clang  9.0.0svn
CGObjC.cpp
Go to the documentation of this file.
1 //===---- CGObjC.cpp - Emit LLVM Code for Objective-C ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Objective-C code as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGDebugInfo.h"
14 #include "CGObjCRuntime.h"
15 #include "CodeGenFunction.h"
16 #include "CodeGenModule.h"
17 #include "ConstantEmitter.h"
18 #include "TargetInfo.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/StmtObjC.h"
22 #include "clang/Basic/Diagnostic.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/InlineAsm.h"
27 using namespace clang;
28 using namespace CodeGen;
29 
30 typedef llvm::PointerIntPair<llvm::Value*,1,bool> TryEmitResult;
31 static TryEmitResult
34  QualType ET,
35  RValue Result);
36 
37 /// Given the address of a variable of pointer type, find the correct
38 /// null to store into it.
39 static llvm::Constant *getNullForVariable(Address addr) {
40  llvm::Type *type = addr.getElementType();
41  return llvm::ConstantPointerNull::get(cast<llvm::PointerType>(type));
42 }
43 
44 /// Emits an instance of NSConstantString representing the object.
46 {
47  llvm::Constant *C =
49  // FIXME: This bitcast should just be made an invariant on the Runtime.
50  return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType()));
51 }
52 
53 /// EmitObjCBoxedExpr - This routine generates code to call
54 /// the appropriate expression boxing method. This will either be
55 /// one of +[NSNumber numberWith<Type>:], or +[NSString stringWithUTF8String:],
56 /// or [NSValue valueWithBytes:objCType:].
57 ///
60  // Generate the correct selector for this literal's concrete type.
61  // Get the method.
62  const ObjCMethodDecl *BoxingMethod = E->getBoxingMethod();
63  const Expr *SubExpr = E->getSubExpr();
64 
66  ConstantEmitter ConstEmitter(CGM);
67  return ConstEmitter.tryEmitAbstract(E, E->getType());
68  }
69 
70  assert(BoxingMethod->isClassMethod() && "BoxingMethod must be a class method");
71  Selector Sel = BoxingMethod->getSelector();
72 
73  // Generate a reference to the class pointer, which will be the receiver.
74  // Assumes that the method was introduced in the class that should be
75  // messaged (avoids pulling it out of the result type).
76  CGObjCRuntime &Runtime = CGM.getObjCRuntime();
77  const ObjCInterfaceDecl *ClassDecl = BoxingMethod->getClassInterface();
78  llvm::Value *Receiver = Runtime.GetClass(*this, ClassDecl);
79 
80  CallArgList Args;
81  const ParmVarDecl *ArgDecl = *BoxingMethod->param_begin();
82  QualType ArgQT = ArgDecl->getType().getUnqualifiedType();
83 
84  // ObjCBoxedExpr supports boxing of structs and unions
85  // via [NSValue valueWithBytes:objCType:]
86  const QualType ValueType(SubExpr->getType().getCanonicalType());
87  if (ValueType->isObjCBoxableRecordType()) {
88  // Emit CodeGen for first parameter
89  // and cast value to correct type
90  Address Temporary = CreateMemTemp(SubExpr->getType());
91  EmitAnyExprToMem(SubExpr, Temporary, Qualifiers(), /*isInit*/ true);
92  Address BitCast = Builder.CreateBitCast(Temporary, ConvertType(ArgQT));
93  Args.add(RValue::get(BitCast.getPointer()), ArgQT);
94 
95  // Create char array to store type encoding
96  std::string Str;
97  getContext().getObjCEncodingForType(ValueType, Str);
98  llvm::Constant *GV = CGM.GetAddrOfConstantCString(Str).getPointer();
99 
100  // Cast type encoding to correct type
101  const ParmVarDecl *EncodingDecl = BoxingMethod->parameters()[1];
102  QualType EncodingQT = EncodingDecl->getType().getUnqualifiedType();
103  llvm::Value *Cast = Builder.CreateBitCast(GV, ConvertType(EncodingQT));
104 
105  Args.add(RValue::get(Cast), EncodingQT);
106  } else {
107  Args.add(EmitAnyExpr(SubExpr), ArgQT);
108  }
109 
110  RValue result = Runtime.GenerateMessageSend(
111  *this, ReturnValueSlot(), BoxingMethod->getReturnType(), Sel, Receiver,
112  Args, ClassDecl, BoxingMethod);
113  return Builder.CreateBitCast(result.getScalarVal(),
114  ConvertType(E->getType()));
115 }
116 
118  const ObjCMethodDecl *MethodWithObjects) {
119  ASTContext &Context = CGM.getContext();
120  const ObjCDictionaryLiteral *DLE = nullptr;
121  const ObjCArrayLiteral *ALE = dyn_cast<ObjCArrayLiteral>(E);
122  if (!ALE)
123  DLE = cast<ObjCDictionaryLiteral>(E);
124 
125  // Optimize empty collections by referencing constants, when available.
126  uint64_t NumElements =
127  ALE ? ALE->getNumElements() : DLE->getNumElements();
128  if (NumElements == 0 && CGM.getLangOpts().ObjCRuntime.hasEmptyCollections()) {
129  StringRef ConstantName = ALE ? "__NSArray0__" : "__NSDictionary0__";
131  llvm::Constant *Constant =
132  CGM.CreateRuntimeVariable(ConvertType(IdTy), ConstantName);
133  LValue LV = MakeNaturalAlignAddrLValue(Constant, IdTy);
134  llvm::Value *Ptr = EmitLoadOfScalar(LV, E->getBeginLoc());
135  cast<llvm::LoadInst>(Ptr)->setMetadata(
136  CGM.getModule().getMDKindID("invariant.load"),
137  llvm::MDNode::get(getLLVMContext(), None));
138  return Builder.CreateBitCast(Ptr, ConvertType(E->getType()));
139  }
140 
141  // Compute the type of the array we're initializing.
142  llvm::APInt APNumElements(Context.getTypeSize(Context.getSizeType()),
143  NumElements);
144  QualType ElementType = Context.getObjCIdType().withConst();
145  QualType ElementArrayType
146  = Context.getConstantArrayType(ElementType, APNumElements,
147  ArrayType::Normal, /*IndexTypeQuals=*/0);
148 
149  // Allocate the temporary array(s).
150  Address Objects = CreateMemTemp(ElementArrayType, "objects");
151  Address Keys = Address::invalid();
152  if (DLE)
153  Keys = CreateMemTemp(ElementArrayType, "keys");
154 
155  // In ARC, we may need to do extra work to keep all the keys and
156  // values alive until after the call.
157  SmallVector<llvm::Value *, 16> NeededObjects;
158  bool TrackNeededObjects =
159  (getLangOpts().ObjCAutoRefCount &&
160  CGM.getCodeGenOpts().OptimizationLevel != 0);
161 
162  // Perform the actual initialialization of the array(s).
163  for (uint64_t i = 0; i < NumElements; i++) {
164  if (ALE) {
165  // Emit the element and store it to the appropriate array slot.
166  const Expr *Rhs = ALE->getElement(i);
168  ElementType, AlignmentSource::Decl);
169 
170  llvm::Value *value = EmitScalarExpr(Rhs);
171  EmitStoreThroughLValue(RValue::get(value), LV, true);
172  if (TrackNeededObjects) {
173  NeededObjects.push_back(value);
174  }
175  } else {
176  // Emit the key and store it to the appropriate array slot.
177  const Expr *Key = DLE->getKeyValueElement(i).Key;
179  ElementType, AlignmentSource::Decl);
180  llvm::Value *keyValue = EmitScalarExpr(Key);
181  EmitStoreThroughLValue(RValue::get(keyValue), KeyLV, /*isInit=*/true);
182 
183  // Emit the value and store it to the appropriate array slot.
184  const Expr *Value = DLE->getKeyValueElement(i).Value;
185  LValue ValueLV = MakeAddrLValue(Builder.CreateConstArrayGEP(Objects, i),
186  ElementType, AlignmentSource::Decl);
187  llvm::Value *valueValue = EmitScalarExpr(Value);
188  EmitStoreThroughLValue(RValue::get(valueValue), ValueLV, /*isInit=*/true);
189  if (TrackNeededObjects) {
190  NeededObjects.push_back(keyValue);
191  NeededObjects.push_back(valueValue);
192  }
193  }
194  }
195 
196  // Generate the argument list.
197  CallArgList Args;
198  ObjCMethodDecl::param_const_iterator PI = MethodWithObjects->param_begin();
199  const ParmVarDecl *argDecl = *PI++;
200  QualType ArgQT = argDecl->getType().getUnqualifiedType();
201  Args.add(RValue::get(Objects.getPointer()), ArgQT);
202  if (DLE) {
203  argDecl = *PI++;
204  ArgQT = argDecl->getType().getUnqualifiedType();
205  Args.add(RValue::get(Keys.getPointer()), ArgQT);
206  }
207  argDecl = *PI;
208  ArgQT = argDecl->getType().getUnqualifiedType();
209  llvm::Value *Count =
210  llvm::ConstantInt::get(CGM.getTypes().ConvertType(ArgQT), NumElements);
211  Args.add(RValue::get(Count), ArgQT);
212 
213  // Generate a reference to the class pointer, which will be the receiver.
214  Selector Sel = MethodWithObjects->getSelector();
215  QualType ResultType = E->getType();
216  const ObjCObjectPointerType *InterfacePointerType
217  = ResultType->getAsObjCInterfacePointerType();
218  ObjCInterfaceDecl *Class
219  = InterfacePointerType->getObjectType()->getInterface();
220  CGObjCRuntime &Runtime = CGM.getObjCRuntime();
221  llvm::Value *Receiver = Runtime.GetClass(*this, Class);
222 
223  // Generate the message send.
224  RValue result = Runtime.GenerateMessageSend(
225  *this, ReturnValueSlot(), MethodWithObjects->getReturnType(), Sel,
226  Receiver, Args, Class, MethodWithObjects);
227 
228  // The above message send needs these objects, but in ARC they are
229  // passed in a buffer that is essentially __unsafe_unretained.
230  // Therefore we must prevent the optimizer from releasing them until
231  // after the call.
232  if (TrackNeededObjects) {
233  EmitARCIntrinsicUse(NeededObjects);
234  }
235 
236  return Builder.CreateBitCast(result.getScalarVal(),
237  ConvertType(E->getType()));
238 }
239 
242 }
243 
245  const ObjCDictionaryLiteral *E) {
247 }
248 
249 /// Emit a selector.
251  // Untyped selector.
252  // Note that this implementation allows for non-constant strings to be passed
253  // as arguments to @selector(). Currently, the only thing preventing this
254  // behaviour is the type checking in the front end.
255  return CGM.getObjCRuntime().GetSelector(*this, E->getSelector());
256 }
257 
259  // FIXME: This should pass the Decl not the name.
260  return CGM.getObjCRuntime().GenerateProtocolRef(*this, E->getProtocol());
261 }
262 
263 /// Adjust the type of an Objective-C object that doesn't match up due
264 /// to type erasure at various points, e.g., related result types or the use
265 /// of parameterized classes.
267  RValue Result) {
268  if (!ExpT->isObjCRetainableType())
269  return Result;
270 
271  // If the converted types are the same, we're done.
272  llvm::Type *ExpLLVMTy = CGF.ConvertType(ExpT);
273  if (ExpLLVMTy == Result.getScalarVal()->getType())
274  return Result;
275 
276  // We have applied a substitution. Cast the rvalue appropriately.
277  return RValue::get(CGF.Builder.CreateBitCast(Result.getScalarVal(),
278  ExpLLVMTy));
279 }
280 
281 /// Decide whether to extend the lifetime of the receiver of a
282 /// returns-inner-pointer message.
283 static bool
285  switch (message->getReceiverKind()) {
286 
287  // For a normal instance message, we should extend unless the
288  // receiver is loaded from a variable with precise lifetime.
290  const Expr *receiver = message->getInstanceReceiver();
291 
292  // Look through OVEs.
293  if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) {
294  if (opaque->getSourceExpr())
295  receiver = opaque->getSourceExpr()->IgnoreParens();
296  }
297 
298  const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(receiver);
299  if (!ice || ice->getCastKind() != CK_LValueToRValue) return true;
300  receiver = ice->getSubExpr()->IgnoreParens();
301 
302  // Look through OVEs.
303  if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) {
304  if (opaque->getSourceExpr())
305  receiver = opaque->getSourceExpr()->IgnoreParens();
306  }
307 
308  // Only __strong variables.
309  if (receiver->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
310  return true;
311 
312  // All ivars and fields have precise lifetime.
313  if (isa<MemberExpr>(receiver) || isa<ObjCIvarRefExpr>(receiver))
314  return false;
315 
316  // Otherwise, check for variables.
317  const DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(ice->getSubExpr());
318  if (!declRef) return true;
319  const VarDecl *var = dyn_cast<VarDecl>(declRef->getDecl());
320  if (!var) return true;
321 
322  // All variables have precise lifetime except local variables with
323  // automatic storage duration that aren't specially marked.
324  return (var->hasLocalStorage() &&
325  !var->hasAttr<ObjCPreciseLifetimeAttr>());
326  }
327 
330  // It's never necessary for class objects.
331  return false;
332 
334  // We generally assume that 'self' lives throughout a method call.
335  return false;
336  }
337 
338  llvm_unreachable("invalid receiver kind");
339 }
340 
341 /// Given an expression of ObjC pointer type, check whether it was
342 /// immediately loaded from an ARC __weak l-value.
343 static const Expr *findWeakLValue(const Expr *E) {
344  assert(E->getType()->isObjCRetainableType());
345  E = E->IgnoreParens();
346  if (auto CE = dyn_cast<CastExpr>(E)) {
347  if (CE->getCastKind() == CK_LValueToRValue) {
348  if (CE->getSubExpr()->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
349  return CE->getSubExpr();
350  }
351  }
352 
353  return nullptr;
354 }
355 
356 /// The ObjC runtime may provide entrypoints that are likely to be faster
357 /// than an ordinary message send of the appropriate selector.
358 ///
359 /// The entrypoints are guaranteed to be equivalent to just sending the
360 /// corresponding message. If the entrypoint is implemented naively as just a
361 /// message send, using it is a trade-off: it sacrifices a few cycles of
362 /// overhead to save a small amount of code. However, it's possible for
363 /// runtimes to detect and special-case classes that use "standard"
364 /// behavior; if that's dynamically a large proportion of all objects, using
365 /// the entrypoint will also be faster than using a message send.
366 ///
367 /// If the runtime does support a required entrypoint, then this method will
368 /// generate a call and return the resulting value. Otherwise it will return
369 /// None and the caller can generate a msgSend instead.
372  llvm::Value *Receiver,
373  const CallArgList& Args, Selector Sel,
374  const ObjCMethodDecl *method,
375  bool isClassMessage) {
376  auto &CGM = CGF.CGM;
377  if (!CGM.getCodeGenOpts().ObjCConvertMessagesToRuntimeCalls)
378  return None;
379 
380  auto &Runtime = CGM.getLangOpts().ObjCRuntime;
381  switch (Sel.getMethodFamily()) {
382  case OMF_alloc:
383  if (isClassMessage &&
384  Runtime.shouldUseRuntimeFunctionsForAlloc() &&
385  ResultType->isObjCObjectPointerType()) {
386  // [Foo alloc] -> objc_alloc(Foo)
387  if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "alloc")
388  return CGF.EmitObjCAlloc(Receiver, CGF.ConvertType(ResultType));
389  // [Foo allocWithZone:nil] -> objc_allocWithZone(Foo)
390  if (Sel.isKeywordSelector() && Sel.getNumArgs() == 1 &&
391  Args.size() == 1 && Args.front().getType()->isPointerType() &&
392  Sel.getNameForSlot(0) == "allocWithZone") {
393  const llvm::Value* arg = Args.front().getKnownRValue().getScalarVal();
394  if (isa<llvm::ConstantPointerNull>(arg))
395  return CGF.EmitObjCAllocWithZone(Receiver,
396  CGF.ConvertType(ResultType));
397  return None;
398  }
399  }
400  break;
401 
402  case OMF_autorelease:
403  if (ResultType->isObjCObjectPointerType() &&
404  CGM.getLangOpts().getGC() == LangOptions::NonGC &&
405  Runtime.shouldUseARCFunctionsForRetainRelease())
406  return CGF.EmitObjCAutorelease(Receiver, CGF.ConvertType(ResultType));
407  break;
408 
409  case OMF_retain:
410  if (ResultType->isObjCObjectPointerType() &&
411  CGM.getLangOpts().getGC() == LangOptions::NonGC &&
412  Runtime.shouldUseARCFunctionsForRetainRelease())
413  return CGF.EmitObjCRetainNonBlock(Receiver, CGF.ConvertType(ResultType));
414  break;
415 
416  case OMF_release:
417  if (ResultType->isVoidType() &&
418  CGM.getLangOpts().getGC() == LangOptions::NonGC &&
419  Runtime.shouldUseARCFunctionsForRetainRelease()) {
420  CGF.EmitObjCRelease(Receiver, ARCPreciseLifetime);
421  return nullptr;
422  }
423  break;
424 
425  default:
426  break;
427  }
428  return None;
429 }
430 
431 /// Instead of '[[MyClass alloc] init]', try to generate
432 /// 'objc_alloc_init(MyClass)'. This provides a code size improvement on the
433 /// caller side, as well as the optimized objc_alloc.
436  auto &Runtime = CGF.getLangOpts().ObjCRuntime;
437  if (!Runtime.shouldUseRuntimeFunctionForCombinedAllocInit())
438  return None;
439 
440  // Match the exact pattern '[[MyClass alloc] init]'.
441  Selector Sel = OME->getSelector();
443  !OME->getType()->isObjCObjectPointerType() || !Sel.isUnarySelector() ||
444  Sel.getNameForSlot(0) != "init")
445  return None;
446 
447  // Okay, this is '[receiver init]', check if 'receiver' is '[cls alloc]'.
