitARCRetainNonBlock(value);
2563  });
2564 }
2565 
2566 /// Given that the given expression is some sort of call (which does
2567 /// not return retained), perform an unsafeClaim following it.
2569  const Expr *e) {
2570  llvm::Value *value = CGF.EmitScalarExpr(e);
2571  return emitARCOperationAfterCall(CGF, value,
2572  [](CodeGenFunction &CGF, llvm::Value *value) {
2574  },
2575  [](CodeGenFunction &CGF, llvm::Value *value) {
2576  return value;
2577  });
2578 }
2579 
2581  bool allowUnsafeClaim) {
2582  if (allowUnsafeClaim &&
2584  return emitARCUnsafeClaimCallResult(*this, E);
2585  } else {
2586  llvm::Value *value = emitARCRetainCallResult(*this, E);
2587  return EmitObjCConsumeObject(E->getType(), value);
2588  }
2589 }
2590 
2591 /// Determine whether it might be important to emit a separate
2592 /// objc_retain_block on the result of the given expression, or
2593 /// whether it's okay to just emit it in a +1 context.
2594 static bool shouldEmitSeparateBlockRetain(const Expr *e) {
2595  assert(e->getType()->isBlockPointerType());
2596  e = e->IgnoreParens();
2597 
2598  // For future goodness, emit block expressions directly in +1
2599  // contexts if we can.
2600  if (isa<BlockExpr>(e))
2601  return false;
2602 
2603  if (const CastExpr *cast = dyn_cast<CastExpr>(e)) {
2604  switch (cast->getCastKind()) {
2605  // Emitting these operations in +1 contexts is goodness.
2606  case CK_LValueToRValue:
2607  case CK_ARCReclaimReturnedObject:
2608  case CK_ARCConsumeObject:
2609  case CK_ARCProduceObject:
2610  return false;
2611 
2612  // These operations preserve a block type.
2613  case CK_NoOp:
2614  case CK_BitCast:
2615  return shouldEmitSeparateBlockRetain(cast->getSubExpr());
2616 
2617  // These operations are known to be bad (or haven't been considered).
2618  case CK_AnyPointerToBlockPointerCast:
2619  default:
2620  return true;
2621  }
2622  }
2623 
2624  return true;
2625 }
2626 
2627 namespace {
2628 /// A CRTP base class for emitting expressions of retainable object
2629 /// pointer type in ARC.
2630 template <typename Impl, typename Result> class ARCExprEmitter {
2631 protected:
2632  CodeGenFunction &CGF;
2633  Impl &asImpl() { return *static_cast<Impl*>(this); }
2634 
2635  ARCExprEmitter(CodeGenFunction &CGF) : CGF(CGF) {}
2636 
2637 public:
2638  Result visit(const Expr *e);
2639  Result visitCastExpr(const CastExpr *e);
2640  Result visitPseudoObjectExpr(const PseudoObjectExpr *e);
2641  Result visitBinaryOperator(const BinaryOperator *e);
2642  Result visitBinAssign(const BinaryOperator *e);
2643  Result visitBinAssignUnsafeUnretained(const BinaryOperator *e);
2644  Result visitBinAssignAutoreleasing(const BinaryOperator *e);
2645  Result visitBinAssignWeak(const BinaryOperator *e);
2646  Result visitBinAssignStrong(const BinaryOperator *e);
2647 
2648  // Minimal implementation:
2649  // Result visitLValueToRValue(const Expr *e)
2650  // Result visitConsumeObject(const Expr *e)
2651  // Result visitExtendBlockObject(const Expr *e)
2652  // Result visitReclaimReturnedObject(const Expr *e)
2653  // Result visitCall(const Expr *e)
2654  // Result visitExpr(const Expr *e)
2655  //
2656  // Result emitBitCast(Result result, llvm::Type *resultType)
2657  // llvm::Value *getValueOfResult(Result result)
2658 };
2659 }
2660 
2661 /// Try to emit a PseudoObjectExpr under special ARC rules.
2662 ///
2663 /// This massively duplicates emitPseudoObjectRValue.
2664 template <typename Impl, typename Result>
2665 Result
2666 ARCExprEmitter<Impl,Result>::visitPseudoObjectExpr(const PseudoObjectExpr *E) {
2668 
2669  // Find the result expression.
2670  const Expr *resultExpr = E->getResultExpr();
2671  assert(resultExpr);
2672  Result result;
2673 
2675  i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
2676  const Expr *semantic = *i;
2677 
2678  // If this semantic expression is an opaque value, bind it
2679  // to the result of its source expression.
2680  if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
2682  OVMA opaqueData;
2683 
2684  // If this semantic is the result of the pseudo-object
2685  // expression, try to evaluate the source as +1.
2686  if (ov == resultExpr) {
2687  assert(!OVMA::shouldBindAsLValue(ov));
2688  result = asImpl().visit(ov->getSourceExpr());
2689  opaqueData = OVMA::bind(CGF, ov,
2690  RValue::get(asImpl().getValueOfResult(result)));
2691 
2692  // Otherwise, just bind it.
2693  } else {
2694  opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
2695  }
2696  opaques.push_back(opaqueData);
2697 
2698  // Otherwise, if the expression is the result, evaluate it
2699  // and remember the result.
2700  } else if (semantic == resultExpr) {
2701  result = asImpl().visit(semantic);
2702 
2703  // Otherwise, evaluate the expression in an ignored context.
2704  } else {
2705  CGF.EmitIgnoredExpr(semantic);
2706  }
2707  }
2708 
2709  // Unbind all the opaques now.
2710  for (unsigned i = 0, e = opaques.size(); i != e; ++i)
2711  opaques[i].unbind(CGF);
2712 
2713  return result;
2714 }
2715 
2716 template <typename Impl, typename Result>
2717 Result ARCExprEmitter<Impl,Result>::visitCastExpr(const CastExpr *e) {
2718  switch (e->getCastKind()) {
2719 
2720  // No-op casts don't change the type, so we just ignore them.
2721  case CK_NoOp:
2722  return asImpl().visit(e->getSubExpr());
2723 
2724  // These casts can change the type.
2725  case CK_CPointerToObjCPointerCast:
2726  case CK_BlockPointerToObjCPointerCast:
2727  case CK_AnyPointerToBlockPointerCast:
2728  case CK_BitCast: {
2729  llvm::Type *resultType = CGF.ConvertType(e->getType());
2730  assert(e->getSubExpr()->getType()->hasPointerRepresentation());
2731  Result result = asImpl().visit(e->getSubExpr());
2732  return asImpl().emitBitCast(result, resultType);
2733  }
2734 
2735  // Handle some casts specially.
2736  case CK_LValueToRValue:
2737  return asImpl().visitLValueToRValue(e->getSubExpr());
2738  case CK_ARCConsumeObject:
2739  return asImpl().visitConsumeObject(e->getSubExpr());
2740  case CK_ARCExtendBlockObject:
2741  return asImpl().visitExtendBlockObject(e->getSubExpr());
2742  case CK_ARCReclaimReturnedObject:
2743  return asImpl().visitReclaimReturnedObject(e->getSubExpr());
2744 
2745  // Otherwise, use the default logic.
2746  default:
2747  return asImpl().visitExpr(e);
2748  }
2749 }
2750 
2751 template <typename Impl, typename Result>
2752 Result
2753 ARCExprEmitter<Impl,Result>::visitBinaryOperator(const BinaryOperator *e) {
2754  switch (e->getOpcode()) {
2755  case BO_Comma:
2756  CGF.EmitIgnoredExpr(e->getLHS());
2757  CGF.EnsureInsertPoint();
2758  return asImpl().visit(e->getRHS());
2759 
2760  case BO_Assign:
2761  return asImpl().visitBinAssign(e);
2762 
2763  default:
2764  return asImpl().visitExpr(e);
2765  }
2766 }
2767 
2768 template <typename Impl, typename Result>
2769 Result ARCExprEmitter<Impl,Result>::visitBinAssign(const BinaryOperator *e) {
2770  switch (e->getLHS()->getType().getObjCLifetime()) {
2772  return asImpl().visitBinAssignUnsafeUnretained(e);
2773 
2774  case Qualifiers::OCL_Weak:
2775  return asImpl().visitBinAssignWeak(e);
2776 
2778  return asImpl().visitBinAssignAutoreleasing(e);
2779 
2781  return asImpl().visitBinAssignStrong(e);
2782 
2783  case Qualifiers::OCL_None:
2784  return asImpl().visitExpr(e);
2785  }
2786  llvm_unreachable("bad ObjC ownership qualifier");
2787 }
2788 
2789 /// The default rule for __unsafe_unretained emits the RHS recursively,
2790 /// stores into the unsafe variable, and propagates the result outward.
2791 template <typename Impl, typename Result>
2792 Result ARCExprEmitter<Impl,Result>::
2793  visitBinAssignUnsafeUnretained(const BinaryOperator *e) {
2794  // Recursively emit the RHS.
2795  // For __block safety, do this before emitting the LHS.
2796  Result result = asImpl().visit(e->getRHS());
2797 
2798  // Perform the store.
2799  LValue lvalue =
2801  CGF.EmitStoreThroughLValue(RValue::get(asImpl().getValueOfResult(result)),
2802  lvalue);
2803 
2804  return result;
2805 }
2806 
2807 template <typename Impl, typename Result>
2808 Result
2809 ARCExprEmitter<Impl,Result>::visitBinAssignAutoreleasing(const BinaryOperator *e) {
2810  return asImpl().visitExpr(e);
2811 }
2812 
2813 template <typename Impl, typename Result>
2814 Result
2815 ARCExprEmitter<Impl,Result>::visitBinAssignWeak(const BinaryOperator *e) {
2816  return asImpl().visitExpr(e);
2817 }
2818 
2819 template <typename Impl, typename Result>
2820 Result
2821 ARCExprEmitter<Impl,Result>::visitBinAssignStrong(const BinaryOperator *e) {
2822  return asImpl().visitExpr(e);
2823 }
2824 
2825 /// The general expression-emission logic.
2826 template <typename Impl, typename Result>
2827 Result ARCExprEmitter<Impl,Result>::visit(const Expr *e) {
2828  // We should *never* see a nested full-expression here, because if
2829  // we fail to emit at +1, our caller must not retain after we close
2830  // out the full-expression. This isn't as important in the unsafe
2831  // emitter.
2832  assert(!isa<ExprWithCleanups>(e));
2833 
2834  // Look through parens, __extension__, generic selection, etc.
2835  e = e->IgnoreParens();
2836 
2837  // Handle certain kinds of casts.
2838  if (const CastExpr *ce = dyn_cast<CastExpr>(e)) {
2839  return asImpl().visitCastExpr(ce);
2840 
2841  // Handle the comma operator.
2842  } else if (auto op = dyn_cast<BinaryOperator>(e)) {
2843  return asImpl().visitBinaryOperator(op);
2844 
2845  // TODO: handle conditional operators here
2846 
2847  // For calls and message sends, use the retained-call logic.
2848  // Delegate inits are a special case in that they're the only
2849  // returns-retained expression that *isn't* surrounded by
2850  // a consume.
2851  } else if (isa<CallExpr>(e) ||
2852  (isa<ObjCMessageExpr>(e) &&
2853  !cast<ObjCMessageExpr>(e)->isDelegateInitCall())) {
2854  return asImpl().visitCall(e);
2855 
2856  // Look through pseudo-object expressions.
2857  } else if (const PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
2858  return asImpl().visitPseudoObjectExpr(pseudo);
2859  }
2860 
2861  return asImpl().visitExpr(e);
2862 }
2863 
2864 namespace {
2865 
2866 /// An emitter for +1 results.
2867 struct ARCRetainExprEmitter :
2868  public ARCExprEmitter<ARCRetainExprEmitter, TryEmitResult> {
2869 
2870  ARCRetainExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {}
2871 
2872  llvm::Value *getValueOfResult(TryEmitResult result) {
2873  return result.getPointer();
2874  }
2875 
2876  TryEmitResult emitBitCast(TryEmitResult result, llvm::Type *resultType) {
2877  llvm::Value *value = result.getPointer();
2878  value = CGF.Builder.CreateBitCast(value, resultType);
2879  result.setPointer(value);
2880  return result;
2881  }
2882 
2883  TryEmitResult visitLValueToRValue(const Expr *e) {
2884  return tryEmitARCRetainLoadOfScalar(CGF, e);
2885  }
2886 
2887  /// For consumptions, just emit the subexpression and thus elide
2888  /// the retain/release pair.
2889  TryEmitResult visitConsumeObject(const Expr *e) {
2890  llvm::Value *result = CGF.EmitScalarExpr(e);
2891  return TryEmitResult(result, true);
2892  }
2893 
2894  /// Block extends are net +0. Naively, we could just recurse on
2895  /// the subexpression, but actually we need to ensure that the
2896  /// value is copied as a block, so there's a little filter here.
2897  TryEmitResult visitExtendBlockObject(const Expr *e) {
2898  llvm::Value *result; // will be a +0 value
2899 
2900  // If we can't safely assume the sub-expression will produce a
2901  // block-copied value, emit the sub-expression at +0.
2903  result = CGF.EmitScalarExpr(e);
2904 
2905  // Otherwise, try to emit the sub-expression at +1 recursively.
2906  } else {
2907  TryEmitResult subresult = asImpl().visit(e);
2908 
2909  // If that produced a retained value, just use that.
2910  if (subresult.getInt()) {
2911  return subresult;
2912  }
2913 
2914  // Otherwise it's +0.
2915  result = subresult.getPointer();
2916  }
2917 
2918  // Retain the object as a block.
2919  result = CGF.EmitARCRetainBlock(result, /*mandatory*/ true);
2920  return TryEmitResult(result, true);
2921  }
2922 
2923  /// For reclaims, emit the subexpression as a retained call and
2924  /// skip the consumption.
2925  TryEmitResult visitReclaimReturnedObject(const Expr *e) {
2926  llvm::Value *result = emitARCRetainCallResult(CGF, e);
2927  return TryEmitResult(result, true);
2928  }
2929 
2930  /// When we have an undecorated call, retroactively do a claim.
2931  TryEmitResult visitCall(const Expr *e) {
2932  llvm::Value *result = emitARCRetainCallResult(CGF, e);
2933  return TryEmitResult(result, true);
2934  }
2935 
2936  // TODO: maybe special-case visitBinAssignWeak?
2937 
2938  TryEmitResult visitExpr(const Expr *e) {
2939  // We didn't find an obvious production, so emit what we've got and
2940  // tell the caller that we didn't manage to retain.
2941  llvm::Value *result = CGF.EmitScalarExpr(e);
2942  return TryEmitResult(result, false);
2943  }
2944 };
2945 }
2946 
2947 static TryEmitResult
2949  return ARCRetainExprEmitter(CGF).visit(e);
2950 }
2951 
2953  LValue lvalue,
2954  QualType type) {
2955  TryEmitResult result = tryEmitARCRetainLoadOfScalar(CGF, lvalue, type);
2956  llvm::Value *value = result.getPointer();
2957  if (!result.getInt())
2958  value = CGF.EmitARCRetain(type, value);
2959  return value;
2960 }
2961 
2962 /// EmitARCRetainScalarExpr - Semantically equivalent to
2963 /// EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a
2964 /// best-effort attempt to peephole expressions that naturally produce
2965 /// retained objects.
2967  // The retain needs to happen within the full-expression.
2968  if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
2969  enterFullExpression(cleanups);
2970  RunCleanupsScope scope(*this);
2971  return EmitARCRetainScalarExpr(cleanups->getSubExpr());
2972  }
2973 
2974  TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
2975  llvm::Value *value = result.getPointer();
2976  if (!result.getInt())
2977  value = EmitARCRetain(e->getType(), value);
2978  return value;
2979 }
2980 
2981 llvm::Value *
2983  // The retain needs to happen within the full-expression.
2984  if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
2985  enterFullExpression(cleanups);
2986  RunCleanupsScope scope(*this);
2987  return EmitARCRetainAutoreleaseScalarExpr(cleanups->getSubExpr());
2988  }
2989 
2990  TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
2991  llvm::Value *value = result.getPointer();
2992  if (result.getInt())
2993  value = EmitARCAutorelease(value);
2994  else
2995  value = EmitARCRetainAutorelease(e->getType(), value);
2996  return value;
2997 }
2998 
3000  llvm::Value *result;
3001  bool doRetain;
3002 
3004  result = EmitScalarExpr(e);
3005  doRetain = true;
3006  } else {
3007  TryEmitResult subresult = tryEmitARCRetainScalarExpr(*this, e);
3008  result = subresult.getPointer();
3009  doRetain = !subresult.getInt();
3010  }
3011 
3012  if (doRetain)
3013  result = EmitARCRetainBlock(result, /*mandatory*/ true);
3014  return EmitObjCConsumeObject(e->getType(), result);
3015 }
3016 
3018  // In ARC, retain and autorelease the expression.
3019  if (getLangOpts().ObjCAutoRefCount) {
3020  // Do so before running any cleanups for the full-expression.
3021  // EmitARCRetainAutoreleaseScalarExpr does this for us.
3023  }
3024 
3025  // Otherwise, use the normal scalar-expression emission. The
3026  // exception machinery doesn't do anything special with the
3027  // exception like retaining it, so there's no safety associated with
3028  // only running cleanups after the throw has started, and when it
3029  // matters it tends to be substantially inferior code.
3030  return EmitScalarExpr(expr);
3031 }
3032 
3033 namespace {
3034 
3035 /// An emitter for assigning into an __unsafe_unretained context.
3036 struct ARCUnsafeUnretainedExprEmitter :
3037  public ARCExprEmitter<ARCUnsafeUnretainedExprEmitter, llvm::Value*> {
3038 
3039  ARCUnsafeUnretainedExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {}
3040 
3041  llvm::Value *getValueOfResult(llvm::Value *value) {
3042  return value;
3043  }
3044 
3045  llvm::Value *emitBitCast(llvm::Value *value, llvm::Type *resultType) {
3046  return CGF.Builder.CreateBitCast(value, resultType);
3047  }
3048 
3049  llvm::Value *visitLValueToRValue(const Expr *e) {
3050  return CGF.EmitScalarExpr(e);
3051  }
3052 
3053  /// For consumptions, just emit the subexpression and perform the
3054  /// consumption like normal.
3055  llvm::Value *visitConsumeObject(const Expr *e) {
3056  llvm::Value *value = CGF.EmitScalarExpr(e);
3057  return CGF.EmitObjCConsumeObject(e->getType(), value);
3058  }
3059 
3060  /// No special logic for block extensions. (This probably can't
3061  /// actually happen in this emitter, though.)
3062  llvm::Value *visitExtendBlockObject(const Expr *e) {
3063  return CGF.EmitARCExtendBlockObject(e);
3064  }
3065 
3066  /// For reclaims, perform an unsafeClaim if that's enabled.
3067  llvm::Value *visitReclaimReturnedObject(const Expr *e) {
3068  return CGF.EmitARCReclaimReturnedObject(e, /*unsafe*/ true);
3069  }
3070 
3071  /// When we have an undecorated call, just emit it without adding
3072  /// the unsafeClaim.
3073  llvm::Value *visitCall(const Expr *e) {
3074  return CGF.EmitScalarExpr(e);
3075  }
3076 
3077  /// Just do normal scalar emission in the default case.
3078  llvm::Value *visitExpr(const Expr *e) {
3079  return CGF.EmitScalarExpr(e);
3080  }
3081 };
3082 }
3083 
3085  const Expr *e) {
3086  return ARCUnsafeUnretainedExprEmitter(CGF).visit(e);
3087 }
3088 
3089 /// EmitARCUnsafeUnretainedScalarExpr - Semantically equivalent to
3090 /// immediately releasing the resut of EmitARCRetainScalarExpr, but
3091 /// avoiding any spurious retains, including by performing reclaims
3092 /// with objc_unsafeClaimAutoreleasedReturnValue.
3094  // Look through full-expressions.
3095  if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
3096  enterFullExpression(cleanups);
3097  RunCleanupsScope scope(*this);
3098  return emitARCUnsafeUnretainedScalarExpr(*this, cleanups->getSubExpr());
3099  }
3100 
3101  return emitARCUnsafeUnretainedScalarExpr(*this, e);
3102 }
3103 
3104 std::pair<LValue,llvm::Value*>
3106  bool ignored) {
3107  // Evaluate the RHS first. If we're ignoring the result, assume
3108  // that we can emit at an unsafe +0.
3109  llvm::Value *value;
3110  if (ignored) {
3112  } else {
3113  value = EmitScalarExpr(e->getRHS());
3114  }
3115 
3116  // Emit the LHS and perform the store.
3117  LValue lvalue = EmitLValue(e->getLHS());
3118  EmitStoreOfScalar(value, lvalue);
3119 
3120  return std::pair<LValue,llvm::Value*>(std::move(lvalue), value);
3121 }
3122 
3123 std::pair<LValue,llvm::Value*>
3125  bool ignored) {
3126  // Evaluate the RHS first.
3127  TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e->getRHS());
3128  llvm::Value *value = result.getPointer();
3129 
3130  bool hasImmediateRetain = result.getInt();
3131 
3132  // If we didn't emit a retained object, and the l-value is of block
3133  // type, then we need to emit the block-retain immediately in case
3134  // it invalidates the l-value.
3135  if (!hasImmediateRetain && e->getType()->isBlockPointerType()) {
3136  value = EmitARCRetainBlock(value, /*mandatory*/ false);
3137  hasImmediateRetain = true;
3138  }
3139 
3140  LValue lvalue = EmitLValue(e->getLHS());
3141 
3142  // If the RHS was emitted retained, expand this.
3143  if (hasImmediateRetain) {
3144  llvm::Value *oldValue = EmitLoadOfScalar(lvalue, SourceLocation());
3145  EmitStoreOfScalar(value, lvalue);
3146  EmitARCRelease(oldValue, lvalue.isARCPreciseLifetime());
3147  } else {
3148  value = EmitARCStoreStrong(lvalue, value, ignored);
3149  }
3150 
3151  return std::pair<LValue,llvm::Value*>(lvalue, value);
3152 }
3153 
3154 std::pair<LValue,llvm::Value*>
3157  LValue lvalue = EmitLValue(e->getLHS());
3158 
3159  EmitStoreOfScalar(value, lvalue);
3160 
3161  return std::pair<LValue,llvm::Value*>(lvalue, value);
3162 }
3163 
3165  const ObjCAutoreleasePoolStmt &ARPS) {
3166  const Stmt *subStmt = ARPS.getSubStmt();
3167  const CompoundStmt &S = cast<CompoundStmt>(*subStmt);
3168 
3169  CGDebugInfo *DI = getDebugInfo();
3170  if (DI)
3172 
3173  // Keep track of the current cleanup stack depth.
3174  RunCleanupsScope Scope(*this);
3175  if (CGM.getLangOpts().ObjCRuntime.hasNativeARC()) {
3177  EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, token);
3178  } else {
3180  EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, token);
3181  }
3182 
3183  for (const auto *I : S.body())
3184  EmitStmt(I);
3185 
3186  if (DI)
3188 }
3189 
3190 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
3191 /// make sure it survives garbage collection until this point.
3193  // We just use an inline assembly.