448  auto *SubOME =
449  dyn_cast<ObjCMessageExpr>(OME->getInstanceReceiver()->IgnoreParens());
450  if (!SubOME)
451  return None;
452  Selector SubSel = SubOME->getSelector();
453  if (SubOME->getReceiverKind() != ObjCMessageExpr::Class ||
454  !SubOME->getType()->isObjCObjectPointerType() ||
455  !SubSel.isUnarySelector() || SubSel.getNameForSlot(0) != "alloc")
456  return None;
457 
458  QualType ReceiverType = SubOME->getClassReceiver();
459  const ObjCObjectType *ObjTy = ReceiverType->getAs<ObjCObjectType>();
460  const ObjCInterfaceDecl *ID = ObjTy->getInterface();
461  assert(ID && "null interface should be impossible here");
462  llvm::Value *Receiver = CGF.CGM.getObjCRuntime().GetClass(CGF, ID);
463  return CGF.EmitObjCAllocInit(Receiver, CGF.ConvertType(OME->getType()));
464 }
465 
467  ReturnValueSlot Return) {
468  // Only the lookup mechanism and first two arguments of the method
469  // implementation vary between runtimes. We can get the receiver and
470  // arguments in generic code.
471 
472  bool isDelegateInit = E->isDelegateInitCall();
473 
474  const ObjCMethodDecl *method = E->getMethodDecl();
475 
476  // If the method is -retain, and the receiver's being loaded from
477  // a __weak variable, peephole the entire operation to objc_loadWeakRetained.
478  if (method && E->getReceiverKind() == ObjCMessageExpr::Instance &&
479  method->getMethodFamily() == OMF_retain) {
480  if (auto lvalueExpr = findWeakLValue(E->getInstanceReceiver())) {
481  LValue lvalue = EmitLValue(lvalueExpr);
482  llvm::Value *result = EmitARCLoadWeakRetained(lvalue.getAddress());
483  return AdjustObjCObjectType(*this, E->getType(), RValue::get(result));
484  }
485  }
486 
488  return AdjustObjCObjectType(*this, E->getType(), RValue::get(*Val));
489 
490  // We don't retain the receiver in delegate init calls, and this is
491  // safe because the receiver value is always loaded from 'self',
492  // which we zero out. We don't want to Block_copy block receivers,
493  // though.
494  bool retainSelf =
495  (!isDelegateInit &&
496  CGM.getLangOpts().ObjCAutoRefCount &&
497  method &&
498  method->hasAttr<NSConsumesSelfAttr>());
499 
500  CGObjCRuntime &Runtime = CGM.getObjCRuntime();
501  bool isSuperMessage = false;
502  bool isClassMessage = false;
503  ObjCInterfaceDecl *OID = nullptr;
504  // Find the receiver
505  QualType ReceiverType;
506  llvm::Value *Receiver = nullptr;
507  switch (E->getReceiverKind()) {
509  ReceiverType = E->getInstanceReceiver()->getType();
510  if (retainSelf) {
512  E->getInstanceReceiver());
513  Receiver = ter.getPointer();
514  if (ter.getInt()) retainSelf = false;
515  } else
516  Receiver = EmitScalarExpr(E->getInstanceReceiver());
517  break;
518 
519  case ObjCMessageExpr::Class: {
520  ReceiverType = E->getClassReceiver();
521  const ObjCObjectType *ObjTy = ReceiverType->getAs<ObjCObjectType>();
522  assert(ObjTy && "Invalid Objective-C class message send");
523  OID = ObjTy->getInterface();
524  assert(OID && "Invalid Objective-C class message send");
525  Receiver = Runtime.GetClass(*this, OID);
526  isClassMessage = true;
527  break;
528  }
529 
531  ReceiverType = E->getSuperType();
532  Receiver = LoadObjCSelf();
533  isSuperMessage = true;
534  break;
535 
537  ReceiverType = E->getSuperType();
538  Receiver = LoadObjCSelf();
539  isSuperMessage = true;
540  isClassMessage = true;
541  break;
542  }
543 
544  if (retainSelf)
545  Receiver = EmitARCRetainNonBlock(Receiver);
546 
547  // In ARC, we sometimes want to "extend the lifetime"
548  // (i.e. retain+autorelease) of receivers of returns-inner-pointer
549  // messages.
550  if (getLangOpts().ObjCAutoRefCount && method &&
551  method->hasAttr<ObjCReturnsInnerPointerAttr>() &&
553  Receiver = EmitARCRetainAutorelease(ReceiverType, Receiver);
554 
555  QualType ResultType = method ? method->getReturnType() : E->getType();
556 
557  CallArgList Args;
558  EmitCallArgs(Args, method, E->arguments(), /*AC*/AbstractCallee(method));
559 
560  // For delegate init calls in ARC, do an unsafe store of null into
561  // self. This represents the call taking direct ownership of that
562  // value. We have to do this after emitting the other call
563  // arguments because they might also reference self, but we don't
564  // have to worry about any of them modifying self because that would
565  // be an undefined read and write of an object in unordered
566  // expressions.
567  if (isDelegateInit) {
568  assert(getLangOpts().ObjCAutoRefCount &&
569  "delegate init calls should only be marked in ARC");
570 
571  // Do an unsafe store of null into self.
572  Address selfAddr =
573  GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl());
574  Builder.CreateStore(getNullForVariable(selfAddr), selfAddr);
575  }
576 
577  RValue result;
578  if (isSuperMessage) {
579  // super is only valid in an Objective-C method
580  const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
581  bool isCategoryImpl = isa<ObjCCategoryImplDecl>(OMD->getDeclContext());
582  result = Runtime.GenerateMessageSendSuper(*this, Return, ResultType,
583  E->getSelector(),
584  OMD->getClassInterface(),
585  isCategoryImpl,
586  Receiver,
587  isClassMessage,
588  Args,
589  method);
590  } else {
591  // Call runtime methods directly if we can.
592  if (Optional<llvm::Value *> SpecializedResult =
593  tryGenerateSpecializedMessageSend(*this, ResultType, Receiver, Args,
594  E->getSelector(), method,
595  isClassMessage)) {
596  result = RValue::get(SpecializedResult.getValue());
597  } else {
598  result = Runtime.GenerateMessageSend(*this, Return, ResultType,
599  E->getSelector(), Receiver, Args,
600  OID, method);
601  }
602  }
603 
604  // For delegate init calls in ARC, implicitly store the result of
605  // the call back into self. This takes ownership of the value.
606  if (isDelegateInit) {
607  Address selfAddr =
608  GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl());
609  llvm::Value *newSelf = result.getScalarVal();
610 
611  // The delegate return type isn't necessarily a matching type; in
612  // fact, it's quite likely to be 'id'.
613  llvm::Type *selfTy = selfAddr.getElementType();
614  newSelf = Builder.CreateBitCast(newSelf, selfTy);
615 
616  Builder.CreateStore(newSelf, selfAddr);
617  }
618 
619  return AdjustObjCObjectType(*this, E->getType(), result);
620 }
621 
622 namespace {
623 struct FinishARCDealloc final : EHScopeStack::Cleanup {
624  void Emit(CodeGenFunction &CGF, Flags flags) override {
625  const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CGF.CurCodeDecl);
626 
627  const ObjCImplDecl *impl = cast<ObjCImplDecl>(method->getDeclContext());
628  const ObjCInterfaceDecl *iface = impl->getClassInterface();
629  if (!iface->getSuperClass()) return;
630 
631  bool isCategory = isa<ObjCCategoryImplDecl>(impl);
632 
633  // Call [super dealloc] if we have a superclass.
634  llvm::Value *self = CGF.LoadObjCSelf();
635 
636  CallArgList args;
638  CGF.getContext().VoidTy,
639  method->getSelector(),
640  iface,
641  isCategory,
642  self,
643  /*is class msg*/ false,
644  args,
645  method);
646  }
647 };
648 }
649 
650 /// StartObjCMethod - Begin emission of an ObjCMethod. This generates
651 /// the LLVM function and sets the other context used by
652 /// CodeGenFunction.
654  const ObjCContainerDecl *CD) {
655  SourceLocation StartLoc = OMD->getBeginLoc();
656  FunctionArgList args;
657  // Check if we should generate debug info for this method.
658  if (OMD->hasAttr<NoDebugAttr>())
659  DebugInfo = nullptr; // disable debug info indefinitely for this function
660 
661  llvm::Function *Fn = CGM.getObjCRuntime().GenerateMethod(OMD, CD);
662 
664  CGM.SetInternalFunctionAttributes(OMD, Fn, FI);
665 
666  args.push_back(OMD->getSelfDecl());
667  args.push_back(OMD->getCmdDecl());
668 
669  args.append(OMD->param_begin(), OMD->param_end());
670 
671  CurGD = OMD;
672  CurEHLocation = OMD->getEndLoc();
673 
674  StartFunction(OMD, OMD->getReturnType(), Fn, FI, args,
675  OMD->getLocation(), StartLoc);
676 
677  // In ARC, certain methods get an extra cleanup.
678  if (CGM.getLangOpts().ObjCAutoRefCount &&
679  OMD->isInstanceMethod() &&
680  OMD->getSelector().isUnarySelector()) {
681  const IdentifierInfo *ident =
683  if (ident->isStr("dealloc"))
684  EHStack.pushCleanup<FinishARCDealloc>(getARCCleanupKind());
685  }
686 }
687 
689  LValue lvalue, QualType type);
690 
691 /// Generate an Objective-C method. An Objective-C method is a C function with
692 /// its pointer, name, and types registered in the class structure.
694  StartObjCMethod(OMD, OMD->getClassInterface());
695  PGO.assignRegionCounters(GlobalDecl(OMD), CurFn);
696  assert(isa<CompoundStmt>(OMD->getBody()));
698  EmitCompoundStmtWithoutScope(*cast<CompoundStmt>(OMD->getBody()));
700 }
701 
702 /// emitStructGetterCall - Call the runtime function to load a property
703 /// into the return value slot.
705  bool isAtomic, bool hasStrong) {
706  ASTContext &Context = CGF.getContext();
707 
708  Address src =
709  CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0)
710  .getAddress();
711 
712  // objc_copyStruct (ReturnValue, &structIvar,
713  // sizeof (Type of Ivar), isAtomic, false);
714  CallArgList args;
715 
716  Address dest = CGF.Builder.CreateBitCast(CGF.ReturnValue, CGF.VoidPtrTy);
717  args.add(RValue::get(dest.getPointer()), Context.VoidPtrTy);
718 
719  src = CGF.Builder.CreateBitCast(src, CGF.VoidPtrTy);
720  args.add(RValue::get(src.getPointer()), Context.VoidPtrTy);
721 
722  CharUnits size = CGF.getContext().getTypeSizeInChars(ivar->getType());
723  args.add(RValue::get(CGF.CGM.getSize(size)), Context.getSizeType());
724  args.add(RValue::get(CGF.Builder.getInt1(isAtomic)), Context.BoolTy);
725  args.add(RValue::get(CGF.Builder.getInt1(hasStrong)), Context.BoolTy);
726 
727  llvm::FunctionCallee fn = CGF.CGM.getObjCRuntime().GetGetStructFunction();
728  CGCallee callee = CGCallee::forDirect(fn);
729  CGF.EmitCall(CGF.getTypes().arrangeBuiltinFunctionCall(Context.VoidTy, args),
730  callee, ReturnValueSlot(), args);
731 }
732 
733 /// Determine whether the given architecture supports unaligned atomic
734 /// accesses. They don't have to be fast, just faster than a function
735 /// call and a mutex.
736 static bool hasUnalignedAtomics(llvm::Triple::ArchType arch) {
737  // FIXME: Allow unaligned atomic load/store on x86. (It is not
738  // currently supported by the backend.)
739  return 0;
740 }
741 
742 /// Return the maximum size that permits atomic accesses for the given
743 /// architecture.
745  llvm::Triple::ArchType arch) {
746  // ARM has 8-byte atomic accesses, but it's not clear whether we
747  // want to rely on them here.
748 
749  // In the default case, just assume that any size up to a pointer is
750  // fine given adequate alignment.
752 }
753 
754 namespace {
755  class PropertyImplStrategy {
756  public:
757  enum StrategyKind {
758  /// The 'native' strategy is to use the architecture's provided
759  /// reads and writes.
760  Native,
761 
762  /// Use objc_setProperty and objc_getProperty.
763  GetSetProperty,
764 
765  /// Use objc_setProperty for the setter, but use expression
766  /// evaluation for the getter.
767  SetPropertyAndExpressionGet,
768 
769  /// Use objc_copyStruct.
770  CopyStruct,
771 
772  /// The 'expression' strategy is to emit normal assignment or
773  /// lvalue-to-rvalue expressions.
774  Expression
775  };
776 
777  StrategyKind getKind() const { return StrategyKind(Kind); }
778 
779  bool hasStrongMember() const { return HasStrong; }
780  bool isAtomic() const { return IsAtomic; }
781  bool isCopy() const { return IsCopy; }
782 
783  CharUnits getIvarSize() const { return IvarSize; }
784  CharUnits getIvarAlignment() const { return IvarAlignment; }
785 
786  PropertyImplStrategy(CodeGenModule &CGM,
787  const ObjCPropertyImplDecl *propImpl);
788 
789  private:
790  unsigned Kind : 8;
791  unsigned IsAtomic : 1;
792  unsigned IsCopy : 1;
793  unsigned HasStrong : 1;
794 
795  CharUnits IvarSize;
796  CharUnits IvarAlignment;
797  };
798 }
799 
800 /// Pick an implementation strategy for the given property synthesis.
801 PropertyImplStrategy::PropertyImplStrategy(CodeGenModule &CGM,
802  const ObjCPropertyImplDecl *propImpl) {
803  const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
804  ObjCPropertyDecl::SetterKind setterKind = prop->getSetterKind();
805 
806  IsCopy = (setterKind == ObjCPropertyDecl::Copy);
807  IsAtomic = prop->isAtomic();
808  HasStrong = false; // doesn't matter here.
809 
810  // Evaluate the ivar's size and alignment.
811  ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
812  QualType ivarType = ivar->getType();
813  std::tie(IvarSize, IvarAlignment) =
814  CGM.getContext().getTypeInfoInChars(ivarType);
815 
816  // If we have a copy property, we always have to use getProperty/setProperty.
817  // TODO: we could actually use setProperty and an expression for non-atomics.
818  if (IsCopy) {
819  Kind = GetSetProperty;
820  return;
821  }
822 
823  // Handle retain.
824  if (setterKind == ObjCPropertyDecl::Retain) {
825  // In GC-only, there's nothing special that needs to be done.
826  if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
827  // fallthrough
828 
829  // In ARC, if the property is non-atomic, use expression emission,
830  // which translates to objc_storeStrong. This isn't required, but
831  // it's slightly nicer.
832  } else if (CGM.getLangOpts().ObjCAutoRefCount && !IsAtomic) {
833  // Using standard expression emission for the setter is only
834  // acceptable if the ivar is __strong, which won't be true if
835  // the property is annotated with __attribute__((NSObject)).
836  // TODO: falling all the way back to objc_setProperty here is
837  // just laziness, though; we could still use objc_storeStrong
838  // if we hacked it right.
839  if (ivarType.getObjCLifetime() == Qualifiers::OCL_Strong)
840  Kind = Expression;
841  else
842  Kind = SetPropertyAndExpressionGet;
843  return;
844 
845  // Otherwise, we need to at least use setProperty. However, if
846  // the property isn't atomic, we can use normal expression
847  // emission for the getter.
848  } else if (!IsAtomic) {
849  Kind = SetPropertyAndExpressionGet;
850  return;
851 
852  // Otherwise, we have to use both setProperty and getProperty.
853  } else {
854  Kind = GetSetProperty;
855  return;
856  }
857  }
858 
859  // If we're not atomic, just use expression accesses.
860  if (!IsAtomic) {
861  Kind = Expression;
862  return;
863  }
864 
865  // Properties on bitfield ivars need to be emitted using expression
866  // accesses even if they're nominally atomic.
867  if (ivar->isBitField()) {
868  Kind = Expression;
869  return;
870  }
871 
872  // GC-qualified or ARC-qualified ivars need to be emitted as
873  // expressions. This actually works out to being atomic anyway,
874  // except for ARC __strong, but that should trigger the above code.
875  if (ivarType.hasNonTrivialObjCLifetime() ||
876  (CGM.getLangOpts().getGC() &&
877  CGM.getContext().getObjCGCAttrKind(ivarType))) {
878  Kind = Expression;
879  return;
880  }
881 
882  // Compute whether the ivar has strong members.
883  if (CGM.getLangOpts().getGC())
884  if (const RecordType *recordType = ivarType->getAs<RecordType>())
885  HasStrong = recordType->getDecl()->hasObjectMember();
886 
887  // We can never access structs with object members with a native
888  // access, because we need to use write barriers. This is what
889  // objc_copyStruct is for.
890  if (HasStrong) {
891  Kind = CopyStruct;
892  return;
893  }
894 
895  // Otherwise, this is target-dependent and based on the size and
896  // alignment of the ivar.
897 
898  // If the size of the ivar is not a power of two, give up. We don't
899  // want to get into the business of doing compare-and-swaps.
900  if (!IvarSize.isPowerOfTwo()) {
901  Kind = CopyStruct;
902  return;
903  }
904 
905  llvm::Triple::ArchType arch =
906  CGM.getTarget().getTriple().getArch();
907 
908  // Most architectures require memory to fit within a single cache
909  // line, so the alignment has to be at least the size of the access.
910  // Otherwise we have to grab a lock.
911  if (IvarAlignment < IvarSize && !hasUnalignedAtomics(arch)) {
912  Kind = CopyStruct;
913  return;
914  }
915 
916  // If the ivar's size exceeds the architecture's maximum atomic
917  // access size, we have to use CopyStruct.