3194  llvm::FunctionType *extenderType
3195  = llvm::FunctionType::get(VoidTy, VoidPtrTy, RequiredArgs::All);
3196  llvm::Value *extender
3197  = llvm::InlineAsm::get(extenderType,
3198  /* assembly */ "",
3199  /* constraints */ "r",
3200  /* side effects */ true);
3201 
3202  object = Builder.CreateBitCast(object, VoidPtrTy);
3203  EmitNounwindRuntimeCall(extender, object);
3204 }
3205 
3206 /// GenerateObjCAtomicSetterCopyHelperFunction - Given a c++ object type with
3207 /// non-trivial copy assignment function, produce following helper function.
3208 /// static void copyHelper(Ty *dest, const Ty *source) { *dest = *source; }
3209 ///
3210 llvm::Constant *
3212  const ObjCPropertyImplDecl *PID) {
3213  if (!getLangOpts().CPlusPlus ||
3215  return nullptr;
3216  QualType Ty = PID->getPropertyIvarDecl()->getType();
3217  if (!Ty->isRecordType())
3218  return nullptr;
3219  const ObjCPropertyDecl *PD = PID->getPropertyDecl();
3221  return nullptr;
3222  llvm::Constant *HelperFn = nullptr;
3223  if (hasTrivialSetExpr(PID))
3224  return nullptr;
3225  assert(PID->getSetterCXXAssignment() && "SetterCXXAssignment - null");
3226  if ((HelperFn = CGM.getAtomicSetterHelperFnMap(Ty)))
3227  return HelperFn;
3228 
3229  ASTContext &C = getContext();
3230  IdentifierInfo *II
3231  = &CGM.getContext().Idents.get("__assign_helper_atomic_property_");
3234  SourceLocation(),
3235  SourceLocation(), II, C.VoidTy,
3236  nullptr, SC_Static,
3237  false,
3238  false);
3239 
3240  QualType DestTy = C.getPointerType(Ty);
3241  QualType SrcTy = Ty;
3242  SrcTy.addConst();
3243  SrcTy = C.getPointerType(SrcTy);
3244 
3245  FunctionArgList args;
3246  ImplicitParamDecl DstDecl(getContext(), FD, SourceLocation(), /*Id=*/nullptr,
3247  DestTy, ImplicitParamDecl::Other);
3248  args.push_back(&DstDecl);
3249  ImplicitParamDecl SrcDecl(getContext(), FD, SourceLocation(), /*Id=*/nullptr,
3250  SrcTy, ImplicitParamDecl::Other);
3251  args.push_back(&SrcDecl);
3252 
3253  const CGFunctionInfo &FI =
3255 
3256  llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
3257 
3258  llvm::Function *Fn =
3260  "__assign_helper_atomic_property_",
3261  &CGM.getModule());
3262 
3264 
3265  StartFunction(FD, C.VoidTy, Fn, FI, args);
3266 
3267  DeclRefExpr DstExpr(&DstDecl, false, DestTy,
3269  UnaryOperator DST(&DstExpr, UO_Deref, DestTy->getPointeeType(),
3270  VK_LValue, OK_Ordinary, SourceLocation(), false);
3271 
3272  DeclRefExpr SrcExpr(&SrcDecl, false, SrcTy,
3274  UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(),
3275  VK_LValue, OK_Ordinary, SourceLocation(), false);
3276 
3277  Expr *Args[2] = { &DST, &SRC };
3278  CallExpr *CalleeExp = cast<CallExpr>(PID->getSetterCXXAssignment());
3279  CXXOperatorCallExpr TheCall(C, OO_Equal, CalleeExp->getCallee(),
3280  Args, DestTy->getPointeeType(),
3282 
3283  EmitStmt(&TheCall);
3284 
3285  FinishFunction();
3286  HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
3287  CGM.setAtomicSetterHelperFnMap(Ty, HelperFn);
3288  return HelperFn;
3289 }
3290 
3291 llvm::Constant *
3293  const ObjCPropertyImplDecl *PID) {
3294  if (!getLangOpts().CPlusPlus ||
3296  return nullptr;
3297  const ObjCPropertyDecl *PD = PID->getPropertyDecl();
3298  QualType Ty = PD->getType();
3299  if (!Ty->isRecordType())
3300  return nullptr;
3302  return nullptr;
3303  llvm::Constant *HelperFn = nullptr;
3304 
3305  if (hasTrivialGetExpr(PID))
3306  return nullptr;
3307  assert(PID->getGetterCXXConstructor() && "getGetterCXXConstructor - null");
3308  if ((HelperFn = CGM.getAtomicGetterHelperFnMap(Ty)))
3309  return HelperFn;
3310 
3311 
3312  ASTContext &C = getContext();
3313  IdentifierInfo *II
3314  = &CGM.getContext().Idents.get("__copy_helper_atomic_property_");
3317  SourceLocation(),
3318  SourceLocation(), II, C.VoidTy,
3319  nullptr, SC_Static,
3320  false,
3321  false);
3322 
3323  QualType DestTy = C.getPointerType(Ty);
3324  QualType SrcTy = Ty;
3325  SrcTy.addConst();
3326  SrcTy = C.getPointerType(SrcTy);
3327 
3328  FunctionArgList args;
3329  ImplicitParamDecl DstDecl(getContext(), FD, SourceLocation(), /*Id=*/nullptr,
3330  DestTy, ImplicitParamDecl::Other);
3331  args.push_back(&DstDecl);
3332  ImplicitParamDecl SrcDecl(getContext(), FD, SourceLocation(), /*Id=*/nullptr,
3333  SrcTy, ImplicitParamDecl::Other);
3334  args.push_back(&SrcDecl);
3335 
3336  const CGFunctionInfo &FI =
3338 
3339  llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
3340 
3341  llvm::Function *Fn =
3343  "__copy_helper_atomic_property_", &CGM.getModule());
3344 
3346 
3347  StartFunction(FD, C.VoidTy, Fn, FI, args);
3348 
3349  DeclRefExpr SrcExpr(&SrcDecl, false, SrcTy,
3351 
3352  UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(),
3353  VK_LValue, OK_Ordinary, SourceLocation(), false);
3354 
3355  CXXConstructExpr *CXXConstExpr =
3356  cast<CXXConstructExpr>(PID->getGetterCXXConstructor());
3357 
3358  SmallVector<Expr*, 4> ConstructorArgs;
3359  ConstructorArgs.push_back(&SRC);
3360  ConstructorArgs.append(std::next(CXXConstExpr->arg_begin()),
3361  CXXConstExpr->arg_end());
3362 
3363  CXXConstructExpr *TheCXXConstructExpr =
3365  CXXConstExpr->getConstructor(),
3366  CXXConstExpr->isElidable(),
3367  ConstructorArgs,
3368  CXXConstExpr->hadMultipleCandidates(),
3369  CXXConstExpr->isListInitialization(),
3370  CXXConstExpr->isStdInitListInitialization(),
3371  CXXConstExpr->requiresZeroInitialization(),
3372  CXXConstExpr->getConstructionKind(),
3373  SourceRange());
3374 
3375  DeclRefExpr DstExpr(&DstDecl, false, DestTy,
3377 
3378  RValue DV = EmitAnyExpr(&DstExpr);
3379  CharUnits Alignment
3380  = getContext().getTypeAlignInChars(TheCXXConstructExpr->getType());
3381  EmitAggExpr(TheCXXConstructExpr,
3382  AggValueSlot::forAddr(Address(DV.getScalarVal(), Alignment),
3383  Qualifiers(),
3388 
3389  FinishFunction();
3390  HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
3391  CGM.setAtomicGetterHelperFnMap(Ty, HelperFn);
3392  return HelperFn;
3393 }
3394 
3395 llvm::Value *
3397  // Get selectors for retain/autorelease.
3398  IdentifierInfo *CopyID = &getContext().Idents.get("copy");
3399  Selector CopySelector =
3401  IdentifierInfo *AutoreleaseID = &getContext().Idents.get("autorelease");
3402  Selector AutoreleaseSelector =
3403  getContext().Selectors.getNullarySelector(AutoreleaseID);
3404 
3405  // Emit calls to retain/autorelease.
3406  CGObjCRuntime &Runtime = CGM.getObjCRuntime();
3407  llvm::Value *Val = Block;
3408  RValue Result;
3409  Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
3410  Ty, CopySelector,
3411  Val, CallArgList(), nullptr, nullptr);
3412  Val = Result.getScalarVal();
3413  Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
3414  Ty, AutoreleaseSelector,
3415  Val, CallArgList(), nullptr, nullptr);
3416  Val = Result.getScalarVal();
3417  return Val;
3418 }
3419 
3420 llvm::Value *
3422  assert(Args.size() == 3 && "Expected 3 argument here!");
3423 
3424  if (!CGM.IsOSVersionAtLeastFn) {
3425  llvm::FunctionType *FTy =
3426  llvm::FunctionType::get(Int32Ty, {Int32Ty, Int32Ty, Int32Ty}, false);
3427  CGM.IsOSVersionAtLeastFn =
3428  CGM.CreateRuntimeFunction(FTy, "__isOSVersionAtLeast");
3429  }
3430 
3431  llvm::Value *CallRes =
3433 
3434  return Builder.CreateICmpNE(CallRes, llvm::Constant::getNullValue(Int32Ty));
3435 }
3436 
3437 void CodeGenModule::emitAtAvailableLinkGuard() {
3438  if (!IsOSVersionAtLeastFn)
3439  return;
3440  // @available requires CoreFoundation only on Darwin.
3441  if (!Target.getTriple().isOSDarwin())
3442  return;
3443  // Add -framework CoreFoundation to the linker commands. We still want to
3444  // emit the core foundation reference down below because otherwise if
3445  // CoreFoundation is not used in the code, the linker won't link the
3446  // framework.
3447  auto &Context = getLLVMContext();
3448  llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"),
3449  llvm::MDString::get(Context, "CoreFoundation")};
3450  LinkerOptionsMetadata.push_back(llvm::MDNode::get(Context, Args));
3451  // Emit a reference to a symbol from CoreFoundation to ensure that
3452  // CoreFoundation is linked into the final binary.
3453  llvm::FunctionType *FTy =
3454  llvm::FunctionType::get(Int32Ty, {VoidPtrTy}, false);
3455  llvm::Constant *CFFunc =
3456  CreateRuntimeFunction(FTy, "CFBundleGetVersionNumber");
3457 
3458  llvm::FunctionType *CheckFTy = llvm::FunctionType::get(VoidTy, {}, false);
3459  llvm::Function *CFLinkCheckFunc = cast<llvm::Function>(CreateBuiltinFunction(
3460  CheckFTy, "__clang_at_available_requires_core_foundation_framework"));
3461  CFLinkCheckFunc->setLinkage(llvm::GlobalValue::LinkOnceAnyLinkage);
3462  CFLinkCheckFunc->setVisibility(llvm::GlobalValue::HiddenVisibility);
3463  CodeGenFunction CGF(*this);
3464  CGF.Builder.SetInsertPoint(CGF.createBasicBlock("", CFLinkCheckFunc));
3465  CGF.EmitNounwindRuntimeCall(CFFunc, llvm::Constant::getNullValue(VoidPtrTy));
3466  CGF.Builder.CreateUnreachable();
3467  addCompilerUsedGlobal(CFLinkCheckFunc);
3468 }
3469 
const CGFunctionInfo & arrangeBuiltinFunctionDeclaration(QualType resultType, const FunctionArgList &args)
A builtin function is a freestanding function using the default C conventions.
Definition: CGCall.cpp:653
const llvm::DataLayout & getDataLayout() const
A call to an overloaded operator written using operator syntax.
Definition: ExprCXX.h:78
The receiver is the instance of the superclass object.
Definition: ExprObjC.h:1060
ReturnValueSlot - Contains the address where the return value of a function can be stored...
Definition: CGCall.h:361
const internal::VariadicAllOfMatcher< Type > type
Matches Types in the clang AST.
static bool UseOptimizedSetter(CodeGenModule &CGM)
Definition: CGObjC.cpp:1158
SourceLocation getRBracLoc() const
Definition: Stmt.h:700
Defines the clang::ASTContext interface.
bool isClassMethod() const
Definition: DeclObjC.h:457
Represents a function declaration or definition.
Definition: Decl.h:1714
llvm::Value * EmitARCStoreStrong(LValue lvalue, llvm::Value *value, bool resultIgnored)
Store into a strong object.
Definition: CGObjC.cpp:2144
The receiver is an object instance.
Definition: ExprObjC.h:1054
llvm::Value * EmitARCReclaimReturnedObject(const Expr *e, bool allowUnsafeClaim)
Definition: CGObjC.cpp:2580
Other implicit parameter.
Definition: Decl.h:1493
static llvm::Value * emitARCRetainCallResult(CodeGenFunction &CGF, const Expr *e)
Given that the given expression is some sort of call (which does not return retained), emit a retain following it.
Definition: CGObjC.cpp:2554
ObjCDictionaryElement getKeyValueElement(unsigned Index) const
Definition: ExprObjC.h:344
Smart pointer class that efficiently represents Objective-C method names.
QualType getObjCIdType() const
Represents the Objective-CC id type.
Definition: ASTContext.h:1828
llvm::Value * EmitARCRetainAutoreleaseScalarExpr(const Expr *expr)
Definition: CGObjC.cpp:2982
static bool hasTrivialGetExpr(const ObjCPropertyImplDecl *propImpl)
Definition: CGObjC.cpp:824
CanQualType VoidPtrTy
Definition: ASTContext.h:1026
Destroyer * getDestroyer(QualType::DestructionKind destructionKind)
Definition: CGDecl.cpp:1604
A (possibly-)qualified type.
Definition: Type.h:655
bool isBlockPointerType() const
Definition: Type.h:6114
static bool hasUnalignedAtomics(llvm::Triple::ArchType arch)
Determine whether the given architecture supports unaligned atomic accesses.
Definition: CGObjC.cpp:615
void EmitExtendGCLifetime(llvm::Value *object)
EmitExtendGCLifetime - Given a pointer to an Objective-C object, make sure it survives garbage collec...
Definition: CGObjC.cpp:3192
const CodeGenOptions & getCodeGenOpts() const
Selector getSelector() const
Definition: ExprObjC.cpp:312
llvm::Value * EmitARCExtendBlockObject(const Expr *expr)
Definition: CGObjC.cpp:2999
ObjCInterfaceDecl * getClassInterface()
Definition: DeclObjC.cpp:1098
virtual llvm::Function * GenerateMethod(const ObjCMethodDecl *OMD, const ObjCContainerDecl *CD)=0
Generate a function preamble for a method with the specified types.
Address CreateMemTemp(QualType T, const Twine &Name="tmp", Address *Alloca=nullptr)
CreateMemTemp - Create a temporary memory object of the given type, with appropriate alignmen and cas...
Definition: CGExpr.cpp:139
ObjCIvarDecl * getPropertyIvarDecl() const
Definition: DeclObjC.h:2846
void EmitARCDestroyWeak(Address addr)
void @objc_destroyWeak(i8** addr) Essentially objc_storeWeak(addr, nil).
Definition: CGObjC.cpp:2280
ObjCProtocolDecl * getProtocol() const
Definition: ExprObjC.h:490
Stmt - This represents one statement.
Definition: Stmt.h:66
virtual CodeGen::RValue GenerateMessageSend(CodeGen::CodeGenFunction &CGF, ReturnValueSlot ReturnSlot, QualType ResultType, Selector Sel, llvm::Value *Receiver, const CallArgList &CallArgs, const ObjCInterfaceDecl *Class=nullptr, const ObjCMethodDecl *Method=nullptr)=0
Generate an Objective-C message send operation.
void EmitLexicalBlockEnd(CGBuilderTy &Builder, SourceLocation Loc)
Emit metadata to indicate the end of a new lexical block and pop the current block.
QualType getPointeeType() const
If this is a pointer, ObjC object pointer, or block pointer, this returns the respective pointee...
Definition: Type.cpp:491
const llvm::Triple & getTriple() const
Returns the target triple of the primary target.
Definition: TargetInfo.h:941
bool requiresCleanups() const
Determine whether this scope requires any cleanups.
Implements runtime-specific code generation functions.
Definition: CGObjCRuntime.h:63
void addConst()
Add the const type qualifier to this QualType.
Definition: Type.h:824
bool isRecordType() const
Definition: Type.h:6179
static RValue AdjustObjCObjectType(CodeGenFunction &CGF, QualType ET, RValue Result)
Adjust the type of an Objective-C object that doesn&#39;t match up due to type erasure at various points...
Definition: CGObjC.cpp:265
llvm::Constant * objc_autoreleaseReturnValue
id objc_autoreleaseReturnValue(id);
const Decl * CurCodeDecl
CurCodeDecl - This is the inner-most code context, which includes blocks.
Opcode getOpcode() const
Definition: Expr.h:3110
QualType getNonReferenceType() const
If Type is a reference type (e.g., const int&), returns the type that the reference refers to ("const...
Definition: Type.h:6055
Expr * getSetterCXXAssignment() const
Definition: DeclObjC.h:2876
static Destroyer destroyARCStrongPrecise
Represents Objective-C&#39;s @throw statement.
Definition: StmtObjC.h:313
void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit=false)
EmitStoreThroughLValue - Store the specified rvalue into the specified lvalue, where both are guarant...
Definition: CGExpr.cpp:1865
void GenerateObjCSetter(ObjCImplementationDecl *IMP, const ObjCPropertyImplDecl *PID)
GenerateObjCSetter - Synthesize an Objective-C property setter function for the given property...
Definition: CGObjC.cpp:1343
Represents a call to a C++ constructor.
Definition: ExprCXX.h:1240
const ObjCObjectPointerType * getAsObjCInterfacePointerType() const
Definition: Type.cpp:1598
bool isZero() const
isZero - Test whether the quantity equals zero.
Definition: CharUnits.h:116
QualType withConst() const
Definition: Type.h:827
llvm::Constant * objc_loadWeakRetained
id objc_loadWeakRetained(id*);
The l-value was an access to a declared entity or something equivalently strong, like the address of ...
void EmitARCCopyWeak(Address dst, Address src)
void @objc_copyWeak(i8** dest, i8** src) Disregards the current value in dest.
Definition: CGObjC.cpp:2306
llvm::Value * EmitObjCMRRAutoreleasePoolPush()
Produce the code to do an MRR version objc_autoreleasepool_push.
Definition: CGObjC.cpp:2364
Floating point control options.
Definition: LangOptions.h:263
llvm::Constant * GenerateObjCAtomicSetterCopyHelperFunction(const ObjCPropertyImplDecl *PID)
GenerateObjCAtomicSetterCopyHelperFunction - Given a c++ object type with non-trivial copy assignment...
Definition: CGObjC.cpp:3211
llvm::Value * EmitARCRetainNonBlock(llvm::Value *value)
Retain the given object, with normal retain semantics.
Definition: CGObjC.cpp:1965
static llvm::Value * emitARCRetainLoadOfScalar(CodeGenFunction &CGF, LValue lvalue, QualType type)
Definition: CGObjC.cpp:2952
param_const_iterator param_end() const
Definition: DeclObjC.h:390
void createImplicitParams(ASTContext &Context, const ObjCInterfaceDecl *ID)
createImplicitParams - Used to lazily create the self and cmd implict parameters. ...
Definition: DeclObjC.cpp:1077
llvm::function_ref< llvm::Value *(CodeGenFunction &CGF, llvm::Value *value)> ValueTransform
Definition: CGObjC.cpp:2508
Address GetAddrOfLocalVar(const VarDecl *VD)
GetAddrOfLocalVar - Return the address of a local variable.
RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, ReturnValueSlot ReturnValue, const CallArgList &Args, llvm::Instruction **callOrInvoke, SourceLocation Loc)
EmitCall - Generate a call of the given function, expecting the given result type, and using the given argument list which specifies both the LLVM arguments and the types they were derived from.
Definition: CGCall.cpp:3781
Represents a variable declaration or definition.
Definition: Decl.h:812
Objects with "hidden" visibility are not seen by the dynamic linker.
Definition: Visibility.h:37
const internal::VariadicDynCastAllOfMatcher< Stmt, Expr > expr
Matches expressions.
const T * getAs() const
Member-template getAs<specific type>&#39;.
Definition: Type.h:6519
bool hasPointerRepresentation() const
Whether this type is represented natively as a pointer.
Definition: Type.h:6468
virtual StringRef getARCRetainAutoreleasedReturnValueMarker() const
Retrieve the address of a function to call immediately before calling objc_retainAutoreleasedReturnVa...
Definition: TargetInfo.h:156
SourceLocation getLocStart() const LLVM_READONLY
Definition: DeclObjC.h:321
uint64_t getProfileCount(const Stmt *S)
Get the profiler&#39;s count for the given statement.
llvm::Value * EmitObjCAutoreleasePoolPush()
Produce the code to do a objc_autoreleasepool_push.
Definition: CGObjC.cpp:2329
This class gathers all debug information during compilation and is responsible for emitting to llvm g...
Definition: CGDebugInfo.h:54
ObjCMethodDecl - Represents an instance or class method declaration.
Definition: DeclObjC.h:139
llvm::Value * EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty)
Definition: CGObjC.cpp:3396
llvm::Value * getPointer() const
Definition: Address.h:38
llvm::Constant * getAtomicSetterHelperFnMap(QualType Ty)
Defines the Objective-C statement AST node classes.
Represents an expression – generally a full-expression – that introduces cleanups to be run at the ...
Definition: ExprCXX.h:3004
Represents a parameter to a function.
Definition: Decl.h:1533
llvm::Value * EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E)
Definition: CGObjC.cpp:243
The collection of all-type qualifiers we support.
Definition: Type.h:154
virtual llvm::Constant * GetOptimizedPropertySetFunction(bool atomic, bool copy)=0
Return the runtime function for optimized setting properties.
void add(RValue rvalue, QualType type)
Definition: CGCall.h:285
A jump destination is an abstract label, branching to which may require a jump out through normal cle...
bool isARCPseudoStrong() const
Determine whether this variable is an ARC pseudo-__strong variable.
Definition: Decl.h:1354
llvm::Value * EmitObjCThrowOperand(const Expr *expr)
Definition: CGObjC.cpp:3017
bool isXValue() const
Definition: Expr.h:251
const Stmt * getSubStmt() const
Definition: StmtObjC.h:356
const AstTypeMatcher< RecordType > recordType
Matches record types (e.g.
llvm::Constant * objc_autorelease
id objc_autorelease(id);
llvm::Constant * objc_copyWeak
void objc_copyWeak(id *dest, id *src);
llvm::Constant * getAtomicGetterHelperFnMap(QualType Ty)
One of these records is kept for each identifier that is lexed.
void emitDestroy(Address addr, QualType type, Destroyer *destroyer, bool useEHCleanupForArray)
emitDestroy - Immediately perform the destruction of the given object.
Definition: CGDecl.cpp:1682
Address getAddress() const
Definition: CGValue.h:327
bool isStr(const char(&Str)[StrLen]) const
Return true if this is the identifier for the specified string.
Expr * getGetterCXXConstructor() const
Definition: DeclObjC.h:2868
static void emitStructGetterCall(CodeGenFunction &CGF, ObjCIvarDecl *ivar, bool isAtomic, bool hasStrong)
emitStructGetterCall - Call the runtime function to load a property into the return value slot...