918  if (IvarSize > getMaxAtomicAccessSize(CGM, arch)) {
919  Kind = CopyStruct;
920  return;
921  }
922 
923  // Otherwise, we can use native loads and stores.
924  Kind = Native;
925 }
926 
927 /// Generate an Objective-C property getter function.
928 ///
929 /// The given Decl must be an ObjCImplementationDecl. \@synthesize
930 /// is illegal within a category.
932  const ObjCPropertyImplDecl *PID) {
933  llvm::Constant *AtomicHelperFn =
935  const ObjCPropertyDecl *PD = PID->getPropertyDecl();
936  ObjCMethodDecl *OMD = PD->getGetterMethodDecl();
937  assert(OMD && "Invalid call to generate getter (empty method)");
938  StartObjCMethod(OMD, IMP->getClassInterface());
939 
940  generateObjCGetterBody(IMP, PID, OMD, AtomicHelperFn);
941 
942  FinishFunction();
943 }
944 
945 static bool hasTrivialGetExpr(const ObjCPropertyImplDecl *propImpl) {
946  const Expr *getter = propImpl->getGetterCXXConstructor();
947  if (!getter) return true;
948 
949  // Sema only makes only of these when the ivar has a C++ class type,
950  // so the form is pretty constrained.
951 
952  // If the property has a reference type, we might just be binding a
953  // reference, in which case the result will be a gl-value. We should
954  // treat this as a non-trivial operation.
955  if (getter->isGLValue())
956  return false;
957 
958  // If we selected a trivial copy-constructor, we're okay.
959  if (const CXXConstructExpr *construct = dyn_cast<CXXConstructExpr>(getter))
960  return (construct->getConstructor()->isTrivial());
961 
962  // The constructor might require cleanups (in which case it's never
963  // trivial).
964  assert(isa<ExprWithCleanups>(getter));
965  return false;
966 }
967 
968 /// emitCPPObjectAtomicGetterCall - Call the runtime function to
969 /// copy the ivar into the resturn slot.
971  llvm::Value *returnAddr,
972  ObjCIvarDecl *ivar,
973  llvm::Constant *AtomicHelperFn) {
974  // objc_copyCppObjectAtomic (&returnSlot, &CppObjectIvar,
975  // AtomicHelperFn);
976  CallArgList args;
977 
978  // The 1st argument is the return Slot.
979  args.add(RValue::get(returnAddr), CGF.getContext().VoidPtrTy);
980 
981  // The 2nd argument is the address of the ivar.
982  llvm::Value *ivarAddr =
984  CGF.LoadObjCSelf(), ivar, 0).getPointer();
985  ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
986  args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
987 
988  // Third argument is the helper function.
989  args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
990 
991  llvm::FunctionCallee copyCppAtomicObjectFn =
993  CGCallee callee = CGCallee::forDirect(copyCppAtomicObjectFn);
994  CGF.EmitCall(
996  callee, ReturnValueSlot(), args);
997 }
998 
999 void
1001  const ObjCPropertyImplDecl *propImpl,
1002  const ObjCMethodDecl *GetterMethodDecl,
1003  llvm::Constant *AtomicHelperFn) {
1004  // If there's a non-trivial 'get' expression, we just have to emit that.
1005  if (!hasTrivialGetExpr(propImpl)) {
1006  if (!AtomicHelperFn) {
1007  auto *ret = ReturnStmt::Create(getContext(), SourceLocation(),
1008  propImpl->getGetterCXXConstructor(),
1009  /* NRVOCandidate=*/nullptr);
1010  EmitReturnStmt(*ret);
1011  }
1012  else {
1013  ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1015  ivar, AtomicHelperFn);
1016  }
1017  return;
1018  }
1019 
1020  const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
1021  QualType propType = prop->getType();
1022  ObjCMethodDecl *getterMethod = prop->getGetterMethodDecl();
1023 
1024  ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1025 
1026  // Pick an implementation strategy.
1027  PropertyImplStrategy strategy(CGM, propImpl);
1028  switch (strategy.getKind()) {
1029  case PropertyImplStrategy::Native: {
1030  // We don't need to do anything for a zero-size struct.
1031  if (strategy.getIvarSize().isZero())
1032  return;
1033 
1035 
1036  // Currently, all atomic accesses have to be through integer
1037  // types, so there's no point in trying to pick a prettier type.
1038  uint64_t ivarSize = getContext().toBits(strategy.getIvarSize());
1039  llvm::Type *bitcastType = llvm::Type::getIntNTy(getLLVMContext(), ivarSize);
1040  bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay
1041 
1042  // Perform an atomic load. This does not impose ordering constraints.
1043  Address ivarAddr = LV.getAddress();
1044  ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType);
1045  llvm::LoadInst *load = Builder.CreateLoad(ivarAddr, "load");
1046  load->setAtomic(llvm::AtomicOrdering::Unordered);
1047 
1048  // Store that value into the return address. Doing this with a
1049  // bitcast is likely to produce some pretty ugly IR, but it's not
1050  // the *most* terrible thing in the world.
1051  llvm::Type *retTy = ConvertType(getterMethod->getReturnType());
1052  uint64_t retTySize = CGM.getDataLayout().getTypeSizeInBits(retTy);
1053  llvm::Value *ivarVal = load;
1054  if (ivarSize > retTySize) {
1055  llvm::Type *newTy = llvm::Type::getIntNTy(getLLVMContext(), retTySize);
1056  ivarVal = Builder.CreateTrunc(load, newTy);
1057  bitcastType = newTy->getPointerTo();
1058  }
1059  Builder.CreateStore(ivarVal,
1060  Builder.CreateBitCast(ReturnValue, bitcastType));
1061 
1062  // Make sure we don't do an autorelease.
1063  AutoreleaseResult = false;
1064  return;
1065  }
1066 
1067  case PropertyImplStrategy::GetSetProperty: {
1068  llvm::FunctionCallee getPropertyFn =
1070  if (!getPropertyFn) {
1071  CGM.ErrorUnsupported(propImpl, "Obj-C getter requiring atomic copy");
1072  return;
1073  }
1074  CGCallee callee = CGCallee::forDirect(getPropertyFn);
1075 
1076  // Return (ivar-type) objc_getProperty((id) self, _cmd, offset, true).
1077  // FIXME: Can't this be simpler? This might even be worse than the
1078  // corresponding gcc code.
1079  llvm::Value *cmd =
1080  Builder.CreateLoad(GetAddrOfLocalVar(getterMethod->getCmdDecl()), "cmd");
1082  llvm::Value *ivarOffset =
1083  EmitIvarOffset(classImpl->getClassInterface(), ivar);
1084 
1085  CallArgList args;
1086  args.add(RValue::get(self), getContext().getObjCIdType());
1087  args.add(RValue::get(cmd), getContext().getObjCSelType());
1088  args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1089  args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
1090  getContext().BoolTy);
1091 
1092  // FIXME: We shouldn't need to get the function info here, the
1093  // runtime already should have computed it to build the function.
1094  llvm::CallBase *CallInstruction;
1095  RValue RV = EmitCall(getTypes().arrangeBuiltinFunctionCall(
1096  getContext().getObjCIdType(), args),
1097  callee, ReturnValueSlot(), args, &CallInstruction);
1098  if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(CallInstruction))
1099  call->setTailCall();
1100 
1101  // We need to fix the type here. Ivars with copy & retain are
1102  // always objects so we don't need to worry about complex or
1103  // aggregates.
1105  RV.getScalarVal(),
1106  getTypes().ConvertType(getterMethod->getReturnType())));
1107 
1108  EmitReturnOfRValue(RV, propType);
1109 
1110  // objc_getProperty does an autorelease, so we should suppress ours.
1111  AutoreleaseResult = false;
1112 
1113  return;
1114  }
1115 
1116  case PropertyImplStrategy::CopyStruct:
1117  emitStructGetterCall(*this, ivar, strategy.isAtomic(),
1118  strategy.hasStrongMember());
1119  return;
1120 
1121  case PropertyImplStrategy::Expression:
1122  case PropertyImplStrategy::SetPropertyAndExpressionGet: {
1124 
1125  QualType ivarType = ivar->getType();
1126  switch (getEvaluationKind(ivarType)) {
1127  case TEK_Complex: {
1130  /*init*/ true);
1131  return;
1132  }
1133  case TEK_Aggregate: {
1134  // The return value slot is guaranteed to not be aliased, but
1135  // that's not necessarily the same as "on the stack", so
1136  // we still potentially need objc_memmove_collectable.
1137  EmitAggregateCopy(/* Dest= */ MakeAddrLValue(ReturnValue, ivarType),
1138  /* Src= */ LV, ivarType, overlapForReturnValue());
1139  return;
1140  }
1141  case TEK_Scalar: {
1142  llvm::Value *value;
1143  if (propType->isReferenceType()) {
1144  value = LV.getAddress().getPointer();
1145  } else {
1146  // We want to load and autoreleaseReturnValue ARC __weak ivars.
1148  if (getLangOpts().ObjCAutoRefCount) {
1149  value = emitARCRetainLoadOfScalar(*this, LV, ivarType);
1150  } else {
1151  value = EmitARCLoadWeak(LV.getAddress());
1152  }
1153 
1154  // Otherwise we want to do a simple load, suppressing the
1155  // final autorelease.
1156  } else {
1157  value = EmitLoadOfLValue(LV, SourceLocation()).getScalarVal();
1158  AutoreleaseResult = false;
1159  }
1160 
1161  value = Builder.CreateBitCast(
1162  value, ConvertType(GetterMethodDecl->getReturnType()));
1163  }
1164 
1165  EmitReturnOfRValue(RValue::get(value), propType);
1166  return;
1167  }
1168  }
1169  llvm_unreachable("bad evaluation kind");
1170  }
1171 
1172  }
1173  llvm_unreachable("bad @property implementation strategy!");
1174 }
1175 
1176 /// emitStructSetterCall - Call the runtime function to store the value
1177 /// from the first formal parameter into the given ivar.
1179  ObjCIvarDecl *ivar) {
1180  // objc_copyStruct (&structIvar, &Arg,
1181  // sizeof (struct something), true, false);
1182  CallArgList args;
1183 
1184  // The first argument is the address of the ivar.
1185  llvm::Value *ivarAddr = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
1186  CGF.LoadObjCSelf(), ivar, 0)
1187  .getPointer();
1188  ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
1189  args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
1190 
1191  // The second argument is the address of the parameter variable.
1192  ParmVarDecl *argVar = *OMD->param_begin();
1193  DeclRefExpr argRef(CGF.getContext(), argVar, false,
1194  argVar->getType().getNonReferenceType(), VK_LValue,
1195  SourceLocation());
1196  llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer();
1197  argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
1198  args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
1199 
1200  // The third argument is the sizeof the type.
1201  llvm::Value *size =
1202  CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(ivar->getType()));
1203  args.add(RValue::get(size), CGF.getContext().getSizeType());
1204 
1205  // The fourth argument is the 'isAtomic' flag.
1206  args.add(RValue::get(CGF.Builder.getTrue()), CGF.getContext().BoolTy);
1207 
1208  // The fifth argument is the 'hasStrong' flag.
1209  // FIXME: should this really always be false?
1210  args.add(RValue::get(CGF.Builder.getFalse()), CGF.getContext().BoolTy);
1211 
1212  llvm::FunctionCallee fn = CGF.CGM.getObjCRuntime().GetSetStructFunction();
1213  CGCallee callee = CGCallee::forDirect(fn);
1214  CGF.EmitCall(
1216  callee, ReturnValueSlot(), args);
1217 }
1218 
1219 /// emitCPPObjectAtomicSetterCall - Call the runtime function to store
1220 /// the value from the first formal parameter into the given ivar, using
1221 /// the Cpp API for atomic Cpp objects with non-trivial copy assignment.
1223  ObjCMethodDecl *OMD,
1224  ObjCIvarDecl *ivar,
1225  llvm::Constant *AtomicHelperFn) {
1226  // objc_copyCppObjectAtomic (&CppObjectIvar, &Arg,
1227  // AtomicHelperFn);
1228  CallArgList args;
1229 
1230  // The first argument is the address of the ivar.
1231  llvm::Value *ivarAddr =
1233  CGF.LoadObjCSelf(), ivar, 0).getPointer();
1234  ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
1235  args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
1236 
1237  // The second argument is the address of the parameter variable.
1238  ParmVarDecl *argVar = *OMD->param_begin();
1239  DeclRefExpr argRef(CGF.getContext(), argVar, false,
1240  argVar->getType().getNonReferenceType(), VK_LValue,
1241  SourceLocation());
1242  llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer();
1243  argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
1244  args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
1245 
1246  // Third argument is the helper function.
1247  args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
1248 
1249  llvm::FunctionCallee fn =
1251  CGCallee callee = CGCallee::forDirect(fn);
1252  CGF.EmitCall(
1254  callee, ReturnValueSlot(), args);
1255 }
1256 
1257 
1258 static bool hasTrivialSetExpr(const ObjCPropertyImplDecl *PID) {
1259  Expr *setter = PID->getSetterCXXAssignment();
1260  if (!setter) return true;
1261 
1262  // Sema only makes only of these when the ivar has a C++ class type,
1263  // so the form is pretty constrained.
1264 
1265  // An operator call is trivial if the function it calls is trivial.
1266  // This also implies that there's nothing non-trivial going on with
1267  // the arguments, because operator= can only be trivial if it's a
1268  // synthesized assignment operator and therefore both parameters are
1269  // references.
1270  if (CallExpr *call = dyn_cast<CallExpr>(setter)) {
1271  if (const FunctionDecl *callee
1272  = dyn_cast_or_null<FunctionDecl>(call->getCalleeDecl()))
1273  if (callee->isTrivial())
1274  return true;
1275  return false;
1276  }
1277 
1278  assert(isa<ExprWithCleanups>(setter));
1279  return false;
1280 }
1281 
1283  if (CGM.getLangOpts().getGC() != LangOptions::NonGC)
1284  return false;
1286 }
1287 
1288 void
1290  const ObjCPropertyImplDecl *propImpl,
1291  llvm::Constant *AtomicHelperFn) {
1292  const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
1293  ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1294  ObjCMethodDecl *setterMethod = prop->getSetterMethodDecl();
1295 
1296  // Just use the setter expression if Sema gave us one and it's
1297  // non-trivial.
1298  if (!hasTrivialSetExpr(propImpl)) {
1299  if (!AtomicHelperFn)
1300  // If non-atomic, assignment is called directly.
1301  EmitStmt(propImpl->getSetterCXXAssignment());
1302  else
1303  // If atomic, assignment is called via a locking api.
1304  emitCPPObjectAtomicSetterCall(*this, setterMethod, ivar,
1305  AtomicHelperFn);
1306  return;
1307  }
1308 
1309  PropertyImplStrategy strategy(CGM, propImpl);
1310  switch (strategy.getKind()) {
1311  case PropertyImplStrategy::Native: {
1312  // We don't need to do anything for a zero-size struct.
1313  if (strategy.getIvarSize().isZero())
1314  return;
1315 
1316  Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin());
1317 
1318  LValue ivarLValue =
1319  EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, /*quals*/ 0);
1320  Address ivarAddr = ivarLValue.getAddress();
1321 
1322  // Currently, all atomic accesses have to be through integer
1323  // types, so there's no point in trying to pick a prettier type.
1324  llvm::Type *bitcastType =
1325  llvm::Type::getIntNTy(getLLVMContext(),
1326  getContext().toBits(strategy.getIvarSize()));
1327 
1328  // Cast both arguments to the chosen operation type.
1329  argAddr = Builder.CreateElementBitCast(argAddr, bitcastType);
1330  ivarAddr = Builder.CreateElementBitCast(ivarAddr, bitcastType);
1331 
1332  // This bitcast load is likely to cause some nasty IR.
1333  llvm::Value *load = Builder.CreateLoad(argAddr);
1334 
1335  // Perform an atomic store. There are no memory ordering requirements.
1336  llvm::StoreInst *store = Builder.CreateStore(load, ivarAddr);
1337  store->setAtomic(llvm::AtomicOrdering::Unordered);
1338  return;
1339  }
1340 
1341  case PropertyImplStrategy::GetSetProperty:
1342  case PropertyImplStrategy::SetPropertyAndExpressionGet: {
1343 
1344  llvm::FunctionCallee setOptimizedPropertyFn = nullptr;
1345  llvm::FunctionCallee setPropertyFn = nullptr;
1346  if (UseOptimizedSetter(CGM)) {
1347  // 10.8 and iOS 6.0 code and GC is off
1348  setOptimizedPropertyFn =
1350  strategy.isAtomic(), strategy.isCopy());
1351  if (!setOptimizedPropertyFn) {
1352  CGM.ErrorUnsupported(propImpl, "Obj-C optimized setter - NYI");
1353  return;
1354  }
1355  }
1356  else {
1357  setPropertyFn = CGM.getObjCRuntime().GetPropertySetFunction();
1358  if (!setPropertyFn) {
1359  CGM.ErrorUnsupported(propImpl, "Obj-C setter requiring atomic copy");
1360  return;
1361  }
1362  }
1363 
1364  // Emit objc_setProperty((id) self, _cmd, offset, arg,
1365  // <is-atomic>, <is-copy>).
1366  llvm::Value *cmd =
1367  Builder.CreateLoad(GetAddrOfLocalVar(setterMethod->getCmdDecl()));
1368  llvm::Value *self =
1370  llvm::Value *ivarOffset =
1371  EmitIvarOffset(classImpl->getClassInterface(), ivar);
1372  Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin());
1373  llvm::Value *arg = Builder.CreateLoad(argAddr, "arg");
1374  arg = Builder.CreateBitCast(arg, VoidPtrTy);
1375 
1376  CallArgList args;
1377  args.add(RValue::get(self), getContext().getObjCIdType());
1378  args.add(RValue::get(cmd), getContext().getObjCSelType());
1379  if (setOptimizedPropertyFn) {
1380  args.add(RValue::get(arg), getContext().getObjCIdType());
1381  args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1382  CGCallee callee = CGCallee::forDirect(setOptimizedPropertyFn);
1383  EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args),
1384  callee, ReturnValueSlot(), args);
1385  } else {
1386  args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1387  args.add(RValue::get(arg), getContext().getObjCIdType());
1388  args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
1389  getContext().BoolTy);
1390  args.add(RValue::get(Builder.getInt1(strategy.isCopy())),
1391  getContext().BoolTy);
1392  // FIXME: We shouldn't need to get the function info here, the runtime
1393  // already should have computed it to build the function.
1394  CGCallee callee = CGCallee::forDirect(setPropertyFn);
1395  EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args),
1396  callee, ReturnValueSlot(), args);
1397  }
1398 
1399  return;
1400  }
1401 
1402  case PropertyImplStrategy::CopyStruct:
1403  emitStructSetterCall(*this, setterMethod, ivar);
1404  return;
1405 
1406  case PropertyImplStrategy::Expression:
1407  break;
1408  }
1409 
1410  // Otherwise, fake up some ASTs and emit a normal assignment.
1411  ValueDecl *selfDecl = setterMethod->getSelfDecl();
1412  DeclRefExpr self(getContext(), selfDecl, false, selfDecl->getType(),
1415  selfDecl->getType(), CK_LValueToRValue, &self,
1416  VK_RValue);
1417  ObjCIvarRefExpr ivarRef(ivar, ivar->getType().getNonReferenceType(),
1419  &selfLoad, true, true);
1420 
1421  ParmVarDecl *argDecl = *setterMethod->param_begin();
1422  QualType argType = argDecl->getType().getNonReferenceType();
1423  DeclRefExpr arg(getContext(), argDecl, false, argType, VK_LValue,
1424  SourceLocation());
1426  argType.getUnqualifiedType(), CK_LValueToRValue,
1427  &arg, VK_RValue);
1428 
1429  // The property type can differ from the ivar type in some situations with
1430  // Objective-C pointer types, we can always bit cast the RHS in these cases.
1431  // The following absurdity is just to ensure well-formed IR.
1432  CastKind argCK = CK_NoOp;
1433  if (ivarRef.getType()->isObjCObjectPointerType()) {
1434  if (argLoad.getType()->isObjCObjectPointerType())
1435  argCK = CK_BitCast;
1436  else if (argLoad.getType()->isBlockPointerType())
1437  argCK = CK_BlockPointerToObjCPointerCast;
1438  else
1439  argCK = CK_CPointerToObjCPointerCast;
1440  } else if (ivarRef.getType()->isBlockPointerType()) {
1441  if (argLoad.getType()->isBlockPointerType())
1442  argCK = CK_BitCast;
1443  else
1444  argCK = CK_AnyPointerToBlockPointerCast;
1445  } else if (ivarRef.getType()->isPointerType()) {
1446  argCK = CK_BitCast;
1447  }
1449  ivarRef.getType(), argCK, &argLoad,
1450  VK_RValue);
1451  Expr *finalArg = &argLoad;
1452  if (!getContext().hasSameUnqualifiedType(ivarRef.getType(),
1453  argLoad.getType()))
1454  finalArg = &argCast;
1455 
1456 
1457  BinaryOperator assign(&ivarRef, finalArg, BO_Assign,
1458  ivarRef.getType(), VK_RValue, OK_Ordinary,
1459  SourceLocation(), FPOptions());
1460  EmitStmt(&assign);
1461 }
1462 
1463 /// Generate an Objective-C property setter function.
1464 ///
1465 /// The given Decl must be an ObjCImplementationDecl. \@synthesize
1466 /// is illegal within a category.
1468  const ObjCPropertyImplDecl *PID) {
1469  llvm::Constant *AtomicHelperFn =
1471  const ObjCPropertyDecl *PD = PID->getPropertyDecl();
1472  ObjCMethodDecl *OMD = PD->getSetterMethodDecl();
1473  assert(OMD && "Invalid call to generate setter (empty method)");
1474  StartObjCMethod(OMD, IMP->getClassInterface());
1475 
1476  generateObjCSetterBody(IMP, PID, AtomicHelperFn);
1477 
1478  FinishFunction();
1479 }
1480 
1481 namespace {
1482  struct DestroyIvar final : EHScopeStack::Cleanup {
1483  private:
1484  llvm::Value *addr;
1485  const ObjCIvarDecl *ivar;
1486  CodeGenFunction::Destroyer *destroyer;
1487  bool useEHCleanupForArray;
1488  public:
1489  DestroyIvar(llvm::Value *addr, const ObjCIvarDecl *ivar,
1490  CodeGenFunction::Destroyer *destroyer,
1491  bool useEHCleanupForArray)
1492  : addr(addr), ivar(ivar), destroyer(destroyer),
1493  useEHCleanupForArray(useEHCleanupForArray) {}
1494 
1495  void Emit(CodeGenFunction &CGF, Flags flags) override {
1496  LValue lvalue
1497  = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), addr, ivar, /*CVR*/ 0);
1498  CGF.emitDestroy(lvalue.getAddress(), ivar->getType(), destroyer,
1499  flags.isForNormalCleanup() && useEHCleanupForArray);
1500  }
1501  };
1502 }
1503 
1504 /// Like CodeGenFunction::destroyARCStrong, but do it with a call.
1506  Address addr,
1507  QualType type) {
1508  llvm::Value *null = getNullForVariable(addr);
1509  CGF.EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
1510 }
1511 
1513  ObjCImplementationDecl *impl) {
1515 
1516  llvm::Value *self = CGF.LoadObjCSelf();
1517 
1518  const ObjCInterfaceDecl *iface = impl->getClassInterface();
1519  for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
1520  ivar; ivar = ivar->getNextIvar()) {
1521  QualType type = ivar->getType();
1522 
1523  // Check whether the ivar is a destructible type.
1524  QualType::DestructionKind dtorKind = type.isDestructedType();
1525  if (!dtorKind) continue;
1526 
1527  CodeGenFunction::Destroyer *destroyer = nullptr;
1528 
1529  // Use a call to objc_storeStrong to destroy strong ivars, for the
1530  // general benefit of the tools.
1531  if (dtorKind == QualType::DK_objc_strong_lifetime) {
1532  destroyer = destroyARCStrongWithStore;
1533 
1534  // Otherwise use the default for the destruction kind.
1535  } else {
1536  destroyer = CGF.getDestroyer(dtorKind);
1537  }
1538 
1539  CleanupKind cleanupKind = CGF.getCleanupKind(dtorKind);
1540 
1541  CGF.EHStack.pushCleanup<DestroyIvar>(cleanupKind, self, ivar, destroyer,
1542  cleanupKind & EHCleanup);
1543  }
1544 
1545  assert(scope.requiresCleanups() && "nothing to do in .cxx_destruct?");
1546 }
1547 
1549  ObjCMethodDecl *MD,
1550  bool ctor) {
1552  StartObjCMethod(MD, IMP->getClassInterface());
1553 
1554  // Emit .cxx_construct.
1555  if (ctor) {
1556  // Suppress the final autorelease in ARC.
1557  AutoreleaseResult = false;
1558 
1559  for (const auto *IvarInit : IMP->inits()) {
1560  FieldDecl *Field = IvarInit->getAnyMember();
1561  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(Field);
1563  LoadObjCSelf(), Ivar, 0);
1564  EmitAggExpr(IvarInit->getInit(),
1569  }
1570  // constructor returns 'self'.
1571  CodeGenTypes &Types = CGM.getTypes();
1572  QualType IdTy(CGM.getContext().getObjCIdType());
1573  llvm::Value *SelfAsId =
1574  Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy));
1575  EmitReturnOfRValue(RValue::get(SelfAsId), IdTy);
1576 
1577  // Emit .cxx_destruct.
1578  } else {
1579  emitCXXDestructMethod(*this, IMP);
1580  }
1581  FinishFunction();
1582 }
1583 
1585  VarDecl *Self = cast<ObjCMethodDecl>(CurFuncDecl)->getSelfDecl();
1586  DeclRefExpr DRE(getContext(), Self,
1587  /*is enclosing local*/ (CurFuncDecl != CurCodeDecl),
1588  Self->getType(), VK_LValue, SourceLocation());
1590 }
1591 
1593  const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
1594  ImplicitParamDecl *selfDecl = OMD->getSelfDecl();
1595  const ObjCObjectPointerType *PTy = cast<ObjCObjectPointerType>(
1596  getContext().getCanonicalType(selfDecl->getType()));
1597  return PTy->getPointeeType();
1598 }
1599 
1601  llvm::FunctionCallee EnumerationMutationFnPtr =
1603  if (!EnumerationMutationFnPtr) {
1604  CGM.ErrorUnsupported(&S, "Obj-C fast enumeration for this runtime");
1605  return;
1606  }
1607  CGCallee EnumerationMutationFn =
1608  CGCallee::forDirect(EnumerationMutationFnPtr);
1609 
1610  CGDebugInfo *DI = getDebugInfo();
1611  if (DI)
1613 
1614  RunCleanupsScope ForScope(*this);
1615 
1616  // The local variable comes into scope immediately.
1618  if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement()))
1619  variable = EmitAutoVarAlloca(*cast<VarDecl>(SD->getSingleDecl()));
1620 
1621  JumpDest LoopEnd = getJumpDestInCurrentScope("forcoll.end");
1622 
1623  // Fast enumeration state.
1624  QualType StateTy = CGM.getObjCFastEnumerationStateType();
1625  Address StatePtr = CreateMemTemp(StateTy, "state.ptr");
1626  EmitNullInitialization(StatePtr, StateTy);
1627 
1628  // Number of elements in the items array.
1629  static const unsigned NumItems = 16;
1630 
1631  // Fetch the countByEnumeratingWithState:objects:count: selector.
1632  IdentifierInfo *II[] = {
1633  &CGM.getContext().Idents.get("countByEnumeratingWithState"),
1634  &CGM.getContext().Idents.get("objects"),
1635  &CGM.getContext().Idents.get("count")
1636  };
1637  Selector FastEnumSel =
1638  CGM.getContext().Selectors.getSelector(llvm::array_lengthof(II), &II[0]);
1639 
1640  QualType ItemsTy =
1641  getContext().getConstantArrayType(getContext().getObjCIdType(),
1642  llvm::APInt(32, NumItems),
1643  ArrayType::Normal, 0);
1644  Address ItemsPtr = CreateMemTemp(ItemsTy, "items.ptr");
1645 
1646  // Emit the collection pointer. In ARC, we do a retain.
1647  llvm::Value *Collection;
1648  if (getLangOpts().ObjCAutoRefCount) {
1649  Collection = EmitARCRetainScalarExpr(S.getCollection());
1650 
1651  // Enter a cleanup to do the release.
1652  EmitObjCConsumeObject(S.getCollection()->getType(), Collection);
1653  } else {
1654  Collection = EmitScalarExpr(S.getCollection());
1655  }
1656 
1657  // The 'continue' label needs to appear within the cleanup for the
1658  // collection object.
1659  JumpDest AfterBody = getJumpDestInCurrentScope("forcoll.next");
1660 
1661  // Send it our message:
1662  CallArgList Args;
1663 
1664  // The first argument is a temporary of the enumeration-state type.
1665  Args.add(RValue::get(StatePtr.getPointer()),
1666  getContext().getPointerType(StateTy));
1667 
1668  // The second argument is a temporary array with space for NumItems
1669  // pointers. We'll actually be loading elements from the array
1670  // pointer written into the control state; this buffer is so that
1671  // collections that *aren't* backed by arrays can still queue up
1672  // batches of elements.
1673  Args.add(RValue::get(ItemsPtr.getPointer()),
1674  getContext().getPointerType(ItemsTy));
1675 
1676  // The third argument is the capacity of that temporary array.
1677  llvm::Type *NSUIntegerTy = ConvertType(getContext().getNSUIntegerType());
1678  llvm::Constant *Count = llvm::ConstantInt::get(NSUIntegerTy, NumItems);
1679  Args.add(RValue::get(Count), getContext().getNSUIntegerType());
1680 
1681  // Start the enumeration.
1682  RValue CountRV =
1684  getContext().getNSUIntegerType(),
1685  FastEnumSel, Collection, Args);
1686 
1687  // The initial number of objects that were returned in the buffer.
1688  llvm::Value *initialBufferLimit = CountRV.getScalarVal();
1689 
1690  llvm::BasicBlock *EmptyBB = createBasicBlock("forcoll.empty");
1691  llvm::BasicBlock *LoopInitBB = createBasicBlock("forcoll.loopinit");
1692 
1693  llvm::Value *zero = llvm::Constant::getNullValue(NSUIntegerTy);
1694 
1695  // If the limit pointer was zero to begin with, the collection is
1696  // empty; skip all this. Set the branch weight assuming this has the same
1697  // probability of exiting the loop as any other loop exit.
1698  uint64_t EntryCount = getCurrentProfileCount();
1699  Builder.CreateCondBr(
1700  Builder.CreateICmpEQ(initialBufferLimit, zero, "iszero"), EmptyBB,
1701  LoopInitBB,
1702  createProfileWeights(EntryCount, getProfileCount(S.getBody())));
1703 
1704  // Otherwise, initialize the loop.
1705  EmitBlock(LoopInitBB);
1706 
1707  // Save the initial mutations value. This is the value at an
1708  // address that was written into the state object by
1709  // countByEnumeratingWithState:objects:count:.
1710  Address StateMutationsPtrPtr =
1711  Builder.CreateStructGEP(StatePtr, 2, "mutationsptr.ptr");
1712  llvm::Value *StateMutationsPtr
1713  = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr");
1714 
1715  llvm::Value *initialMutations =
1716  Builder.CreateAlignedLoad(StateMutationsPtr, getPointerAlign(),
1717  "forcoll.initial-mutations");
1718 
1719  // Start looping. This is the point we return to whenever we have a
1720  // fresh, non-empty batch of objects.
1721  llvm::BasicBlock *LoopBodyBB = createBasicBlock("forcoll.loopbody");
1722  EmitBlock(LoopBodyBB);
1723 
1724  // The current index into the buffer.
1725  llvm::PHINode *index = Builder.CreatePHI(NSUIntegerTy, 3, "forcoll.index");
1726  index->addIncoming(zero, LoopInitBB);
1727 
1728  // The current buffer size.
1729  llvm::PHINode *count = Builder.CreatePHI(NSUIntegerTy, 3, "forcoll.count");
1730  count->addIncoming(initialBufferLimit, LoopInitBB);
1731 
1733 
1734  // Check whether the mutations value has changed from where it was
1735  // at start. StateMutationsPtr should actually be invariant between
1736  // refreshes.
1737  StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr");
1738  llvm::Value *currentMutations
1739  = Builder.CreateAlignedLoad(StateMutationsPtr, getPointerAlign(),
1740  "statemutations");
1741 
1742  llvm::BasicBlock *WasMutatedBB = createBasicBlock("forcoll.mutated");
1743  llvm::BasicBlock *WasNotMutatedBB = createBasicBlock("forcoll.notmutated");
1744 
1745  Builder.CreateCondBr(Builder.CreateICmpEQ(currentMutations, initialMutations),
1746  WasNotMutatedBB, WasMutatedBB);
1747 
1748  // If so, call the enumeration-mutation function.
1749  EmitBlock(WasMutatedBB);
1750  llvm::Value *V =
1751  Builder.CreateBitCast(Collection,
1752  ConvertType(getContext().getObjCIdType()));
1753  CallArgList Args2;
1754  Args2.add(RValue::get(V), getContext().getObjCIdType());
1755  // FIXME: We shouldn't need to get the function info here, the runtime already
1756  // should have computed it to build the function.
1757  EmitCall(
1759  EnumerationMutationFn, ReturnValueSlot(), Args2);
1760 
1761  // Otherwise, or if the mutation function returns, just continue.
1762  EmitBlock(WasNotMutatedBB);
1763 
1764  // Initialize the element variable.
1765  RunCleanupsScope elementVariableScope(*this);
1766  bool elementIsVariable;
1767  LValue elementLValue;
1768  QualType elementType;
1769  if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) {
1770  // Initialize the variable, in case it's a __block variable or something.
1771  EmitAutoVarInit(variable);
1772 
1773  const VarDecl *D = cast<VarDecl>(SD->getSingleDecl());
1774  DeclRefExpr tempDRE(getContext(), const_cast<VarDecl *>(D), false,
1775  D->getType(), VK_LValue, SourceLocation());
1776  elementLValue = EmitLValue(&tempDRE);
1777  elementType = D->getType();
1778  elementIsVariable = true;
1779 
1780  if (D->isARCPseudoStrong())
1781  elementLValue.getQuals().setObjCLifetime(Qualifiers::OCL_ExplicitNone);
1782  } else {
1783  elementLValue = LValue(); // suppress warning
1784  elementType = cast<Expr>(S.getElement())->getType();
1785  elementIsVariable = false;
1786  }
1787  llvm::Type *convertedElementType = ConvertType(elementType);
1788 
1789  // Fetch the buffer out of the enumeration state.
1790  // TODO: this pointer should actually be invariant between
1791  // refreshes, which would help us do certain loop optimizations.
1792  Address StateItemsPtr =
1793  Builder.CreateStructGEP(StatePtr, 1, "stateitems.ptr");
1794  llvm::Value *EnumStateItems =
1795  Builder.CreateLoad(StateItemsPtr, "stateitems");
1796 
1797  // Fetch the value at the current index from the buffer.
1798  llvm::Value *CurrentItemPtr =
1799  Builder.CreateGEP(EnumStateItems, index, "currentitem.ptr");
1800  llvm::Value *CurrentItem =
1801  Builder.CreateAlignedLoad(CurrentItemPtr, getPointerAlign());
1802 
1803  // Cast that value to the right type.