Definition: CGObjC.cpp:583
Represents a class type in Objective C.
Definition: Type.h:5348
llvm::Constant * objc_loadWeak
id objc_loadWeak(id*);
CodeGenFunction - This class organizes the per-function state that is used while generating LLVM code...
llvm::Type * ConvertType(QualType T)
ConvertType - Convert type T into a llvm::Type.
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition: ASTContext.h:150
const ParmVarDecl *const * param_const_iterator
Definition: DeclObjC.h:381
std::pair< LValue, llvm::Value * > EmitARCStoreAutoreleasing(const BinaryOperator *e)
Definition: CGObjC.cpp:3155
llvm::Constant * objc_retainAutoreleasedReturnValue
id objc_retainAutoreleasedReturnValue(id);
llvm::Value * EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr)
Definition: CGObjC.cpp:1799
bool hasOptimizedSetter() const
Does this runtime supports optimized setter entrypoints?
Definition: ObjCRuntime.h:177
static CXXConstructExpr * Create(const ASTContext &C, QualType T, SourceLocation Loc, CXXConstructorDecl *Ctor, bool Elidable, ArrayRef< Expr *> Args, bool HadMultipleCandidates, bool ListInitialization, bool StdInitListInitialization, bool ZeroInitialization, ConstructionKind ConstructKind, SourceRange ParenOrBraceRange)
Definition: ExprCXX.cpp:790
SetterKind getSetterKind() const
getSetterKind - Return the method used for doing assignment in the property setter.
Definition: DeclObjC.h:911
llvm::Value * EmitARCRetainAutoreleaseReturnValue(llvm::Value *value)
Do a fused retain/autorelease of the given object.
Definition: CGObjC.cpp:2198
Represents a member of a struct/union/class.
Definition: Decl.h:2532
CharUnits getAlignment() const
Definition: CGValue.h:316
StringLiteral * getString()
Definition: ExprObjC.h:63
bool isReferenceType() const
Definition: Type.h:6118
ObjCMethodDecl * getSetterMethodDecl() const
Definition: DeclObjC.h:942
Denotes a cleanup that should run when a scope is exited using exceptional control flow (a throw stat...
Definition: EHScopeStack.h:81
Token - This structure provides full information about a lexed token.
Definition: Token.h:35
llvm::Value * EmitARCAutoreleaseReturnValue(llvm::Value *value)
Autorelease the given object.
Definition: CGObjC.cpp:2188
void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, ObjCMethodDecl *MD, bool ctor)
Definition: CGObjC.cpp:1424
Expr * getSubExpr()
Definition: Expr.h:2841
virtual llvm::Constant * GetPropertySetFunction()=0
Return the runtime function for setting properties.
CleanupKind getCleanupKind(QualType::DestructionKind kind)
ObjCArrayLiteral - used for objective-c array containers; as in: @["Hello", NSApp, [NSNumber numberWithInt:42]];.
Definition: ExprObjC.h:171
llvm::Value * EmitObjCBoxedExpr(const ObjCBoxedExpr *E)
EmitObjCBoxedExpr - This routine generates code to call the appropriate expression boxing method...
Definition: CGObjC.cpp:60
IdentifierTable & Idents
Definition: ASTContext.h:539
An r-value expression (a pr-value in the C++11 taxonomy) produces a temporary value.
Definition: Specifiers.h:110
Selector getSelector() const
Definition: ExprObjC.h:442
void EmitStoreOfScalar(llvm::Value *Value, Address Addr, bool Volatile, QualType Ty, AlignmentSource Source=AlignmentSource::Type, bool isInit=false, bool isNontemporal=false)
EmitStoreOfScalar - Store a scalar value to an address, taking care to appropriately convert from the...
ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc)
EmitLoadOfComplex - Load a complex number from the specified l-value.
const Expr *const * const_semantics_iterator
Definition: Expr.h:5120
bool isUnarySelector() const
virtual CodeGen::RValue GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF, ReturnValueSlot ReturnSlot, QualType ResultType, Selector Sel, const ObjCInterfaceDecl *Class, bool isCategoryImpl, llvm::Value *Self, bool IsClassMessage, const CallArgList &CallArgs, const ObjCMethodDecl *Method=nullptr)=0
Generate an Objective-C message send operation to the super class initiated in a method for Class and...
RValue EmitAnyExpr(const Expr *E, AggValueSlot aggSlot=AggValueSlot::ignored(), bool ignoreResult=false)
EmitAnyExpr - Emit code to compute the specified expression which can have any type.
Definition: CGExpr.cpp:194
bool isGLValue() const
Definition: Expr.h:252
ObjCMethodFamily getMethodFamily() const
Determines the family of this method.
Definition: DeclObjC.cpp:940
llvm::Value * EmitARCStoreStrongCall(Address addr, llvm::Value *value, bool resultIgnored)
Store into a strong object.
Definition: CGObjC.cpp:2118
ARCPreciseLifetime_t isARCPreciseLifetime() const
Definition: CGValue.h:285
llvm::Constant * objc_initWeak
id objc_initWeak(id*, id);
llvm::Value * EmitObjCStringLiteral(const ObjCStringLiteral *E)
Emits an instance of NSConstantString representing the object.
Definition: CGObjC.cpp:46
bool isBitField() const
Determines whether this field is a bitfield.
Definition: Decl.h:2610
Selector getNullarySelector(IdentifierInfo *ID)
ObjCContainerDecl - Represents a container for method declarations.
Definition: DeclObjC.h:986
Address CreateElementBitCast(Address Addr, llvm::Type *Ty, const llvm::Twine &Name="")
Cast the element type of the given address to a different type, preserving information like the align...
Definition: CGBuilder.h:157
CharUnits - This is an opaque type for sizes expressed in character units.
Definition: CharUnits.h:38
void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise)
Destroy a __strong variable.
Definition: CGObjC.cpp:2104
static llvm::Value * emitARCUnsafeClaimCallResult(CodeGenFunction &CGF, const Expr *e)
Given that the given expression is some sort of call (which does not return retained), perform an unsafeClaim following it.
Definition: CGObjC.cpp:2568
Qualifiers::GC getObjCGCAttrKind(QualType Ty) const
Return one of the GCNone, Weak or Strong Objective-C garbage collection attributes.
SourceLocation getLBracLoc() const
Definition: Stmt.h:699
PropertyAttributeKind getPropertyAttributes() const
Definition: DeclObjC.h:857
semantics_iterator semantics_end()
Definition: Expr.h:5127
llvm::Constant * objc_release
void objc_release(id);
A builtin binary operation expression such as "x + y" or "x <= y".
Definition: Expr.h:3069
bool isVolatileQualified() const
Determine whether this type is volatile-qualified.
Definition: Type.h:5952
llvm::Value * EmitARCUnsafeUnretainedScalarExpr(const Expr *expr)
EmitARCUnsafeUnretainedScalarExpr - Semantically equivalent to immediately releasing the resut of Emi...
Definition: CGObjC.cpp:3093
void setAtomicGetterHelperFnMap(QualType Ty, llvm::Constant *Fn)
Defines the Diagnostic-related interfaces.
llvm::Value * EmitARCLoadWeak(Address addr)
i8* @objc_loadWeak(i8** addr) Essentially objc_autorelease(objc_loadWeakRetained(addr)).
Definition: CGObjC.cpp:2235
ObjCStringLiteral, used for Objective-C string literals i.e.
Definition: ExprObjC.h:51
Scope - A scope is a transient data structure that is used while parsing the program.
Definition: Scope.h:40
llvm::BasicBlock * createBasicBlock(const Twine &name="", llvm::Function *parent=nullptr, llvm::BasicBlock *before=nullptr)
createBasicBlock - Create an LLVM basic block.
llvm::Value * EmitARCRetainScalarExpr(const Expr *expr)
EmitARCRetainScalarExpr - Semantically equivalent to EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a best-effort attempt to peephole expressions that naturally produce retained objects.
Definition: CGObjC.cpp:2966
void EmitIgnoredExpr(const Expr *E)
EmitIgnoredExpr - Emit an expression in a context which ignores the result.
Definition: CGExpr.cpp:182
static bool shouldEmitSeparateBlockRetain(const Expr *e)
Determine whether it might be important to emit a separate objc_retain_block on the result of the giv...
Definition: CGObjC.cpp:2594
Denotes a cleanup that should run when a scope is exited using normal control flow (falling off the e...
Definition: EHScopeStack.h:85
CastExpr - Base class for type casts, including both implicit casts (ImplicitCastExpr) and explicit c...
Definition: Expr.h:2788
void ForceCleanup(std::initializer_list< llvm::Value **> ValuesToReload={})
Force the emission of cleanups now, instead of waiting until this object is destroyed.
llvm::Constant * CreateRuntimeVariable(llvm::Type *Ty, StringRef Name)
Create a new runtime global variable with the specified type and name.
Expr * Key
The key for the dictionary element.
Definition: ExprObjC.h:241
ObjCMethodDecl * getArrayWithObjectsMethod() const
Definition: ExprObjC.h:222
virtual llvm::Constant * GetGetStructFunction()=0
GlobalDecl CurGD
CurGD - The GlobalDecl for the current function being compiled.
An ordinary object is located at an address in memory.
Definition: Specifiers.h:126
void incrementProfileCounter(const Stmt *S, llvm::Value *StepV=nullptr)
Increment the profiler&#39;s counter for the given statement by StepV.
uint64_t getCurrentProfileCount()
Get the profiler&#39;s current count.
Represents an ObjC class declaration.
Definition: DeclObjC.h:1191
SourceLocation getLocEnd() const LLVM_READONLY
Definition: DeclObjC.cpp:934
QualType getReturnType() const
Definition: DeclObjC.h:361
ObjCInterfaceDecl * getInterface() const
Gets the interface declaration for this object type, if the base type really is an interface...
Definition: Type.h:5583
static llvm::Constant * createARCRuntimeFunction(CodeGenModule &CGM, llvm::FunctionType *FTy, StringRef Name)
Definition: CGObjC.cpp:1820
static TryEmitResult tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e)
Definition: CGObjC.cpp:2948
bool isAtomic() const
isAtomic - Return true if the property is atomic.
Definition: DeclObjC.h:885
llvm::Value * EmitARCRetainAutoreleasedReturnValue(llvm::Value *value)
Retain the given object which is the result of a function call.
Definition: CGObjC.cpp:2048
static FunctionDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation NLoc, DeclarationName N, QualType T, TypeSourceInfo *TInfo, StorageClass SC, bool isInlineSpecified=false, bool hasWrittenPrototype=true, bool isConstexprSpecified=false)
Definition: Decl.h:1909
llvm::Value * EmitARCRetainAutoreleaseNonBlock(llvm::Value *value)
Do a fused retain/autorelease of the given object.
Definition: CGObjC.cpp:2227
This object can be modified without requiring retains or releases.
Definition: Type.h:175
ObjCMethodDecl * getDictWithObjectsMethod() const
Definition: ExprObjC.h:358
llvm::Constant * CreateRuntimeFunction(llvm::FunctionType *Ty, StringRef Name, llvm::AttributeList ExtraAttrs=llvm::AttributeList(), bool Local=false)
Create a new runtime function with the specified type and name.
llvm::Value * EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, SourceLocation Loc, AlignmentSource Source=AlignmentSource::Type, bool isNontemporal=false)
EmitLoadOfScalar - Load a scalar value from an address, taking care to appropriately convert from the...
ObjCPropertyImplDecl - Represents implementation declaration of a property in a class or category imp...
Definition: DeclObjC.h:2778
RValue EmitObjCMessageExpr(const ObjCMessageExpr *E, ReturnValueSlot Return=ReturnValueSlot())
Definition: CGObjC.cpp:355
bool hasAttr() const
Definition: DeclBase.h:536
CompoundStmt - This represents a group of statements like { stmt stmt }.