1804  CurrentItem = Builder.CreateBitCast(CurrentItem, convertedElementType,
1805  "currentitem");
1806 
1807  // Make sure we have an l-value. Yes, this gets evaluated every
1808  // time through the loop.
1809  if (!elementIsVariable) {
1810  elementLValue = EmitLValue(cast<Expr>(S.getElement()));
1811  EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue);
1812  } else {
1813  EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue,
1814  /*isInit*/ true);
1815  }
1816 
1817  // If we do have an element variable, this assignment is the end of
1818  // its initialization.
1819  if (elementIsVariable)
1820  EmitAutoVarCleanups(variable);
1821 
1822  // Perform the loop body, setting up break and continue labels.
1823  BreakContinueStack.push_back(BreakContinue(LoopEnd, AfterBody));
1824  {
1825  RunCleanupsScope Scope(*this);
1826  EmitStmt(S.getBody());
1827  }
1828  BreakContinueStack.pop_back();
1829 
1830  // Destroy the element variable now.
1831  elementVariableScope.ForceCleanup();
1832 
1833  // Check whether there are more elements.
1834  EmitBlock(AfterBody.getBlock());
1835 
1836  llvm::BasicBlock *FetchMoreBB = createBasicBlock("forcoll.refetch");
1837 
1838  // First we check in the local buffer.
1839  llvm::Value *indexPlusOne =
1840  Builder.CreateAdd(index, llvm::ConstantInt::get(NSUIntegerTy, 1));
1841 
1842  // If we haven't overrun the buffer yet, we can continue.
1843  // Set the branch weights based on the simplifying assumption that this is
1844  // like a while-loop, i.e., ignoring that the false branch fetches more
1845  // elements and then returns to the loop.
1846  Builder.CreateCondBr(
1847  Builder.CreateICmpULT(indexPlusOne, count), LoopBodyBB, FetchMoreBB,
1848  createProfileWeights(getProfileCount(S.getBody()), EntryCount));
1849 
1850  index->addIncoming(indexPlusOne, AfterBody.getBlock());
1851  count->addIncoming(count, AfterBody.getBlock());
1852 
1853  // Otherwise, we have to fetch more elements.
1854  EmitBlock(FetchMoreBB);
1855 
1856  CountRV =
1858  getContext().getNSUIntegerType(),
1859  FastEnumSel, Collection, Args);
1860 
1861  // If we got a zero count, we're done.
1862  llvm::Value *refetchCount = CountRV.getScalarVal();
1863 
1864  // (note that the message send might split FetchMoreBB)
1865  index->addIncoming(zero, Builder.GetInsertBlock());
1866  count->addIncoming(refetchCount, Builder.GetInsertBlock());
1867 
1868  Builder.CreateCondBr(Builder.CreateICmpEQ(refetchCount, zero),
1869  EmptyBB, LoopBodyBB);
1870 
1871  // No more elements.
1872  EmitBlock(EmptyBB);
1873 
1874  if (!elementIsVariable) {
1875  // If the element was not a declaration, set it to be null.
1876 
1877  llvm::Value *null = llvm::Constant::getNullValue(convertedElementType);
1878  elementLValue = EmitLValue(cast<Expr>(S.getElement()));
1879  EmitStoreThroughLValue(RValue::get(null), elementLValue);
1880  }
1881 
1882  if (DI)
1884 
1885  ForScope.ForceCleanup();
1886  EmitBlock(LoopEnd.getBlock());
1887 }
1888 
1890  CGM.getObjCRuntime().EmitTryStmt(*this, S);
1891 }
1892 
1894  CGM.getObjCRuntime().EmitThrowStmt(*this, S);
1895 }
1896 
1898  const ObjCAtSynchronizedStmt &S) {
1899  CGM.getObjCRuntime().EmitSynchronizedStmt(*this, S);
1900 }
1901 
1902 namespace {
1903  struct CallObjCRelease final : EHScopeStack::Cleanup {
1904  CallObjCRelease(llvm::Value *object) : object(object) {}
1905  llvm::Value *object;
1906 
1907  void Emit(CodeGenFunction &CGF, Flags flags) override {
1908  // Releases at the end of the full-expression are imprecise.
1909  CGF.EmitARCRelease(object, ARCImpreciseLifetime);
1910  }
1911  };
1912 }
1913 
1914 /// Produce the code for a CK_ARCConsumeObject. Does a primitive
1915 /// release at the end of the full-expression.
1917  llvm::Value *object) {
1918  // If we're in a conditional branch, we need to make the cleanup
1919  // conditional.
1920  pushFullExprCleanup<CallObjCRelease>(getARCCleanupKind(), object);
1921  return object;
1922 }
1923 
1925  llvm::Value *value) {
1926  return EmitARCRetainAutorelease(type, value);
1927 }
1928 
1929 /// Given a number of pointers, inform the optimizer that they're
1930 /// being intrinsically used up until this point in the program.
1932  llvm::Function *&fn = CGM.getObjCEntrypoints().clang_arc_use;
1933  if (!fn)
1934  fn = CGM.getIntrinsic(llvm::Intrinsic::objc_clang_arc_use);
1935 
1936  // This isn't really a "runtime" function, but as an intrinsic it
1937  // doesn't really matter as long as we align things up.
1938  EmitNounwindRuntimeCall(fn, values);
1939 }
1940 
1942  if (auto *F = dyn_cast<llvm::Function>(RTF)) {
1943  // If the target runtime doesn't naturally support ARC, emit weak
1944  // references to the runtime support library. We don't really
1945  // permit this to fail, but we need a particular relocation style.
1946  if (!CGM.getLangOpts().ObjCRuntime.hasNativeARC() &&
1947  !CGM.getTriple().isOSBinFormatCOFF()) {
1948  F->setLinkage(llvm::Function::ExternalWeakLinkage);
1949  }
1950  }
1951 }
1952 
1954  llvm::FunctionCallee RTF) {
1955  setARCRuntimeFunctionLinkage(CGM, RTF.getCallee());
1956 }
1957 
1958 /// Perform an operation having the signature
1959 /// i8* (i8*)
1960 /// where a null input causes a no-op and returns null.
1962  CodeGenFunction &CGF, llvm::Value *value, llvm::Type *returnType,
1963  llvm::Function *&fn, llvm::Intrinsic::ID IntID,
1964  llvm::CallInst::TailCallKind tailKind = llvm::CallInst::TCK_None) {
1965  if (isa<llvm::ConstantPointerNull>(value))
1966  return value;
1967 
1968  if (!fn) {
1969  fn = CGF.CGM.getIntrinsic(IntID);
1971  }
1972 
1973  // Cast the argument to 'id'.
1974  llvm::Type *origType = returnType ? returnType : value->getType();
1975  value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy);
1976 
1977  // Call the function.
1978  llvm::CallInst *call = CGF.EmitNounwindRuntimeCall(fn, value);
1979  call->setTailCallKind(tailKind);
1980 
1981  // Cast the result back to the original type.
1982  return CGF.Builder.CreateBitCast(call, origType);
1983 }
1984 
1985 /// Perform an operation having the following signature:
1986 /// i8* (i8**)
1988  llvm::Function *&fn,
1989  llvm::Intrinsic::ID IntID) {
1990  if (!fn) {
1991  fn = CGF.CGM.getIntrinsic(IntID);
1993  }
1994 
1995  // Cast the argument to 'id*'.
1996  llvm::Type *origType = addr.getElementType();
1997  addr = CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy);
1998 
1999  // Call the function.
2000  llvm::Value *result = CGF.EmitNounwindRuntimeCall(fn, addr.getPointer());
2001 
2002  // Cast the result back to a dereference of the original type.
2003  if (origType != CGF.Int8PtrTy)
2004  result = CGF.Builder.CreateBitCast(result, origType);
2005 
2006  return result;
2007 }
2008 
2009 /// Perform an operation having the following signature:
2010 /// i8* (i8**, i8*)
2012  llvm::Value *value,
2013  llvm::Function *&fn,
2014  llvm::Intrinsic::ID IntID,
2015  bool ignored) {
2016  assert(addr.getElementType() == value->getType());
2017 
2018  if (!fn) {
2019  fn = CGF.CGM.getIntrinsic(IntID);
2021  }
2022 
2023  llvm::Type *origType = value->getType();
2024 
2025  llvm::Value *args[] = {
2026  CGF.Builder.CreateBitCast(addr.getPointer(), CGF.Int8PtrPtrTy),
2027  CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy)
2028  };
2029  llvm::CallInst *result = CGF.EmitNounwindRuntimeCall(fn, args);
2030 
2031  if (ignored) return nullptr;
2032 
2033  return CGF.Builder.CreateBitCast(result, origType);
2034 }
2035 
2036 /// Perform an operation having the following signature:
2037 /// void (i8**, i8**)
2039  llvm::Function *&fn,
2040  llvm::Intrinsic::ID IntID) {
2041  assert(dst.getType() == src.getType());
2042 
2043  if (!fn) {
2044  fn = CGF.CGM.getIntrinsic(IntID);
2046  }
2047 
2048  llvm::Value *args[] = {
2049  CGF.Builder.CreateBitCast(dst.getPointer(), CGF.Int8PtrPtrTy),
2051  };
2052  CGF.EmitNounwindRuntimeCall(fn, args);
2053 }
2054 
2055 /// Perform an operation having the signature
2056 /// i8* (i8*)
2057 /// where a null input causes a no-op and returns null.
2059  llvm::Value *value,
2060  llvm::Type *returnType,
2061  llvm::FunctionCallee &fn,
2062  StringRef fnName, bool MayThrow) {
2063  if (isa<llvm::ConstantPointerNull>(value))
2064  return value;
2065 
2066  if (!fn) {
2067  llvm::FunctionType *fnType =
2068  llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrTy, false);
2069  fn = CGF.CGM.CreateRuntimeFunction(fnType, fnName);
2070 
2071  // We have Native ARC, so set nonlazybind attribute for performance
2072  if (llvm::Function *f = dyn_cast<llvm::Function>(fn.getCallee()))
2073  if (fnName == "objc_retain")
2074  f->addFnAttr(llvm::Attribute::NonLazyBind);
2075  }
2076 
2077  // Cast the argument to 'id'.
2078  llvm::Type *origType = returnType ? returnType : value->getType();
2079  value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy);
2080 
2081  // Call the function.
2082  llvm::CallBase *Inst = nullptr;
2083  if (MayThrow)
2084  Inst = CGF.EmitCallOrInvoke(fn, value);
2085  else
2086  Inst = CGF.EmitNounwindRuntimeCall(fn, value);
2087 
2088  // Cast the result back to the original type.
2089  return CGF.Builder.CreateBitCast(Inst, origType);
2090 }
2091 
2092 /// Produce the code to do a retain. Based on the type, calls one of:
2093 /// call i8* \@objc_retain(i8* %value)
2094 /// call i8* \@objc_retainBlock(i8* %value)
2096  if (type->isBlockPointerType())
2097  return EmitARCRetainBlock(value, /*mandatory*/ false);
2098  else
2099  return EmitARCRetainNonBlock(value);
2100 }
2101 
2102 /// Retain the given object, with normal retain semantics.
2103 /// call i8* \@objc_retain(i8* %value)
2105  return emitARCValueOperation(*this, value, nullptr,
2107  llvm::Intrinsic::objc_retain);
2108 }
2109 
2110 /// Retain the given block, with _Block_copy semantics.
2111 /// call i8* \@objc_retainBlock(i8* %value)
2112 ///
2113 /// \param mandatory - If false, emit the call with metadata
2114 /// indicating that it's okay for the optimizer to eliminate this call
2115 /// if it can prove that the block never escapes except down the stack.
2117  bool mandatory) {
2118  llvm::Value *result
2119  = emitARCValueOperation(*this, value, nullptr,
2121  llvm::Intrinsic::objc_retainBlock);
2122 
2123  // If the copy isn't mandatory, add !clang.arc.copy_on_escape to
2124  // tell the optimizer that it doesn't need to do this copy if the
2125  // block doesn't escape, where being passed as an argument doesn't
2126  // count as escaping.
2127  if (!mandatory && isa<llvm::Instruction>(result)) {
2128  llvm::CallInst *call
2129  = cast<llvm::CallInst>(result->stripPointerCasts());
2130  assert(call->getCalledValue() == CGM.getObjCEntrypoints().objc_retainBlock);
2131 
2132  call->setMetadata("clang.arc.copy_on_escape",
2133  llvm::MDNode::get(Builder.getContext(), None));
2134  }
2135 
2136  return result;
2137 }
2138 
2140  // Fetch the void(void) inline asm which marks that we're going to
2141  // do something with the autoreleased return value.
2142  llvm::InlineAsm *&marker
2144  if (!marker) {
2145  StringRef assembly
2146  = CGF.CGM.getTargetCodeGenInfo()
2148 
2149  // If we have an empty assembly string, there's nothing to do.
2150  if (assembly.empty()) {
2151 
2152  // Otherwise, at -O0, build an inline asm that we're going to call
2153  // in a moment.
2154  } else if (CGF.CGM.getCodeGenOpts().OptimizationLevel == 0) {
2155  llvm::FunctionType *type =
2156  llvm::FunctionType::get(CGF.VoidTy, /*variadic*/false);
2157 
2158  marker = llvm::InlineAsm::get(type, assembly, "", /*sideeffects*/ true);
2159 
2160  // If we're at -O1 and above, we don't want to litter the code
2161  // with this marker yet, so leave a breadcrumb for the ARC
2162  // optimizer to pick up.
2163  } else {
2164  llvm::NamedMDNode *metadata =
2165  CGF.CGM.getModule().getOrInsertNamedMetadata(
2166  "clang.arc.retainAutoreleasedReturnValueMarker");
2167  assert(metadata->getNumOperands() <= 1);
2168  if (metadata->getNumOperands() == 0) {
2169  auto &ctx = CGF.getLLVMContext();
2170  metadata->addOperand(llvm::MDNode::get(ctx,
2171  llvm::MDString::get(ctx, assembly)));
2172  }
2173  }
2174  }
2175 
2176  // Call the marker asm if we made one, which we do only at -O0.
2177  if (marker)
2178  CGF.Builder.CreateCall(marker, None, CGF.getBundlesForFunclet(marker));
2179 }
2180 
2181 /// Retain the given object which is the result of a function call.
2182 /// call i8* \@objc_retainAutoreleasedReturnValue(i8* %value)
2183 ///
2184 /// Yes, this function name is one character away from a different
2185 /// call with completely different semantics.
2186 llvm::Value *
2189  llvm::CallInst::TailCallKind tailKind =
2190  CGM.getTargetCodeGenInfo()
2192  ? llvm::CallInst::TCK_NoTail
2193  : llvm::CallInst::TCK_None;
2194  return emitARCValueOperation(
2195  *this, value, nullptr,
2197  llvm::Intrinsic::objc_retainAutoreleasedReturnValue, tailKind);
2198 }
2199 
2200 /// Claim a possibly-autoreleased return value at +0. This is only
2201 /// valid to do in contexts which do not rely on the retain to keep
2202 /// the object valid for all of its uses; for example, when
2203 /// the value is ignored, or when it is being assigned to an
2204 /// __unsafe_unretained variable.
2205 ///
2206 /// call i8* \@objc_unsafeClaimAutoreleasedReturnValue(i8* %value)
2207 llvm::Value *
2210  return emitARCValueOperation(*this, value, nullptr,
2212  llvm::Intrinsic::objc_unsafeClaimAutoreleasedReturnValue);
2213 }
2214 
2215 /// Release the given object.
2216 /// call void \@objc_release(i8* %value)
2218  ARCPreciseLifetime_t precise) {
2219  if (isa<llvm::ConstantPointerNull>(value)) return;
2220 
2221  llvm::Function *&fn = CGM.getObjCEntrypoints().objc_release;
2222  if (!fn) {
2223  fn = CGM.getIntrinsic(llvm::Intrinsic::objc_release);
2225  }
2226 
2227  // Cast the argument to 'id'.
2228  value = Builder.CreateBitCast(value, Int8PtrTy);
2229 
2230  // Call objc_release.
2231  llvm::CallInst *call = EmitNounwindRuntimeCall(fn, value);
2232 
2233  if (precise == ARCImpreciseLifetime) {
2234  call->setMetadata("clang.imprecise_release",
2235  llvm::MDNode::get(Builder.getContext(), None));
2236  }
2237 }
2238 
2239 /// Destroy a __strong variable.
2240 ///
2241 /// At -O0, emit a call to store 'null' into the address;
2242 /// instrumenting tools prefer this because the address is exposed,
2243 /// but it's relatively cumbersome to optimize.
2244 ///
2245 /// At -O1 and above, just load and call objc_release.
2246 ///
2247 /// call void \@objc_storeStrong(i8** %addr, i8* null)
2249  ARCPreciseLifetime_t precise) {
2250  if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
2251  llvm::Value *null = getNullForVariable(addr);
2252  EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
2253  return;
2254  }
2255 
2256  llvm::Value *value = Builder.CreateLoad(addr);
2257  EmitARCRelease(value, precise);
2258 }
2259 
2260 /// Store into a strong object. Always calls this:
2261 /// call void \@objc_storeStrong(i8** %addr, i8* %value)
2263  llvm::Value *value,
2264  bool ignored) {
2265  assert(addr.getElementType() == value->getType());
2266 
2267  llvm::Function *&fn = CGM.getObjCEntrypoints().objc_storeStrong;
2268  if (!fn) {
2269  fn = CGM.getIntrinsic(llvm::Intrinsic::objc_storeStrong);
2271  }
2272 
2273  llvm::Value *args[] = {
2276  };
2277  EmitNounwindRuntimeCall(fn, args);
2278 
2279  if (ignored) return nullptr;
2280  return value;
2281 }
2282 
2283 /// Store into a strong object. Sometimes calls this:
2284 /// call void \@objc_storeStrong(i8** %addr, i8* %value)
2285 /// Other times, breaks it down into components.
2287  llvm::Value *newValue,
2288  bool ignored) {
2289  QualType type = dst.getType();
2290  bool isBlock = type->isBlockPointerType();
2291 
2292  // Use a store barrier at -O0 unless this is a block type or the
2293  // lvalue is inadequately aligned.
2294  if (shouldUseFusedARCCalls() &&
2295  !isBlock &&
2296  (dst.getAlignment().isZero() ||
2298  return EmitARCStoreStrongCall(dst.getAddress(), newValue, ignored);
2299  }
2300 
2301  // Otherwise, split it out.
2302 
2303  // Retain the new value.
2304  newValue = EmitARCRetain(type, newValue);
2305 
2306  // Read the old value.
2307  llvm::Value *oldValue = EmitLoadOfScalar(dst, SourceLocation());
2308 
2309  // Store. We do this before the release so that any deallocs won't
2310  // see the old value.
2311  EmitStoreOfScalar(newValue, dst);
2312 
2313  // Finally, release the old value.
2314  EmitARCRelease(oldValue, dst.isARCPreciseLifetime());
2315 
2316  return newValue;
2317 }
2318 
2319 /// Autorelease the given object.
2320 /// call i8* \@objc_autorelease(i8* %value)
2322  return emitARCValueOperation(*this, value, nullptr,
2324  llvm::Intrinsic::objc_autorelease);
2325 }
2326 
2327 /// Autorelease the given object.
2328 /// call i8* \@objc_autoreleaseReturnValue(i8* %value)
2329 llvm::Value *
2331  return emitARCValueOperation(*this, value, nullptr,
2333  llvm::Intrinsic::objc_autoreleaseReturnValue,
2334  llvm::CallInst::TCK_Tail);
2335 }
2336 
2337 /// Do a fused retain/autorelease of the given object.
2338 /// call i8* \@objc_retainAutoreleaseReturnValue(i8* %value)
2339 llvm::Value *
2341  return emitARCValueOperation(*this, value, nullptr,
2343  llvm::Intrinsic::objc_retainAutoreleaseReturnValue,
2344  llvm::CallInst::TCK_Tail);
2345 }
2346 
2347 /// Do a fused retain/autorelease of the given object.
2348 /// call i8* \@objc_retainAutorelease(i8* %value)
2349 /// or
2350 /// %retain = call i8* \@objc_retainBlock(i8* %value)
2351 /// call i8* \@objc_autorelease(i8* %retain)
2353  llvm::Value *value) {
2354  if (!type->isBlockPointerType())
2355  return EmitARCRetainAutoreleaseNonBlock(value);
2356 
2357  if (isa<llvm::ConstantPointerNull>(value)) return value;
2358 
2359  llvm::Type *origType = value->getType();
2360  value = Builder.CreateBitCast(value, Int8PtrTy);
2361  value = EmitARCRetainBlock(value, /*mandatory*/ true);
2362  value = EmitARCAutorelease(value);
2363  return Builder.CreateBitCast(value, origType);
2364 }
2365 
2366 /// Do a fused retain/autorelease of the given object.
2367 /// call i8* \@objc_retainAutorelease(i8* %value)
2368 llvm::Value *
2370  return emitARCValueOperation(*this, value, nullptr,
2372  llvm::Intrinsic::objc_retainAutorelease);
2373 }
2374 
2375 /// i8* \@objc_loadWeak(i8** %addr)
2376 /// Essentially objc_autorelease(objc_loadWeakRetained(addr)).
2378  return emitARCLoadOperation(*this, addr,
2380  llvm::Intrinsic::objc_loadWeak);
2381 }
2382 
2383 /// i8* \@objc_loadWeakRetained(i8** %addr)
2385  return emitARCLoadOperation(*this, addr,
2387  llvm::Intrinsic::objc_loadWeakRetained);
2388 }
2389 
2390 /// i8* \@objc_storeWeak(i8** %addr, i8* %value)
2391 /// Returns %value.
2393  llvm::Value *value,
2394  bool ignored) {
2395  return emitARCStoreOperation(*this, addr, value,
2397  llvm::Intrinsic::objc_storeWeak, ignored);
2398 }
2399 
2400 /// i8* \@objc_initWeak(i8** %addr, i8* %value)
2401 /// Returns %value. %addr is known to not have a current weak entry.
2402 /// Essentially equivalent to:
2403 /// *addr = nil; objc_storeWeak(addr, value);
2405  // If we're initializing to null, just write null to memory; no need
2406  // to get the runtime involved. But don't do this if optimization
2407  // is enabled, because accounting for this would make the optimizer
2408  // much more complicated.
2409  if (isa<llvm::ConstantPointerNull>(value) &&
2410  CGM.getCodeGenOpts().OptimizationLevel == 0) {
2411  Builder.CreateStore(value, addr);
2412  return;
2413  }
2414 
2415  emitARCStoreOperation(*this, addr, value,
2417  llvm::Intrinsic::objc_initWeak, /*ignored*/ true);
2418 }
2419 
2420 /// void \@objc_destroyWeak(i8** %addr)
2421 /// Essentially objc_storeWeak(addr, nil).
2423  llvm::Function *&fn = CGM.getObjCEntrypoints().objc_destroyWeak;
2424  if (!fn) {
2425  fn = CGM.getIntrinsic(llvm::Intrinsic::objc_destroyWeak);
2427  }
2428 
2429  // Cast the argument to 'id*'.
2430  addr = Builder.CreateBitCast(addr, Int8PtrPtrTy);
2431 
2432  EmitNounwindRuntimeCall(fn, addr.getPointer());
2433 }
2434 
2435 /// void \@objc_moveWeak(i8** %dest, i8** %src)
2436 /// Disregards the current value in %dest. Leaves %src pointing to nothing.
2437 /// Essentially (objc_copyWeak(dest, src), objc_destroyWeak(src)).
2439  emitARCCopyOperation(*this, dst, src,
2441  llvm::Intrinsic::objc_moveWeak);
2442 }
2443 
2444 /// void \@objc_copyWeak(i8** %dest, i8** %src)
2445 /// Disregards the current value in %dest. Essentially
2446 /// objc_release(objc_initWeak(dest, objc_readWeakRetained(src)))
2448  emitARCCopyOperation(*this, dst, src,
2450  llvm::Intrinsic::objc_copyWeak);
2451 }
2452 
2454  Address SrcAddr) {
2455  llvm::Value *Object = EmitARCLoadWeakRetained(SrcAddr);
2456  Object = EmitObjCConsumeObject(Ty, Object);
2457  EmitARCStoreWeak(DstAddr, Object, false);
2458 }
2459 
2461  Address SrcAddr) {
2462  llvm::Value *Object = EmitARCLoadWeakRetained(SrcAddr);
2463  Object = EmitObjCConsumeObject(Ty, Object);
2464  EmitARCStoreWeak(DstAddr, Object, false);
2465  EmitARCDestroyWeak(SrcAddr);
2466 }
2467 
2468 /// Produce the code to do a objc_autoreleasepool_push.
2469 /// call i8* \@objc_autoreleasePoolPush(void)
2471  llvm::Function *&fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPush;
2472  if (!fn) {
2473  fn = CGM.getIntrinsic(llvm::Intrinsic::objc_autoreleasePoolPush);
2475  }
2476 
2477  return EmitNounwindRuntimeCall(fn);
2478 }
2479 
2480 /// Produce the code to do a primitive release.
2481 /// call void \@objc_autoreleasePoolPop(i8* %ptr)
2483  assert(value->getType() == Int8PtrTy);
2484 
2485  if (getInvokeDest()) {
2486  // Call the runtime method not the intrinsic if we are handling exceptions
2487  llvm::FunctionCallee &fn =
2489  if (!fn) {
2490  llvm::FunctionType *fnType =
2491  llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false);
2492  fn = CGM.CreateRuntimeFunction(fnType, "objc_autoreleasePoolPop");
2494  }
2495 
2496  // objc_autoreleasePoolPop can throw.
2497  EmitRuntimeCallOrInvoke(fn, value);
2498  } else {
2499  llvm::FunctionCallee &fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPop;
2500  if (!fn) {
2501  fn = CGM.getIntrinsic(llvm::Intrinsic::objc_autoreleasePoolPop);
2503  }
2504 
2505  EmitRuntimeCall(fn, value);
2506  }
2507 }
2508 
2509 /// Produce the code to do an MRR version objc_autoreleasepool_push.
2510 /// Which is: [[NSAutoreleasePool alloc] init];
2511 /// Where alloc is declared as: + (id) alloc; in NSAutoreleasePool class.
2512 /// init is declared as: - (id) init; in its NSObject super class.
2513 ///
2515  CGObjCRuntime &Runtime = CGM.getObjCRuntime();
2516  llvm::Value *Receiver = Runtime.EmitNSAutoreleasePoolClassRef(*this);
2517  // [NSAutoreleasePool alloc]
2518  IdentifierInfo *II = &CGM.getContext().Idents.get("alloc");
2519  Selector AllocSel = getContext().Selectors.getSelector(0, &II);
2520  CallArgList Args;
2521  RValue AllocRV =
2522  Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2523  getContext().getObjCIdType(),
2524  AllocSel, Receiver, Args);
2525 
2526  // [Receiver init]
2527  Receiver = AllocRV.getScalarVal();
2528  II = &CGM.getContext().Idents.get("init");
2529  Selector InitSel = getContext().Selectors.getSelector(0, &II);
2530  RValue InitRV =
2531  Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2532  getContext().getObjCIdType(),
2533  InitSel, Receiver, Args);
2534  return InitRV.getScalarVal();
2535 }
2536 
2537 /// Allocate the given objc object.
2538 /// call i8* \@objc_alloc(i8* %value)
2540  llvm::Type *resultType) {
2541  return emitObjCValueOperation(*this, value, resultType,
2543  "objc_alloc", /*MayThrow=*/true);
2544 }
2545 
2546 /// Allocate the given objc object.
2547 /// call i8* \@objc_allocWithZone(i8* %value)
2549  llvm::Type *resultType) {
2550  return emitObjCValueOperation(*this, value, resultType,
2552  "objc_allocWithZone", /*MayThrow=*/true);
2553 }
2554 
2556  llvm::Type *resultType) {
2557  return emitObjCValueOperation(*this, value, resultType,
2559  "objc_alloc_init", /*MayThrow=*/true);
2560 }
2561 
2562 /// Produce the code to do a primitive release.
2563 /// [tmp drain];
2565  IdentifierInfo *II = &CGM.getContext().Idents.get("drain");
2566  Selector DrainSel = getContext().Selectors.getSelector(0, &II);
2567  CallArgList Args;
2569  getContext().VoidTy, DrainSel, Arg, Args);
2570 }
2571 
2573  Address addr,
2574  QualType type) {
2576 }
2577 
2579  Address addr,
2580  QualType type) {
2582 }
2583 
2585  Address addr,
2586  QualType type) {
2587  CGF.EmitARCDestroyWeak(addr);
2588 }
2589 
2591  QualType type) {
2592  llvm::Value *value = CGF.Builder.CreateLoad(addr);
2593  CGF.EmitARCIntrinsicUse(value);
2594 }
2595 
2596 /// Autorelease the given object.
2597 /// call i8* \@objc_autorelease(i8* %value)
2599  llvm::Type *returnType) {
2600  return emitObjCValueOperation(
2601  *this, value, returnType,
2603  "objc_autorelease", /*MayThrow=*/false);
2604 }
2605 
2606 /// Retain the given object, with normal retain semantics.
2607 /// call i8* \@objc_retain(i8* %value)
2609  llvm::Type *returnType) {
2610  return emitObjCValueOperation(
2611  *this, value, returnType,
2612  CGM.getObjCEntrypoints().objc_retainRuntimeFunction, "objc_retain",
2613  /*MayThrow=*/false);
2614 }
2615 
2616 /// Release the given object.
2617 /// call void \@objc_release(i8* %value)
2619  ARCPreciseLifetime_t precise) {
2620  if (isa<llvm::ConstantPointerNull>(value)) return;
2621 
2622  llvm::FunctionCallee &fn =
2624  if (!fn) {
2625  llvm::FunctionType *fnType =
2626  llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false);
2627  fn = CGM.CreateRuntimeFunction(fnType, "objc_release");
2629  // We have Native ARC, so set nonlazybind attribute for performance
2630  if (llvm::Function *f = dyn_cast<llvm::Function>(fn.getCallee()))
2631  f->addFnAttr(llvm::Attribute::NonLazyBind);
2632  }
2633 
2634  // Cast the argument to 'id'.
2635  value = Builder.CreateBitCast(value, Int8PtrTy);
2636 
2637  // Call objc_release.
2638  llvm::CallInst *call = EmitNounwindRuntimeCall(fn, value);
2639 
2640  if (precise == ARCImpreciseLifetime) {
2641  call->setMetadata("clang.imprecise_release",
2642  llvm::MDNode::get(Builder.getContext(), None));
2643  }
2644 }
2645 
2646 namespace {
2647  struct CallObjCAutoreleasePoolObject final : EHScopeStack::Cleanup {
2648  llvm::Value *Token;
2649 
2650  CallObjCAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2651 
2652  void Emit(CodeGenFunction &CGF, Flags flags) override {
2653  CGF.EmitObjCAutoreleasePoolPop(Token);
2654  }
2655  };
2656  struct CallObjCMRRAutoreleasePoolObject final : EHScopeStack::Cleanup {
2657  llvm::Value *Token;
2658 
2659  CallObjCMRRAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2660 
2661  void Emit(CodeGenFunction &CGF, Flags flags) override {
2662  CGF.EmitObjCMRRAutoreleasePoolPop(Token);
2663  }
2664  };
2665 }
2666 
2668  if (CGM.getLangOpts().ObjCAutoRefCount)
2669  EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, Ptr);
2670  else
2671  EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, Ptr);
2672 }
2673 
2675  switch (lifetime) {
2676  case Qualifiers::OCL_None:
2680  return true;
2681 
2682  case Qualifiers::OCL_Weak:
2683  return false;
2684  }
2685 
2686  llvm_unreachable("impossible lifetime!");
2687 }
2688 
2690  LValue lvalue,
2691  QualType type) {
2692  llvm::Value *result;
2693  bool shouldRetain = shouldRetainObjCLifetime(type.getObjCLifetime());
2694  if (shouldRetain) {
2695  result = CGF.EmitLoadOfLValue(lvalue, SourceLocation()).getScalarVal();
2696  } else {
2697  assert(type.getObjCLifetime() == Qualifiers::OCL_Weak);
2698  result = CGF.EmitARCLoadWeakRetained(lvalue.getAddress());
2699  }
2700  return TryEmitResult(result, !shouldRetain);
2701 }
2702 
2704  const Expr *e) {
2705  e = e->IgnoreParens();
2706  QualType type = e->getType();
2707 
2708  // If we're loading retained from a __strong xvalue, we can avoid
2709  // an extra retain/release pair by zeroing out the source of this
2710  // "move" operation.
2711  if (e->isXValue() &&
2712  !type.isConstQualified() &&
2714  // Emit the lvalue.
2715  LValue lv = CGF.EmitLValue(e);
2716 
2717  // Load the object pointer.
2718  llvm::Value *result = CGF.EmitLoadOfLValue(lv,
2720 
2721  // Set the source pointer to NULL.
2723 
2724  return TryEmitResult(result, true);
2725  }
2726 
2727  // As a very special optimization, in ARC++, if the l-value is the
2728  // result of a non-volatile assignment, do a simple retain of the
2729  // result of the call to objc_storeWeak instead of reloading.
2730  if (CGF.getLangOpts().CPlusPlus &&
2731  !type.isVolatileQualified() &&
2733  isa<BinaryOperator>(e) &&
2734  cast<BinaryOperator>(e)->getOpcode() == BO_Assign)
2735  return TryEmitResult(CGF.EmitScalarExpr(e), false);
2736 
2737  // Try to emit code for scalar constant instead of emitting LValue and
2738  // loading it because we are not guaranteed to have an l-value. One of such
2739  // cases is DeclRefExpr referencing non-odr-used constant-evaluated variable.
2740  if (const auto *decl_expr = dyn_cast<DeclRefExpr>(e)) {
2741  auto *DRE = const_cast<DeclRefExpr *>(decl_expr);
2742  if (CodeGenFunction::ConstantEmission constant = CGF.tryEmitAsConstant(DRE))
2743  return TryEmitResult(CGF.emitScalarConstant(constant, DRE),
2745  }
2746 
2747  return tryEmitARCRetainLoadOfScalar(CGF, CGF.EmitLValue(e), type);
2748 }
2749 
2750 typedef llvm::function_ref<llvm::Value *(CodeGenFunction &CGF,
2751  llvm::Value *value)>
2753 
2754 /// Insert code immediately after a call.
2756  llvm::Value *value,
2757  ValueTransform doAfterCall,
2758  ValueTransform doFallback) {
2759  if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(value)) {
2760  CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
2761 
2762  // Place the retain immediately following the call.
2763  CGF.Builder.SetInsertPoint(call->getParent(),
2764  ++llvm::BasicBlock::iterator(call));
2765  value = doAfterCall(CGF, value);
2766 
2767  CGF.Builder.restoreIP(ip);
2768  return value;
2769  } else if (llvm::InvokeInst *invoke = dyn_cast<llvm::InvokeInst>(value)) {
2770  CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
2771 
2772  // Place the retain at the beginning of the normal destination block.
2773  llvm::BasicBlock *BB = invoke->getNormalDest();
2774  CGF.Builder.SetInsertPoint(BB, BB->begin());
2775  value = doAfterCall(CGF, value);
2776 
2777  CGF.Builder.restoreIP(ip);
2778  return value;
2779 
2780  // Bitcasts can arise because of related-result returns. Rewrite
2781  // the operand.
2782  } else if (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(value)) {
2783  llvm::Value *operand = bitcast->getOperand(0);
2784  operand = emitARCOperationAfterCall(CGF, operand, doAfterCall, doFallback);
2785  bitcast->setOperand(0, operand);
2786  return bitcast;
2787 
2788  // Generic fall-back case.