Definition: Stmt.h:609
AutoVarEmission EmitAutoVarAlloca(const VarDecl &var)
EmitAutoVarAlloca - Emit the alloca and debug information for a local variable.
Definition: CGDecl.cpp:1045
std::pair< llvm::Value *, llvm::Value * > ComplexPairTy
llvm::CallInst * EmitNounwindRuntimeCall(llvm::Value *callee, const Twine &name="")
const TargetCodeGenInfo & getTargetCodeGenInfo()
void EmitAnyExprToMem(const Expr *E, Address Location, Qualifiers Quals, bool IsInitializer)
EmitAnyExprToMem - Emits the code necessary to evaluate an arbitrary expression into the given memory...
Definition: CGExpr.cpp:223
llvm::Constant * objc_storeStrong
void objc_storeStrong(id*, id);
CastKind
CastKind - The kind of operation required for a conversion.
RValue - This trivial value class is used to represent the result of an expression that is evaluated...
Definition: CGValue.h:39
CleanupKind getARCCleanupKind()
Retrieves the default cleanup kind for an ARC cleanup.
llvm::Value * EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored)
i8* @objc_storeWeak(i8** addr, i8* value) Returns value.
Definition: CGObjC.cpp:2250
static TypeEvaluationKind getEvaluationKind(QualType T)
getEvaluationKind - Return the TypeEvaluationKind of QualType T.
CGObjCRuntime & getObjCRuntime()
Return a reference to the configured Objective-C runtime.
ObjCMethodDecl * getBoxingMethod() const
Definition: ExprObjC.h:138
static bool shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr *message)
Decide whether to extend the lifetime of the receiver of a returns-inner-pointer message.
Definition: CGObjC.cpp:283
Represent the declaration of a variable (in which case it is an lvalue) a function (in which case it ...
Definition: Decl.h:636
Expr - This represents one expression.
Definition: Expr.h:106
bool hasAtomicCopyHelper() const
Definition: ObjCRuntime.h:299
llvm::Constant * objc_autoreleasePoolPop
void objc_autoreleasePoolPop(void*);
void EmitARCMoveWeak(Address dst, Address src)
void @objc_moveWeak(i8** dest, i8** src) Disregards the current value in dest.
Definition: CGObjC.cpp:2297
virtual llvm::Constant * GetSetStructFunction()=0
void EmitAutoVarInit(const AutoVarEmission &emission)
Definition: CGDecl.cpp:1325
static Address invalid()
Definition: Address.h:35
bool hasLocalStorage() const
Returns true if a variable with function scope is a non-static local variable.
Definition: Decl.h:1033
Enters a new scope for capturing cleanups, all of which will be executed once the scope is exited...
void GenerateObjCMethod(const ObjCMethodDecl *OMD)
Generate an Objective-C method.
Definition: CGObjC.cpp:572
void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo, llvm::iterator_range< CallExpr::const_arg_iterator > ArgRange, AbstractCallee AC=AbstractCallee(), unsigned ParamsToSkip=0, EvaluationOrder Order=EvaluationOrder::Default)
EmitCallArgs - Emit call arguments for a function.
static void emitStructSetterCall(CodeGenFunction &CGF, ObjCMethodDecl *OMD, ObjCIvarDecl *ivar)
emitStructSetterCall - Call the runtime function to store the value from the first formal parameter i...
Definition: CGObjC.cpp:1056
static CGCallee forDirect(llvm::Constant *functionPtr, const CGCalleeInfo &abstractInfo=CGCalleeInfo())
Definition: CGCall.h:134
bool isObjCRetainableType() const
Definition: Type.cpp:3926
virtual void EmitThrowStmt(CodeGen::CodeGenFunction &CGF, const ObjCAtThrowStmt &S, bool ClearInsertionPoint=true)=0
llvm::Constant * objc_retain
id objc_retain(id);
const Expr * getCallee() const
Definition: Expr.h:2323
llvm::PointerType * getType() const
Return the type of the pointer value.
Definition: Address.h:44
ObjCLifetime getObjCLifetime() const
Definition: Type.h:343
CharUnits getTypeAlignInChars(QualType T) const
Return the ABI-specified alignment of a (complete) type T, in characters.
ObjCDictionaryLiteral - AST node to represent objective-c dictionary literals; as in:"name" : NSUserN...
Definition: ExprObjC.h:288
DeclContext * getDeclContext()
Definition: DeclBase.h:426
Represents Objective-C&#39;s @synchronized statement.
Definition: StmtObjC.h:262
ObjCSelectorExpr used for @selector in Objective-C.
Definition: ExprObjC.h:429
static CharUnits fromQuantity(QuantityType Quantity)
fromQuantity - Construct a CharUnits quantity from a raw integer type.
Definition: CharUnits.h:63
void generateObjCSetterBody(const ObjCImplementationDecl *classImpl, const ObjCPropertyImplDecl *propImpl, llvm::Constant *AtomicHelperFn)
Definition: CGObjC.cpp:1165
virtual void EmitTryStmt(CodeGen::CodeGenFunction &CGF, const ObjCAtTryStmt &S)=0
llvm::Value * EmitARCAutorelease(llvm::Value *value)
Autorelease the given object.
Definition: CGObjC.cpp:2179
llvm::LLVMContext & getLLVMContext()
SmallVector< llvm::OperandBundleDef, 1 > getBundlesForFunclet(llvm::Value *Callee)
Definition: CGCall.cpp:3681
const CGFunctionInfo & arrangeBuiltinFunctionCall(QualType resultType, const CallArgList &args)
Definition: CGCall.cpp:640
QualType getType() const
Definition: Expr.h:128
virtual llvm::Value * GetSelector(CodeGenFunction &CGF, Selector Sel)=0
Get a selector for the specified name and type values.
Expr * getElement(unsigned Index)
getElement - Return the Element at the specified index.
Definition: ExprObjC.h:213
clang::ObjCRuntime ObjCRuntime
Definition: LangOptions.h:165
QualType getConstantArrayType(QualType EltTy, const llvm::APInt &ArySize, ArrayType::ArraySizeModifier ASM, unsigned IndexTypeQuals) const
Return the unique reference to the type for a constant array of the specified element type...
virtual llvm::Constant * GetPropertyGetFunction()=0
Return the runtime function for getting properties.
ReturnStmt - This represents a return, optionally of an expression: return; return 4;...
Definition: Stmt.h:1433
LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T)
An expression that sends a message to the given Objective-C object or class.
Definition: ExprObjC.h:903
SourceLocation getEnd() const
UnaryOperator - This represents the unary-expression&#39;s (except sizeof and alignof), the postinc/postdec operators from postfix-expression, and various extensions.
Definition: Expr.h:1782
bool isInstanceMethod() const
Definition: DeclObjC.h:452
ReceiverKind getReceiverKind() const
Determine the kind of receiver that this message is being sent to.
Definition: ExprObjC.h:1187
const TargetInfo & getTarget() const
ValueDecl * getDecl()
Definition: Expr.h:1057
const Qualifiers & getQuals() const
Definition: CGValue.h:311
Selector getSelector() const
Definition: DeclObjC.h:359
const LangOptions & getLangOpts() const
ASTContext & getContext() const
ImplicitParamDecl * getSelfDecl() const
Definition: DeclObjC.h:444
bool hasEmptyCollections() const
Are the empty collection symbols available?
Definition: ObjCRuntime.h:330
QualType getType() const
Definition: DeclObjC.h:846
GlobalDecl - represents a global declaration.
Definition: GlobalDecl.h:35
static llvm::Value * emitARCStoreOperation(CodeGenFunction &CGF, Address addr, llvm::Value *value, llvm::Constant *&fn, StringRef fnName, bool ignored)
Perform an operation having the following signature: i8* (i8**, i8*)
Definition: CGObjC.cpp:1900
bool isConstQualified() const
Determine whether this type is const-qualified.
Definition: Type.h:5941
virtual void EmitSynchronizedStmt(CodeGen::CodeGenFunction &CGF, const ObjCAtSynchronizedStmt &S)=0
The l-value was considered opaque, so the alignment was determined from a type.
llvm::Constant * objc_retainBlock
id objc_retainBlock(id);
There is no lifetime qualification on this type.
Definition: Type.h:171
OpaqueValueExpr - An expression referring to an opaque object of a fixed type and value class...
Definition: Expr.h:875
static AggValueSlot forAddr(Address addr, Qualifiers quals, IsDestructed_t isDestructed, NeedsGCBarriers_t needsGC, IsAliased_t isAliased, Overlap_t mayOverlap, IsZeroed_t isZeroed=IsNotZeroed)
forAddr - Make a slot for an aggregate value.
Definition: CGValue.h:506
Address CreateBitCast(Address Addr, llvm::Type *Ty, const llvm::Twine &Name="")
Definition: CGBuilder.h:142
SelectorTable & Selectors
Definition: ASTContext.h:540
Assigning into this object requires the old value to be released and the new value to be retained...
Definition: Type.h:182
Kind
QualType getCanonicalType() const
Definition: Type.h:5921
llvm::Constant * objc_storeWeak
id objc_storeWeak(id*, id);
PseudoObjectExpr - An expression which accesses a pseudo-object l-value.
Definition: Expr.h:5053
IdentifierInfo * getIdentifierInfoForSlot(unsigned argIndex) const
Retrieve the identifier at a given position in the selector.
static llvm::Value * emitARCUnsafeUnretainedScalarExpr(CodeGenFunction &CGF, const Expr *e)
Definition: CGObjC.cpp:3084
Encodes a location in the source.
void EnsureInsertPoint()
EnsureInsertPoint - Ensure that an insertion point is defined so that emitted IR has a place to go...
llvm::Value * EmitObjCArrayLiteral(const ObjCArrayLiteral *E)
Definition: CGObjC.cpp:239
body_range body()
Definition: Stmt.h:640
IdentifierInfo & get(StringRef Name)
Return the identifier token info for the specified named identifier.
static void emitCPPObjectAtomicGetterCall(CodeGenFunction &CGF, llvm::Value *returnAddr, ObjCIvarDecl *ivar, llvm::Constant *AtomicHelperFn)
emitCPPObjectAtomicGetterCall - Call the runtime function to copy the ivar into the resturn slot...
Definition: CGObjC.cpp:849
void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise)
Release the given object.
Definition: CGObjC.cpp:2072
LValue EmitDeclRefLValue(const DeclRefExpr *E)
Definition: CGExpr.cpp:2398
std::pair< LValue, llvm::Value * > EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored)
Definition: CGObjC.cpp:3105
virtual ConstantAddress GenerateConstantString(const StringLiteral *)=0
Generate a constant string object.
LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK)
Same as EmitLValue but additionally we generate checking code to guard against undefined behavior...
Definition: CGExpr.cpp:1163
AggValueSlot::Overlap_t overlapForReturnValue()
Determine whether a return value slot may overlap some other object.
CastKind getCastKind() const
Definition: Expr.h:2835
llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee, ArrayRef< llvm::Value *> args, const Twine &name="")
Emits a call or invoke instruction to the given runtime function.
Definition: CGCall.cpp:3740
unsigned getNumElements() const
getNumElements - Return number of elements of objective-c dictionary literal.
Definition: ExprObjC.h:342
void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S)
Definition: CGObjC.cpp:1475
llvm::Value * EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value)
Claim a possibly-autoreleased return value at +0.
Definition: CGObjC.cpp:2063
DeclStmt - Adaptor class for mixing declarations with statements and expressions. ...
Definition: Stmt.h:499
Stmt * getBody() const override
Retrieve the body of this method, if it has one.