2789  } else {
2790  // Retain using the non-block variant: we never need to do a copy
2791  // of a block that's been returned to us.
2792  return doFallback(CGF, value);
2793  }
2794 }
2795 
2796 /// Given that the given expression is some sort of call (which does
2797 /// not return retained), emit a retain following it.
2799  const Expr *e) {
2800  llvm::Value *value = CGF.EmitScalarExpr(e);
2801  return emitARCOperationAfterCall(CGF, value,
2802  [](CodeGenFunction &CGF, llvm::Value *value) {
2803  return CGF.EmitARCRetainAutoreleasedReturnValue(value);
2804  },
2805  [](CodeGenFunction &CGF, llvm::Value *value) {
2806  return CGF.EmitARCRetainNonBlock(value);
2807  });
2808 }
2809 
2810 /// Given that the given expression is some sort of call (which does
2811 /// not return retained), perform an unsafeClaim following it.
2813  const Expr *e) {
2814  llvm::Value *value = CGF.EmitScalarExpr(e);
2815  return emitARCOperationAfterCall(CGF, value,
2816  [](CodeGenFunction &CGF, llvm::Value *value) {
2818  },
2819  [](CodeGenFunction &CGF, llvm::Value *value) {
2820  return value;
2821  });
2822 }
2823 
2825  bool allowUnsafeClaim) {
2826  if (allowUnsafeClaim &&
2828  return emitARCUnsafeClaimCallResult(*this, E);
2829  } else {
2830  llvm::Value *value = emitARCRetainCallResult(*this, E);
2831  return EmitObjCConsumeObject(E->getType(), value);
2832  }
2833 }
2834 
2835 /// Determine whether it might be important to emit a separate
2836 /// objc_retain_block on the result of the given expression, or
2837 /// whether it's okay to just emit it in a +1 context.
2838 static bool shouldEmitSeparateBlockRetain(const Expr *e) {
2839  assert(e->getType()->isBlockPointerType());
2840  e = e->IgnoreParens();
2841 
2842  // For future goodness, emit block expressions directly in +1
2843  // contexts if we can.
2844  if (isa<BlockExpr>(e))
2845  return false;
2846 
2847  if (const CastExpr *cast = dyn_cast<CastExpr>(e)) {
2848  switch (cast->getCastKind()) {
2849  // Emitting these operations in +1 contexts is goodness.
2850  case CK_LValueToRValue:
2851  case CK_ARCReclaimReturnedObject:
2852  case CK_ARCConsumeObject:
2853  case CK_ARCProduceObject:
2854  return false;
2855 
2856  // These operations preserve a block type.
2857  case CK_NoOp:
2858  case CK_BitCast:
2859  return shouldEmitSeparateBlockRetain(cast->getSubExpr());
2860 
2861  // These operations are known to be bad (or haven't been considered).
2862  case CK_AnyPointerToBlockPointerCast:
2863  default:
2864  return true;
2865  }
2866  }
2867 
2868  return true;
2869 }
2870 
2871 namespace {
2872 /// A CRTP base class for emitting expressions of retainable object
2873 /// pointer type in ARC.
2874 template <typename Impl, typename Result> class ARCExprEmitter {
2875 protected:
2876  CodeGenFunction &CGF;
2877  Impl &asImpl() { return *static_cast<Impl*>(this); }
2878 
2879  ARCExprEmitter(CodeGenFunction &CGF) : CGF(CGF) {}
2880 
2881 public:
2882  Result visit(const Expr *e);
2883  Result visitCastExpr(const CastExpr *e);
2884  Result visitPseudoObjectExpr(const PseudoObjectExpr *e);
2885  Result visitBlockExpr(const BlockExpr *e);
2886  Result visitBinaryOperator(const BinaryOperator *e);
2887  Result visitBinAssign(const BinaryOperator *e);
2888  Result visitBinAssignUnsafeUnretained(const BinaryOperator *e);
2889  Result visitBinAssignAutoreleasing(const BinaryOperator *e);
2890  Result visitBinAssignWeak(const BinaryOperator *e);
2891  Result visitBinAssignStrong(const BinaryOperator *e);
2892 
2893  // Minimal implementation:
2894  // Result visitLValueToRValue(const Expr *e)
2895  // Result visitConsumeObject(const Expr *e)
2896  // Result visitExtendBlockObject(const Expr *e)
2897  // Result visitReclaimReturnedObject(const Expr *e)
2898  // Result visitCall(const Expr *e)
2899  // Result visitExpr(const Expr *e)
2900  //
2901  // Result emitBitCast(Result result, llvm::Type *resultType)
2902  // llvm::Value *getValueOfResult(Result result)
2903 };
2904 }
2905 
2906 /// Try to emit a PseudoObjectExpr under special ARC rules.
2907 ///
2908 /// This massively duplicates emitPseudoObjectRValue.
2909 template <typename Impl, typename Result>
2910 Result
2911 ARCExprEmitter<Impl,Result>::visitPseudoObjectExpr(const PseudoObjectExpr *E) {
2913 
2914  // Find the result expression.
2915  const Expr *resultExpr = E->getResultExpr();
2916  assert(resultExpr);
2917  Result result;
2918 
2920  i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
2921  const Expr *semantic = *i;
2922 
2923  // If this semantic expression is an opaque value, bind it
2924  // to the result of its source expression.
2925  if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
2927  OVMA opaqueData;
2928 
2929  // If this semantic is the result of the pseudo-object
2930  // expression, try to evaluate the source as +1.
2931  if (ov == resultExpr) {
2932  assert(!OVMA::shouldBindAsLValue(ov));
2933  result = asImpl().visit(ov->getSourceExpr());
2934  opaqueData = OVMA::bind(CGF, ov,
2935  RValue::get(asImpl().getValueOfResult(result)));
2936 
2937  // Otherwise, just bind it.
2938  } else {
2939  opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
2940  }
2941  opaques.push_back(opaqueData);
2942 
2943  // Otherwise, if the expression is the result, evaluate it
2944  // and remember the result.
2945  } else if (semantic == resultExpr) {
2946  result = asImpl().visit(semantic);
2947 
2948  // Otherwise, evaluate the expression in an ignored context.
2949  } else {
2950  CGF.EmitIgnoredExpr(semantic);
2951  }
2952  }
2953 
2954  // Unbind all the opaques now.
2955  for (unsigned i = 0, e = opaques.size(); i != e; ++i)
2956  opaques[i].unbind(CGF);
2957 
2958  return result;
2959 }
2960 
2961 template <typename Impl, typename Result>
2962 Result ARCExprEmitter<Impl, Result>::visitBlockExpr(const BlockExpr *e) {
2963  // The default implementation just forwards the expression to visitExpr.
2964  return asImpl().visitExpr(e);
2965 }
2966 
2967 template <typename Impl, typename Result>
2968 Result ARCExprEmitter<Impl,Result>::visitCastExpr(const CastExpr *e) {
2969  switch (e->getCastKind()) {
2970 
2971  // No-op casts don't change the type, so we just ignore them.
2972  case CK_NoOp:
2973  return asImpl().visit(e->getSubExpr());
2974 
2975  // These casts can change the type.
2976  case CK_CPointerToObjCPointerCast:
2977  case CK_BlockPointerToObjCPointerCast:
2978  case CK_AnyPointerToBlockPointerCast:
2979  case CK_BitCast: {
2980  llvm::Type *resultType = CGF.ConvertType(e->getType());
2981  assert(e->getSubExpr()->getType()->hasPointerRepresentation());
2982  Result result = asImpl().visit(e->getSubExpr());
2983  return asImpl().emitBitCast(result, resultType);
2984  }
2985 
2986  // Handle some casts specially.
2987  case CK_LValueToRValue:
2988  return asImpl().visitLValueToRValue(e->getSubExpr());
2989  case CK_ARCConsumeObject:
2990  return asImpl().visitConsumeObject(e->getSubExpr());
2991  case CK_ARCExtendBlockObject:
2992  return asImpl().visitExtendBlockObject(e->getSubExpr());
2993  case CK_ARCReclaimReturnedObject:
2994  return asImpl().visitReclaimReturnedObject(e->getSubExpr());
2995 
2996  // Otherwise, use the default logic.
2997  default:
2998  return asImpl().visitExpr(e);
2999  }
3000 }
3001 
3002 template <typename Impl, typename Result>
3003 Result
3004 ARCExprEmitter<Impl,Result>::visitBinaryOperator(const BinaryOperator *e) {
3005  switch (e->getOpcode()) {
3006  case BO_Comma:
3007  CGF.EmitIgnoredExpr(e->getLHS());
3008  CGF.EnsureInsertPoint();
3009  return asImpl().visit(e->getRHS());
3010 
3011  case BO_Assign:
3012  return asImpl().visitBinAssign(e);
3013 
3014  default:
3015  return asImpl().visitExpr(e);
3016  }
3017 }
3018 
3019 template <typename Impl, typename Result>
3020 Result ARCExprEmitter<Impl,Result>::visitBinAssign(const BinaryOperator *e) {
3021  switch (e->getLHS()->getType().getObjCLifetime()) {
3023  return asImpl().visitBinAssignUnsafeUnretained(e);
3024 
3025  case Qualifiers::OCL_Weak:
3026  return asImpl().visitBinAssignWeak(e);
3027 
3029  return asImpl().visitBinAssignAutoreleasing(e);
3030 
3032  return asImpl().visitBinAssignStrong(e);
3033 
3034  case Qualifiers::OCL_None:
3035  return asImpl().visitExpr(e);
3036  }
3037  llvm_unreachable("bad ObjC ownership qualifier");
3038 }
3039 
3040 /// The default rule for __unsafe_unretained emits the RHS recursively,
3041 /// stores into the unsafe variable, and propagates the result outward.
3042 template <typename Impl, typename Result>
3043 Result ARCExprEmitter<Impl,Result>::
3044  visitBinAssignUnsafeUnretained(const BinaryOperator *e) {
3045  // Recursively emit the RHS.
3046  // For __block safety, do this before emitting the LHS.
3047  Result result = asImpl().visit(e->getRHS());
3048 
3049  // Perform the store.
3050  LValue lvalue =
3052  CGF.EmitStoreThroughLValue(RValue::get(asImpl().getValueOfResult(result)),
3053  lvalue);
3054 
3055  return result;
3056 }
3057 
3058 template <typename Impl, typename Result>
3059 Result
3060 ARCExprEmitter<Impl,Result>::visitBinAssignAutoreleasing(const BinaryOperator *e) {
3061  return asImpl().visitExpr(e);
3062 }
3063 
3064 template <typename Impl, typename Result>
3065 Result
3066 ARCExprEmitter<Impl,Result>::visitBinAssignWeak(const BinaryOperator *e) {
3067  return asImpl().visitExpr(e);
3068 }
3069 
3070 template <typename Impl, typename Result>
3071 Result
3072 ARCExprEmitter<Impl,Result>::visitBinAssignStrong(const BinaryOperator *e) {
3073  return asImpl().visitExpr(e);
3074 }
3075 
3076 /// The general expression-emission logic.
3077 template <typename Impl, typename Result>
3078 Result ARCExprEmitter<Impl,Result>::visit(const Expr *e) {
3079  // We should *never* see a nested full-expression here, because if
3080  // we fail to emit at +1, our caller must not retain after we close
3081  // out the full-expression. This isn't as important in the unsafe
3082  // emitter.
3083  assert(!isa<ExprWithCleanups>(e));
3084 
3085  // Look through parens, __extension__, generic selection, etc.
3086  e = e->IgnoreParens();
3087 
3088  // Handle certain kinds of casts.
3089  if (const CastExpr *ce = dyn_cast<CastExpr>(e)) {
3090  return asImpl().visitCastExpr(ce);
3091 
3092  // Handle the comma operator.
3093  } else if (auto op = dyn_cast<BinaryOperator>(e)) {
3094  return asImpl().visitBinaryOperator(op);
3095 
3096  // TODO: handle conditional operators here
3097 
3098  // For calls and message sends, use the retained-call logic.
3099  // Delegate inits are a special case in that they're the only
3100  // returns-retained expression that *isn't* surrounded by
3101  // a consume.
3102  } else if (isa<CallExpr>(e) ||
3103  (isa<ObjCMessageExpr>(e) &&
3104  !cast<ObjCMessageExpr>(e)->isDelegateInitCall())) {
3105  return asImpl().visitCall(e);
3106 
3107  // Look through pseudo-object expressions.
3108  } else if (const PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
3109  return asImpl().visitPseudoObjectExpr(pseudo);
3110  } else if (auto *be = dyn_cast<BlockExpr>(e))
3111  return asImpl().visitBlockExpr(be);
3112 
3113  return asImpl().visitExpr(e);
3114 }
3115 
3116 namespace {
3117 
3118 /// An emitter for +1 results.
3119 struct ARCRetainExprEmitter :
3120  public ARCExprEmitter<ARCRetainExprEmitter, TryEmitResult> {
3121 
3122  ARCRetainExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {}
3123 
3124  llvm::Value *getValueOfResult(TryEmitResult result) {
3125  return result.getPointer();
3126  }
3127 
3128  TryEmitResult emitBitCast(TryEmitResult result, llvm::Type *resultType) {
3129  llvm::Value *value = result.getPointer();
3130  value = CGF.Builder.CreateBitCast(value, resultType);
3131  result.setPointer(value);
3132  return result;
3133  }
3134 
3135  TryEmitResult visitLValueToRValue(const Expr *e) {
3136  return tryEmitARCRetainLoadOfScalar(CGF, e);
3137  }
3138 
3139  /// For consumptions, just emit the subexpression and thus elide
3140  /// the retain/release pair.
3141  TryEmitResult visitConsumeObject(const Expr *e) {
3142  llvm::Value *result = CGF.EmitScalarExpr(e);
3143  return TryEmitResult(result, true);
3144  }
3145 
3146  TryEmitResult visitBlockExpr(const BlockExpr *e) {
3147  TryEmitResult result = visitExpr(e);
3148  // Avoid the block-retain if this is a block literal that doesn't need to be
3149  // copied to the heap.
3150  if (e->getBlockDecl()->canAvoidCopyToHeap())
3151  result.setInt(true);
3152  return result;
3153  }
3154 
3155  /// Block extends are net +0. Naively, we could just recurse on
3156  /// the subexpression, but actually we need to ensure that the
3157  /// value is copied as a block, so there's a little filter here.
3158  TryEmitResult visitExtendBlockObject(const Expr *e) {
3159  llvm::Value *result; // will be a +0 value
3160 
3161  // If we can't safely assume the sub-expression will produce a
3162  // block-copied value, emit the sub-expression at +0.
3164  result = CGF.EmitScalarExpr(e);
3165 
3166  // Otherwise, try to emit the sub-expression at +1 recursively.
3167  } else {
3168  TryEmitResult subresult = asImpl().visit(e);
3169 
3170  // If that produced a retained value, just use that.
3171  if (subresult.getInt()) {
3172  return subresult;
3173  }
3174 
3175  // Otherwise it's +0.
3176  result = subresult.getPointer();
3177  }
3178 
3179  // Retain the object as a block.
3180  result = CGF.EmitARCRetainBlock(result, /*mandatory*/ true);
3181  return TryEmitResult(result, true);
3182  }
3183 
3184  /// For reclaims, emit the subexpression as a retained call and
3185  /// skip the consumption.
3186  TryEmitResult visitReclaimReturnedObject(const Expr *e) {
3187  llvm::Value *result = emitARCRetainCallResult(CGF, e);
3188  return TryEmitResult(result, true);
3189  }
3190 
3191  /// When we have an undecorated call, retroactively do a claim.
3192  TryEmitResult visitCall(const Expr *e) {
3193  llvm::Value *result = emitARCRetainCallResult(CGF, e);
3194  return TryEmitResult(result, true);
3195  }
3196 
3197  // TODO: maybe special-case visitBinAssignWeak?
3198 
3199  TryEmitResult visitExpr(const Expr *e) {
3200  // We didn't find an obvious production, so emit what we've got and
3201  // tell the caller that we didn't manage to retain.
3202  llvm::Value *result = CGF.EmitScalarExpr(e);
3203  return TryEmitResult(result, false);
3204  }
3205 };
3206 }
3207 
3208 static TryEmitResult
3210  return ARCRetainExprEmitter(CGF).visit(e);
3211 }
3212 
3214  LValue lvalue,
3215  QualType type) {
3216  TryEmitResult result = tryEmitARCRetainLoadOfScalar(CGF, lvalue, type);
3217  llvm::Value *value = result.getPointer();
3218  if (!result.getInt())
3219  value = CGF.EmitARCRetain(type, value);
3220  return value;
3221 }
3222 
3223 /// EmitARCRetainScalarExpr - Semantically equivalent to
3224 /// EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a
3225 /// best-effort attempt to peephole expressions that naturally produce
3226 /// retained objects.
3228  // The retain needs to happen within the full-expression.
3229  if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
3230  enterFullExpression(cleanups);
3231  RunCleanupsScope scope(*this);
3232  return EmitARCRetainScalarExpr(cleanups->getSubExpr());
3233  }
3234 
3235  TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
3236  llvm::Value *value = result.getPointer();
3237  if (!result.getInt())
3238  value = EmitARCRetain(e->getType(), value);
3239  return value;
3240 }
3241 
3242 llvm::Value *
3244  // The retain needs to happen within the full-expression.