Definition: DeclObjC.cpp:806
llvm::Constant * objc_autoreleasePoolPush
void *objc_autoreleasePoolPush(void);
static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF, LValue lvalue, QualType type)
Definition: CGObjC.cpp:2449
const CGFunctionInfo & arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD)
Objective-C methods are C functions with some implicit parameters.
Definition: CGCall.cpp:455
void EmitStmt(const Stmt *S, ArrayRef< const Attr *> Attrs=None)
EmitStmt - Emit the code for the statement.
Definition: CGStmt.cpp:48
virtual llvm::Value * EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF)
ObjCEntrypoints & getObjCEntrypoints() const
CanQualType VoidTy
Definition: ASTContext.h:998
ObjCProtocolExpr used for protocol expression in Objective-C.
Definition: ExprObjC.h:474
virtual llvm::Value * GenerateProtocolRef(CodeGenFunction &CGF, const ObjCProtocolDecl *OPD)=0
Emit the code to return the named protocol as an object, as in a @protocol expression.
llvm::InlineAsm * retainAutoreleasedReturnValueMarker
A void(void) inline asm to use to mark that the return value of a call will be immediately retain...
An aligned address.
Definition: Address.h:25
void StartFunction(GlobalDecl GD, QualType RetTy, llvm::Function *Fn, const CGFunctionInfo &FnInfo, const FunctionArgList &Args, SourceLocation Loc=SourceLocation(), SourceLocation StartLoc=SourceLocation())
Emit code for the start of a function.
Represents one property declaration in an Objective-C interface.
Definition: DeclObjC.h:746
ImplicitCastExpr - Allows us to explicitly represent implicit type conversions, which have no direct ...
Definition: Expr.h:2906
DestructionKind isDestructedType() const
Returns a nonzero value if objects of this type require non-trivial work to clean up after...
Definition: Type.h:1173
All available information about a concrete callee.
Definition: CGCall.h:67
JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target)
The given basic block lies in the current EH scope, but may be a target of a potentially scope-crossi...
Expr * getSubExpr()
Definition: ExprObjC.h:135
const ObjCMethodDecl * getMethodDecl() const
Definition: ExprObjC.h:1302
static void destroyARCStrongWithStore(CodeGenFunction &CGF, Address addr, QualType type)
Like CodeGenFunction::destroyARCStrong, but do it with a call.
Definition: CGObjC.cpp:1381
Assigning into this object requires a lifetime extension.
Definition: Type.h:188
static AggValueSlot forLValue(const LValue &LV, IsDestructed_t isDestructed, NeedsGCBarriers_t needsGC, IsAliased_t isAliased, Overlap_t mayOverlap, IsZeroed_t isZeroed=IsNotZeroed)
Definition: CGValue.h:530
QualType getType() const
Definition: CGValue.h:264
ObjCBoxedExpr - used for generalized expression boxing.
Definition: ExprObjC.h:117
virtual llvm::Constant * GetCppAtomicObjectGetFunction()=0
API for atomic copying of qualified aggregates with non-trivial copy assignment (c++) in getter...
llvm::Value * EmitARCRetain(QualType type, llvm::Value *value)
Produce the code to do a retain.
Definition: CGObjC.cpp:1956
void emitARCMoveAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr)
Definition: CGObjC.cpp:2319
void enterFullExpression(const ExprWithCleanups *E)
bool hasSameUnqualifiedType(QualType T1, QualType T2) const
Determine whether the given types are equivalent after cvr-qualifiers have been removed.
Definition: ASTContext.h:2253
static Destroyer destroyARCStrongImprecise
void FinishFunction(SourceLocation EndLoc=SourceLocation())
FinishFunction - Complete IR generation of the current function.
Expr * Value
The value of the dictionary element.
Definition: ExprObjC.h:244
std::pair< CharUnits, CharUnits > getTypeInfoInChars(const Type *T) const
ConstantAddress GetAddrOfConstantCString(const std::string &Str, const char *GlobalName=nullptr)
Returns a pointer to a character array containing the literal and a terminating &#39;\0&#39; character...
Expr * getLHS() const
Definition: Expr.h:3113
void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr)
Produce the code to do a primitive release.
Definition: CGObjC.cpp:2389
llvm::Value * EmitScalarExpr(const Expr *E, bool IgnoreResultAssign=false)
EmitScalarExpr - Emit the computation of the specified expression of LLVM scalar type, returning the result.
Expr * getInstanceReceiver()
Returns the object expression (receiver) for an instance message, or null for a message that is not a...
Definition: ExprObjC.h:1206
FunctionArgList - Type for representing both the decl and type of parameters to a function...
Definition: CGCall.h:356
ObjCIvarDecl * getNextIvar()
Definition: DeclObjC.h:1997
llvm::Value * getScalarVal() const
getScalarVal() - Return the Value* of this scalar value.
Definition: CGValue.h:59
Expr * getResultExpr()
Return the result-bearing expression, or null if there is none.
Definition: Expr.h:5108
void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S)
Definition: CGObjC.cpp:1772
void ErrorUnsupported(const Stmt *S, const char *Type)
Print out an error that codegen doesn&#39;t support the specified stmt yet.
CGFunctionInfo - Class to encapsulate the information about a function definition.
This class organizes the cross-function state that is used while generating LLVM code.
llvm::Constant * objc_unsafeClaimAutoreleasedReturnValue
id objc_unsafeClaimAutoreleasedReturnValue(id);
const ObjCInterfaceDecl * getClassInterface() const
Definition: DeclObjC.h:2459
Dataflow Directional Tag Classes.
static llvm::Value * emitARCValueOperation(CodeGenFunction &CGF, llvm::Value *value, llvm::Constant *&fn, StringRef fnName, bool isTailCall=false)
Perform an operation having the signature i8* (i8*) where a null input causes a no-op and returns nul...
Definition: CGObjC.cpp:1845
void GenerateObjCGetter(ObjCImplementationDecl *IMP, const ObjCPropertyImplDecl *PID)
GenerateObjCGetter - Synthesize an Objective-C property getter function.
Definition: CGObjC.cpp:810
void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr)
Produce the code to do a primitive release.
Definition: CGObjC.cpp:2342
The basic abstraction for the target Objective-C runtime.
Definition: ObjCRuntime.h:28
llvm::Value * EmitARCLoadWeakRetained(Address addr)
i8* @objc_loadWeakRetained(i8** addr)
Definition: CGObjC.cpp:2242
Address CreateStructGEP(Address Addr, unsigned Index, CharUnits Offset, const llvm::Twine &Name="")
Definition: CGBuilder.h:172
QualType getSuperType() const
Retrieve the type referred to by &#39;super&#39;.
Definition: ExprObjC.h:1282
llvm::LoadInst * CreateAlignedLoad(llvm::Value *Addr, CharUnits Align, const llvm::Twine &Name="")
Definition: CGBuilder.h:91
void EmitARCIntrinsicUse(ArrayRef< llvm::Value *> values)
Given a number of pointers, inform the optimizer that they&#39;re being intrinsically used up until this ...
Definition: CGObjC.cpp:1806
llvm::Constant * getPointer() const
Definition: Address.h:84
llvm::LoadInst * CreateLoad(Address Addr, const llvm::Twine &Name="")
Definition: CGBuilder.h:70
llvm::Constant * objc_destroyWeak
void objc_destroyWeak(id*);
U cast(CodeGen::Address addr)
Definition: Address.h:109
llvm::Constant * clang_arc_use
void clang.arc.use(...);
const ObjCObjectType * getObjectType() const
Gets the type pointed to by this ObjC pointer.
Definition: Type.h:5645
QualType TypeOfSelfObject()
TypeOfSelfObject - Return type of object that this self represents.
Definition: CGObjC.cpp:1467
Checking the destination of a store. Must be suitably sized and aligned.
llvm::StoreInst * CreateStore(llvm::Value *Val, Address Addr, bool IsVolatile=false)
Definition: CGBuilder.h:108
semantics_iterator semantics_begin()
Definition: Expr.h:5121
llvm::Constant * GenerateObjCAtomicGetterCopyHelperFunction(const ObjCPropertyImplDecl *PID)
Definition: CGObjC.cpp:3292
llvm::Module & getModule() const
static bool hasTrivialSetExpr(const ObjCPropertyImplDecl *PID)
Definition: CGObjC.cpp:1134
void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S)
Definition: CGObjC.cpp:1768
LValue MakeAddrLValue(Address Addr, QualType T, AlignmentSource Source=AlignmentSource::Type)
static CharUnits getMaxAtomicAccessSize(CodeGenModule &CGM, llvm::Triple::ArchType arch)
Return the maximum size that permits atomic accesses for the given architecture.
Definition: CGObjC.cpp:623
void EmitAggExpr(const Expr *E, AggValueSlot AS)
EmitAggExpr - Emit the computation of the specified expression of aggregate type. ...
Definition: CGExprAgg.cpp:1772
QualType getClassReceiver() const
Returns the type of a class message send, or NULL if the message is not a class message.
Definition: ExprObjC.h:1225
Represents a pointer to an Objective C object.
Definition: Type.h:5604
void EmitAutoVarCleanups(const AutoVarEmission &emission)
Definition: CGDecl.cpp:1564
ObjCImplementationDecl - Represents a class definition - this is where method definitions are specifi...
Definition: DeclObjC.h:2571
A helper class that allows the use of isa/cast/dyncast to detect TagType objects of structs/unions/cl...
Definition: Type.h:4129
static llvm::Value * emitARCOperationAfterCall(CodeGenFunction &CGF, llvm::Value *value, ValueTransform doAfterCall, ValueTransform doFallback)
Insert code immediately after a call.
Definition: CGObjC.cpp:2511
virtual llvm::Constant * EnumerationMutationFunction()=0
EnumerationMutationFunction - Return the function that&#39;s called by the compiler when a mutation is de...
unsigned getNumElements() const
getNumElements - Return number of elements of objective-c array literal.
Definition: ExprObjC.h:210
Represents Objective-C&#39;s collection statement.
Definition: StmtObjC.h:24
CodeGenTypes & getTypes() const
Address CreateConstArrayGEP(Address Addr, uint64_t Index, CharUnits EltSize, const llvm::Twine &Name="")
Given addr = [n x T]* ...
Definition: CGBuilder.h:195
void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit)
EmitStoreOfComplex - Store a complex number into the specified l-value.
static void emitARCCopyOperation(CodeGenFunction &CGF, Address dst, Address src, llvm::Constant *&fn, StringRef fnName)
Perform an operation having the following signature: void (i8**, i8**)
Definition: CGObjC.cpp:1931
bool hasNonTrivialObjCLifetime() const
Definition: Type.h:1083
Selector getSelector(unsigned NumArgs, IdentifierInfo **IIV)
Can create any sort of selector.
llvm::Type * getElementType() const
Return the type of the values stored in this address.
Definition: Address.h:52
This class organizes the cross-module state that is used while lowering AST types to LLVM types...
Definition: CodeGenTypes.h:120
void getObjCEncodingForType(QualType T, std::string &S, const FieldDecl *Field=nullptr, QualType *NotEncodedT=nullptr) const
Emit the Objective-CC type encoding for the given type T into S.
bool isDelegateInitCall() const
isDelegateInitCall - Answers whether this message send has been tagged as a "delegate init call"...
Definition: ExprObjC.h:1359
LValue EmitLValueForIvar(QualType ObjectTy, llvm::Value *Base, const ObjCIvarDecl *Ivar, unsigned CVRQualifiers)
Definition: CGExpr.cpp:4519
llvm::Constant * objc_retainAutorelease
id objc_retainAutorelease(id);
param_const_iterator param_begin() const
Definition: DeclObjC.h:386
llvm::Value * EmitIvarOffset(const ObjCInterfaceDecl *Interface, const ObjCIvarDecl *Ivar)
Definition: CGExpr.cpp:4514
void SetInternalFunctionAttributes(GlobalDecl GD, llvm::Function *F, const CGFunctionInfo &FI)
Set the attributes on the LLVM function for the given decl and function info.
llvm::Value * EmitARCRetainAutorelease(QualType type, llvm::Value *value)
Do a fused retain/autorelease of the given object.
Definition: CGObjC.cpp:2210
Internal linkage, which indicates that the entity can be referred to from within the translation unit...
Definition: Linkage.h:32
void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false)
EmitBlock - Emit the given block.
Definition: CGStmt.cpp:445
void setAtomicSetterHelperFnMap(QualType Ty, llvm::Constant *Fn)
void EmitARCInitWeak(Address addr, llvm::Value *value)
i8* @objc_initWeak(i8** addr, i8* value) Returns value.
Definition: CGObjC.cpp:2262
ARCPreciseLifetime_t
Does an ARC strong l-value have precise lifetime?
Definition: CGValue.h:120
uint64_t getTypeSize(QualType T) const
Return the size of the specified (complete) type T, in bits.
Definition: ASTContext.h:2046
ObjCIvarRefExpr - A reference to an ObjC instance variable.
Definition: ExprObjC.h:513
llvm::Constant * objc_moveWeak
void objc_moveWeak(id *dest, id *src);
llvm::ConstantInt * getSize(CharUnits numChars)
Emit the given number of characters as a value of type size_t.
const Decl * CurFuncDecl
CurFuncDecl - Holds the Decl for the current outermost non-closure context.
CanQualType getCanonicalType(QualType T) const
Return the canonical (structural) type corresponding to the specified potentially non-canonical type ...
Definition: ASTContext.h:2213
virtual llvm::Value * GetClass(CodeGenFunction &CGF, const ObjCInterfaceDecl *OID)=0
GetClass - Return a reference to the class for the given interface decl.
Reading or writing from this object requires a barrier call.
Definition: Type.h:185
void EmitLexicalBlockStart(CGBuilderTy &Builder, SourceLocation Loc)
Emit metadata to indicate the beginning of a new lexical block and push the block onto the stack...
int64_t toBits(CharUnits CharSize) const
Convert a size in characters to a size in bits.
TranslationUnitDecl * getTranslationUnitDecl() const
Definition: ASTContext.h:991
llvm::iterator_range< arg_iterator > arguments()
Definition: ExprObjC.h:1407
A non-RAII class containing all the information about a bound opaque value.
QualType getUnqualifiedType() const
Retrieve the unqualified variant of the given type, removing as little sugar as possible.
Definition: Type.h:5962
llvm::Value * EmitObjCCollectionLiteral(const Expr *E, const ObjCMethodDecl *MethodWithObjects)
Definition: CGObjC.cpp:113
void EmitReturnStmt(const ReturnStmt &S)
EmitReturnStmt - Note that due to GCC extensions, this can have an operand if the function returns vo...
Definition: CGStmt.cpp:1021
llvm::Type * ConvertType(QualType T)
ObjCIvarDecl - Represents an ObjC instance variable.
Definition: DeclObjC.h:1964
static llvm::Constant * getNullForVariable(Address addr)
Given the address of a variable of pointer type, find the correct null to store into it...
Definition: CGObjC.cpp:40
LValue EmitLValue(const Expr *E)
EmitLValue - Emit code to compute a designator that specifies the location of the expression...
Definition: CGExpr.cpp:1199
Address ReturnValue
ReturnValue - The temporary alloca to hold the return value.
QualType getPointerType(QualType T) const
Return the uniqued reference to the type for a pointer to the specified type.
ImplicitParamDecl * getCmdDecl() const
Definition: DeclObjC.h:446
The receiver is a class.
Definition: ExprObjC.h:1051
Represents Objective-C&#39;s @try ... @catch ... @finally statement.
Definition: StmtObjC.h:154
SourceRange getSourceRange() const LLVM_READONLY
SourceLocation tokens are not useful in isolation - they are low level value objects created/interpre...
Definition: Stmt.cpp:266
bool AutoreleaseResult
In ARC, whether we should autorelease the return value.
RValue EmitLoadOfLValue(LValue V, SourceLocation Loc)
EmitLoadOfLValue - Given an expression that represents a value lvalue, this method emits the address ...
Definition: CGExpr.cpp:1711
llvm::Value * EmitARCRetainBlock(llvm::Value *value, bool mandatory)
Retain the given block, with _Block_copy semantics.
Definition: CGObjC.cpp:1977
void generateObjCGetterBody(const ObjCImplementationDecl *classImpl, const ObjCPropertyImplDecl *propImpl, const ObjCMethodDecl *GetterMothodDecl, llvm::Constant *AtomicHelperFn)
Definition: CGObjC.cpp:879
CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
Definition: Expr.h:2283
void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD)
StartObjCMethod - Begin emission of an ObjCMethod.
Definition: CGObjC.cpp:532
llvm::Constant * IsOSVersionAtLeastFn
bool hasARCUnsafeClaimAutoreleasedReturnValue() const
Is objc_unsafeClaimAutoreleasedReturnValue available?
Definition: ObjCRuntime.h:313
static Decl::Kind getKind(const Decl *D)
Definition: DeclBase.cpp:930
virtual llvm::Constant * GetCppAtomicObjectSetFunction()=0
API for atomic copying of qualified aggregates with non-trivial copy assignment (c++) in setter...
QualType getObjCFastEnumerationStateType()
Retrieve the record type that describes the state of an Objective-C fast enumeration loop (for...
void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr)
Definition: CGObjC.cpp:2442
bool hasNativeARC() const
Does this runtime natively provide the ARC entrypoints?
Definition: ObjCRuntime.h:162
void EmitAggregateCopy(LValue Dest, LValue Src, QualType EltTy, AggValueSlot::Overlap_t MayOverlap, bool isVolatile=false)
EmitAggregateCopy - Emit an aggregate copy.
Definition: CGExprAgg.cpp:1818
A reference to a declared variable, function, enum, etc.
Definition: Expr.h:972
static RValue get(llvm::Value *V)
Definition: CGValue.h:86
Expr * getRHS() const
Definition: Expr.h:3115
ObjCPropertyDecl * getPropertyDecl() const
Definition: DeclObjC.h:2837
static const Expr * findWeakLValue(const Expr *E)
Given an expression of ObjC pointer type, check whether it was immediately loaded from an ARC __weak ...
Definition: CGObjC.cpp:342
CharUnits getTypeSizeInChars(QualType T) const
Return the size of the specified (complete) type T, in characters.
static void emitAutoreleasedReturnValueMarker(CodeGenFunction &CGF)
Definition: CGObjC.cpp:2000
Address EmitCompoundStmtWithoutScope(const CompoundStmt &S, bool GetLast=false, AggValueSlot AVS=AggValueSlot::ignored())
Definition: CGStmt.cpp:384
llvm::Value * LoadObjCSelf()
LoadObjCSelf - Load the value of self.
Definition: CGObjC.cpp:1460
QualType getType() const
Definition: Decl.h:647
An l-value expression is a reference to an object with independent storage.
Definition: Specifiers.h:114
A trivial tuple used to represent a source range.
void EmitObjCAtTryStmt(const ObjCAtTryStmt &S)
Definition: CGObjC.cpp:1764
LValue - This represents an lvalue references.
Definition: CGValue.h:167
An abstract representation of regular/ObjC call/message targets.
ObjCMethodDecl * getGetterMethodDecl() const
Definition: DeclObjC.h:939
Information for lazily generating a cleanup.
Definition: EHScopeStack.h:147
ObjCIvarDecl * all_declared_ivar_begin()
all_declared_ivar_begin - return first ivar declared in this class, its extensions and its implementa...
Definition: DeclObjC.cpp:1546
llvm::Value * EmitObjCConsumeObject(QualType T, llvm::Value *Ptr)
Produce the code for a CK_ARCConsumeObject.
Definition: CGObjC.cpp:1791
CanQualType BoolTy
Definition: ASTContext.h:999
static llvm::Value * emitARCLoadOperation(CodeGenFunction &CGF, Address addr, llvm::Constant *&fn, StringRef fnName)
Perform an operation having the following signature: i8* (i8**)
Definition: CGObjC.cpp:1874
llvm::PointerIntPair< llvm::Value *, 1, bool > TryEmitResult
Definition: CGObjC.cpp:31
const LangOptions & getLangOpts() const
The receiver is a superclass.
Definition: ExprObjC.h:1057
llvm::Constant * objc_retainAutoreleaseReturnValue
id objc_retainAutoreleaseReturnValue(id);
void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S)
Definition: CGObjC.cpp:3164
SourceLocation getLocStart() const LLVM_READONLY
Definition: Stmt.cpp:278
SourceLocation getBegin() const
CallArgList - Type for representing both the value and type of arguments in a call.
Definition: CGCall.h:260
Represents Objective-C&#39;s @autoreleasepool Statement.
Definition: StmtObjC.h:345
llvm::Value * getPointer() const
Definition: CGValue.h:323
SourceLocation getBodyRBrace() const
getBodyRBrace - Gets the right brace of the body, if a body exists.
Definition: DeclBase.cpp:882
SourceLocation getLocation() const
Definition: DeclBase.h:417
void emitARCCopyAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr)
Definition: CGObjC.cpp:2312
void EmitNullInitialization(Address DestPtr, QualType Ty)
EmitNullInitialization - Generate code to set a value of the given type to null, If the type contains...
llvm::Value * EmitBuiltinAvailable(ArrayRef< llvm::Value *> Args)
Definition: CGObjC.cpp:3421
ArrayRef< ParmVarDecl * > parameters() const
Definition: DeclObjC.h:405
Expr * IgnoreParens() LLVM_READONLY
IgnoreParens - Ignore parentheses.
Definition: Expr.cpp:2486
static void emitCPPObjectAtomicSetterCall(CodeGenFunction &CGF, ObjCMethodDecl *OMD, ObjCIvarDecl *ivar, llvm::Constant *AtomicHelperFn)
emitCPPObjectAtomicSetterCall - Call the runtime function to store the value from the first formal pa...
Definition: CGObjC.cpp:1099
static OMPLinearClause * Create(const ASTContext &C, SourceLocation StartLoc, SourceLocation LParenLoc, OpenMPLinearClauseKind Modifier, SourceLocation ModifierLoc, SourceLocation ColonLoc, SourceLocation EndLoc, ArrayRef< Expr *> VL, ArrayRef< Expr *> PL, ArrayRef< Expr *> IL, Expr *Step, Expr *CalcStep, Stmt *PreInit, Expr *PostUpdate)
Creates clause with a list of variables VL and a linear step Step.
llvm::Value * EmitObjCSelectorExpr(const ObjCSelectorExpr *E)
Emit a selector.
Definition: CGObjC.cpp:249
CanQualType getSizeType() const
Return the unique type for "size_t" (C99 7.17), defined in <stddef.h>.
void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty)
Qualifiers::ObjCLifetime getObjCLifetime() const
Returns lifetime attribute of this type.
Definition: Type.h:1079
static void emitCXXDestructMethod(CodeGenFunction &CGF, ObjCImplementationDecl *impl)
Definition: CGObjC.cpp:1388
llvm::Value * EmitObjCProtocolExpr(const ObjCProtocolExpr *E)
Definition: CGObjC.cpp:257
llvm::FunctionType * GetFunctionType(const CGFunctionInfo &Info)
GetFunctionType - Get the LLVM function type for.
Definition: CGCall.cpp:1544
QualType getPointeeType() const
Gets the type pointed to by this ObjC pointer.
Definition: Type.h:5620
const llvm::Triple & getTriple() const