3245  if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
3246  enterFullExpression(cleanups);
3247  RunCleanupsScope scope(*this);
3248  return EmitARCRetainAutoreleaseScalarExpr(cleanups->getSubExpr());
3249  }
3250 
3251  TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
3252  llvm::Value *value = result.getPointer();
3253  if (result.getInt())
3254  value = EmitARCAutorelease(value);
3255  else
3256  value = EmitARCRetainAutorelease(e->getType(), value);
3257  return value;
3258 }
3259 
3261  llvm::Value *result;
3262  bool doRetain;
3263 
3265  result = EmitScalarExpr(e);
3266  doRetain = true;
3267  } else {
3268  TryEmitResult subresult = tryEmitARCRetainScalarExpr(*this, e);
3269  result = subresult.getPointer();
3270  doRetain = !subresult.getInt();
3271  }
3272 
3273  if (doRetain)
3274  result = EmitARCRetainBlock(result, /*mandatory*/ true);
3275  return EmitObjCConsumeObject(e->getType(), result);
3276 }
3277 
3279  // In ARC, retain and autorelease the expression.
3280  if (getLangOpts().ObjCAutoRefCount) {
3281  // Do so before running any cleanups for the full-expression.
3282  // EmitARCRetainAutoreleaseScalarExpr does this for us.
3284  }
3285 
3286  // Otherwise, use the normal scalar-expression emission. The
3287  // exception machinery doesn't do anything special with the
3288  // exception like retaining it, so there's no safety associated with
3289  // only running cleanups after the throw has started, and when it
3290  // matters it tends to be substantially inferior code.
3291  return EmitScalarExpr(expr);
3292 }
3293 
3294 namespace {
3295 
3296 /// An emitter for assigning into an __unsafe_unretained context.
3297 struct ARCUnsafeUnretainedExprEmitter :
3298  public ARCExprEmitter<ARCUnsafeUnretainedExprEmitter, llvm::Value*> {
3299 
3300  ARCUnsafeUnretainedExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {}
3301 
3302  llvm::Value *getValueOfResult(llvm::Value *value) {
3303  return value;
3304  }
3305 
3306  llvm::Value *emitBitCast(llvm::Value *value, llvm::Type *resultType) {
3307  return CGF.Builder.CreateBitCast(value, resultType);
3308  }
3309 
3310  llvm::Value *visitLValueToRValue(const Expr *e) {
3311  return CGF.EmitScalarExpr(e);
3312  }
3313 
3314  /// For consumptions, just emit the subexpression and perform the
3315  /// consumption like normal.
3316  llvm::Value *visitConsumeObject(const Expr *e) {
3317  llvm::Value *value = CGF.EmitScalarExpr(e);
3318  return CGF.EmitObjCConsumeObject(e->getType(), value);
3319  }
3320 
3321  /// No special logic for block extensions. (This probably can't
3322  /// actually happen in this emitter, though.)
3323  llvm::Value *visitExtendBlockObject(const Expr *e) {
3324  return CGF.EmitARCExtendBlockObject(e);
3325  }
3326 
3327  /// For reclaims, perform an unsafeClaim if that's enabled.
3328  llvm::Value *visitReclaimReturnedObject(const Expr *e) {
3329  return CGF.EmitARCReclaimReturnedObject(e, /*unsafe*/ true);
3330  }
3331 
3332  /// When we have an undecorated call, just emit it without adding
3333  /// the unsafeClaim.
3334  llvm::Value *visitCall(const Expr *e) {
3335  return CGF.EmitScalarExpr(e);
3336  }
3337 
3338  /// Just do normal scalar emission in the default case.
3339  llvm::Value *visitExpr(const Expr *e) {
3340  return CGF.EmitScalarExpr(e);
3341  }
3342 };
3343 }
3344 
3346  const Expr *e) {
3347  return ARCUnsafeUnretainedExprEmitter(CGF).visit(e);
3348 }
3349 
3350 /// EmitARCUnsafeUnretainedScalarExpr - Semantically equivalent to
3351 /// immediately releasing the resut of EmitARCRetainScalarExpr, but
3352 /// avoiding any spurious retains, including by performing reclaims
3353 /// with objc_unsafeClaimAutoreleasedReturnValue.
3355  // Look through full-expressions.
3356  if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
3357  enterFullExpression(cleanups);
3358  RunCleanupsScope scope(*this);
3359  return emitARCUnsafeUnretainedScalarExpr(*this, cleanups->getSubExpr());
3360  }
3361 
3362  return emitARCUnsafeUnretainedScalarExpr(*this, e);
3363 }
3364 
3365 std::pair<LValue,llvm::Value*>
3367  bool ignored) {
3368  // Evaluate the RHS first. If we're ignoring the result, assume
3369  // that we can emit at an unsafe +0.
3370  llvm::Value *value;
3371  if (ignored) {
3373  } else {
3374  value = EmitScalarExpr(e->getRHS());
3375  }
3376 
3377  // Emit the LHS and perform the store.
3378  LValue lvalue = EmitLValue(e->getLHS());
3379  EmitStoreOfScalar(value, lvalue);
3380 
3381  return std::pair<LValue,llvm::Value*>(std::move(lvalue), value);
3382 }
3383 
3384 std::pair<LValue,llvm::Value*>
3386  bool ignored) {
3387  // Evaluate the RHS first.
3388  TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e->getRHS());
3389  llvm::Value *value = result.getPointer();
3390 
3391  bool hasImmediateRetain = result.getInt();
3392 
3393  // If we didn't emit a retained object, and the l-value is of block
3394  // type, then we need to emit the block-retain immediately in case
3395  // it invalidates the l-value.
3396  if (!hasImmediateRetain && e->getType()->isBlockPointerType()) {
3397  value = EmitARCRetainBlock(value, /*mandatory*/ false);
3398  hasImmediateRetain = true;
3399  }
3400 
3401  LValue lvalue = EmitLValue(e->getLHS());
3402 
3403  // If the RHS was emitted retained, expand this.
3404  if (hasImmediateRetain) {
3405  llvm::Value *oldValue = EmitLoadOfScalar(lvalue, SourceLocation());
3406  EmitStoreOfScalar(value, lvalue);
3407  EmitARCRelease(oldValue, lvalue.isARCPreciseLifetime());
3408  } else {
3409  value = EmitARCStoreStrong(lvalue, value, ignored);
3410  }
3411 
3412  return std::pair<LValue,llvm::Value*>(lvalue, value);
3413 }
3414 
3415 std::pair<LValue,llvm::Value*>
3418  LValue lvalue = EmitLValue(e->getLHS());
3419 
3420  EmitStoreOfScalar(value, lvalue);
3421 
3422  return std::pair<LValue,llvm::Value*>(lvalue, value);
3423 }
3424 
3426  const ObjCAutoreleasePoolStmt &ARPS) {
3427  const Stmt *subStmt = ARPS.getSubStmt();
3428  const CompoundStmt &S = cast<CompoundStmt>(*subStmt);
3429 
3430  CGDebugInfo *DI = getDebugInfo();
3431  if (DI)
3433 
3434  // Keep track of the current cleanup stack depth.
3435  RunCleanupsScope Scope(*this);
3436  if (CGM.getLangOpts().ObjCRuntime.hasNativeARC()) {
3438  EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, token);
3439  } else {
3441  EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, token);
3442  }
3443 
3444  for (const auto *I : S.body())
3445  EmitStmt(I);
3446 
3447  if (DI)
3449 }
3450 
3451 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
3452 /// make sure it survives garbage collection until this point.
3454  // We just use an inline assembly.
3455  llvm::FunctionType *extenderType
3456  = llvm::FunctionType::get(VoidTy, VoidPtrTy, RequiredArgs::All);
3457  llvm::InlineAsm *extender = llvm::InlineAsm::get(extenderType,
3458  /* assembly */ "",
3459  /* constraints */ "r",
3460  /* side effects */ true);
3461 
3462  object = Builder.CreateBitCast(object, VoidPtrTy);
3463  EmitNounwindRuntimeCall(extender, object);
3464 }
3465 
3466 /// GenerateObjCAtomicSetterCopyHelperFunction - Given a c++ object type with
3467 /// non-trivial copy assignment function, produce following helper function.
3468 /// static void copyHelper(Ty *dest, const Ty *source) { *dest = *source; }
3469 ///
3470 llvm::Constant *
3472  const ObjCPropertyImplDecl *PID) {
3473  if (!getLangOpts().CPlusPlus ||
3475  return nullptr;
3476  QualType Ty = PID->getPropertyIvarDecl()->getType();
3477  if (!Ty->isRecordType())
3478  return nullptr;
3479  const ObjCPropertyDecl *PD = PID->getPropertyDecl();
3481  return nullptr;
3482  llvm::Constant *HelperFn = nullptr;
3483  if (hasTrivialSetExpr(PID))
3484  return nullptr;
3485  assert(PID->getSetterCXXAssignment() && "SetterCXXAssignment - null");
3486  if ((HelperFn = CGM.getAtomicSetterHelperFnMap(Ty)))
3487  return HelperFn;
3488 
3489  ASTContext &C = getContext();
3490  IdentifierInfo *II
3491  = &CGM.getContext().Idents.get("__assign_helper_atomic_property_");
3492 
3493  QualType ReturnTy = C.VoidTy;
3494  QualType DestTy = C.getPointerType(Ty);
3495  QualType SrcTy = Ty;
3496  SrcTy.addConst();
3497  SrcTy = C.getPointerType(SrcTy);
3498 
3499  SmallVector<QualType, 2> ArgTys;
3500  ArgTys.push_back(DestTy);
3501  ArgTys.push_back(SrcTy);
3502  QualType FunctionTy = C.getFunctionType(ReturnTy, ArgTys, {});
3503 
3506  FunctionTy, nullptr, SC_Static, false, false);
3507 
3508  FunctionArgList args;
3509  ImplicitParamDecl DstDecl(C, FD, SourceLocation(), /*Id=*/nullptr, DestTy,
3511  args.push_back(&DstDecl);
3512  ImplicitParamDecl SrcDecl(C, FD, SourceLocation(), /*Id=*/nullptr, SrcTy,
3514  args.push_back(&SrcDecl);
3515 
3516  const CGFunctionInfo &FI =
3517  CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, args);
3518 
3519  llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
3520 
3521  llvm::Function *Fn =
3523  "__assign_helper_atomic_property_",
3524  &CGM.getModule());
3525 
3527 
3528  StartFunction(FD, ReturnTy, Fn, FI, args);
3529 
3530  DeclRefExpr DstExpr(getContext(), &DstDecl, false, DestTy, VK_RValue,
3531  SourceLocation());
3532  UnaryOperator DST(&DstExpr, UO_Deref, DestTy->getPointeeType(),
3533  VK_LValue, OK_Ordinary, SourceLocation(), false);
3534 
3535  DeclRefExpr SrcExpr(getContext(), &SrcDecl, false, SrcTy, VK_RValue,
3536  SourceLocation());
3537  UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(),
3538  VK_LValue, OK_Ordinary, SourceLocation(), false);
3539 
3540  Expr *Args[2] = { &DST, &SRC };
3541  CallExpr *CalleeExp = cast<CallExpr>(PID->getSetterCXXAssignment());
3543  C, OO_Equal, CalleeExp->getCallee(), Args, DestTy->getPointeeType(),
3545 
3546  EmitStmt(TheCall);
3547 
3548  FinishFunction();
3549  HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
3550  CGM.setAtomicSetterHelperFnMap(Ty, HelperFn);
3551  return HelperFn;
3552 }
3553 
3554 llvm::Constant *
3556  const ObjCPropertyImplDecl *PID) {
3557  if (!getLangOpts().CPlusPlus ||
3559  return nullptr;
3560  const ObjCPropertyDecl *PD = PID->getPropertyDecl();
3561  QualType Ty = PD->getType();
3562  if (!Ty->isRecordType())
3563  return nullptr;
3565  return nullptr;
3566  llvm::Constant *HelperFn = nullptr;
3567  if (hasTrivialGetExpr(PID))
3568  return nullptr;
3569  assert(PID->getGetterCXXConstructor() && "getGetterCXXConstructor - null");
3570  if ((HelperFn = CGM.getAtomicGetterHelperFnMap(Ty)))
3571  return HelperFn;
3572 
3573  ASTContext &C = getContext();
3574  IdentifierInfo *II =
3575  &CGM.getContext().Idents.get("__copy_helper_atomic_property_");
3576 
3577  QualType ReturnTy = C.VoidTy;
3578  QualType DestTy = C.getPointerType(Ty);
3579  QualType SrcTy = Ty;
3580  SrcTy.addConst();
3581  SrcTy = C.getPointerType(SrcTy);
3582 
3583  SmallVector<QualType, 2> ArgTys;
3584  ArgTys.push_back(DestTy);
3585  ArgTys.push_back(SrcTy);
3586  QualType FunctionTy = C.getFunctionType(ReturnTy, ArgTys, {});
3587 
3590  FunctionTy, nullptr, SC_Static, false, false);
3591 
3592  FunctionArgList args;
3593  ImplicitParamDecl DstDecl(C, FD, SourceLocation(), /*Id=*/nullptr, DestTy,
3595  args.push_back(&DstDecl);
3596  ImplicitParamDecl SrcDecl(C, FD, SourceLocation(), /*Id=*/nullptr, SrcTy,
3598  args.push_back(&SrcDecl);
3599 
3600  const CGFunctionInfo &FI =
3601  CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, args);
3602 
3603  llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
3604 
3605  llvm::Function *Fn = llvm::Function::Create(
3606  LTy, llvm::GlobalValue::InternalLinkage, "__copy_helper_atomic_property_",
3607  &CGM.getModule());
3608 
3610 
3611  StartFunction(FD, ReturnTy, Fn, FI, args);
3612 
3613  DeclRefExpr SrcExpr(getContext(), &SrcDecl, false, SrcTy, VK_RValue,
3614  SourceLocation());
3615 
3616  UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(),
3617  VK_LValue, OK_Ordinary, SourceLocation(), false);
3618 
3619  CXXConstructExpr *CXXConstExpr =
3620  cast<CXXConstructExpr>(PID->getGetterCXXConstructor());
3621 
3622  SmallVector<Expr*, 4> ConstructorArgs;
3623  ConstructorArgs.push_back(&SRC);
3624  ConstructorArgs.append(std::next(CXXConstExpr->arg_begin()),
3625  CXXConstExpr->arg_end());
3626 
3627  CXXConstructExpr *TheCXXConstructExpr =
3629  CXXConstExpr->getConstructor(),
3630  CXXConstExpr->isElidable(),
3631  ConstructorArgs,
3632  CXXConstExpr->hadMultipleCandidates(),
3633  CXXConstExpr->isListInitialization(),
3634  CXXConstExpr->isStdInitListInitialization(),
3635  CXXConstExpr->requiresZeroInitialization(),
3636  CXXConstExpr->getConstructionKind(),
3637  SourceRange());
3638 
3639  DeclRefExpr DstExpr(getContext(), &DstDecl, false, DestTy, VK_RValue,
3640  SourceLocation());
3641 
3642  RValue DV = EmitAnyExpr(&DstExpr);
3643  CharUnits Alignment
3644  = getContext().getTypeAlignInChars(TheCXXConstructExpr->getType());
3645  EmitAggExpr(TheCXXConstructExpr,
3646  AggValueSlot::forAddr(Address(DV.getScalarVal(), Alignment),
3647  Qualifiers(),
3652 
3653  FinishFunction();
3654  HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
3655  CGM.setAtomicGetterHelperFnMap(Ty, HelperFn);
3656  return HelperFn;
3657 }
3658 
3659 llvm::Value *
3661  // Get selectors for retain/autorelease.
3662  IdentifierInfo *CopyID = &getContext().Idents.get("copy");
3663  Selector CopySelector =
3665  IdentifierInfo *AutoreleaseID = &getContext().Idents.get("autorelease");
3666  Selector AutoreleaseSelector =
3667  getContext().Selectors.getNullarySelector(AutoreleaseID);
3668 
3669  // Emit calls to retain/autorelease.
3670  CGObjCRuntime &Runtime = CGM.getObjCRuntime();
3671  llvm::Value *Val = Block;
3672  RValue Result;
3673  Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
3674  Ty, CopySelector,
3675  Val, CallArgList(), nullptr, nullptr);
3676  Val = Result.getScalarVal();
3677  Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
3678  Ty, AutoreleaseSelector,
3679  Val, CallArgList(), nullptr, nullptr);
3680  Val = Result.getScalarVal();
3681  return Val;
3682 }
3683 
3684 llvm::Value *
3686  assert(Args.size() == 3 && "Expected 3 argument here!");
3687 
3688  if (!CGM.IsOSVersionAtLeastFn) {
3689  llvm::FunctionType *FTy =
3690  llvm::FunctionType::get(Int32Ty, {Int32Ty, Int32Ty, Int32Ty}, false);
3691  CGM.IsOSVersionAtLeastFn =
3692  CGM.CreateRuntimeFunction(FTy, "__isOSVersionAtLeast");
3693  }
3694 
3695  llvm::Value *CallRes =
3697 
3698  return Builder.CreateICmpNE(CallRes, llvm::Constant::getNullValue(Int32Ty));
3699 }
3700 
3701 void CodeGenModule::emitAtAvailableLinkGuard() {
3702  if (!IsOSVersionAtLeastFn)
3703  return;
3704  // @available requires CoreFoundation only on Darwin.
3705  if (!Target.getTriple().isOSDarwin())
3706  return;
3707  // Add -framework CoreFoundation to the linker commands. We still want to
3708  // emit the core foundation reference down below because otherwise if
3709  // CoreFoundation is not used in the code, the linker won't link the
3710  // framework.
3711  auto &Context = getLLVMContext();
3712  llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"),
3713  llvm::MDString::get(Context, "CoreFoundation")};
3714  LinkerOptionsMetadata.push_back(llvm::MDNode::get(Context, Args));
3715  // Emit a reference to a symbol from CoreFoundation to ensure that
3716  // CoreFoundation is linked into the final binary.
3717  llvm::FunctionType *FTy =
3718  llvm::FunctionType::get(Int32Ty, {VoidPtrTy}, false);
3719  llvm::FunctionCallee CFFunc =
3720  CreateRuntimeFunction(FTy, "CFBundleGetVersionNumber");
3721 
3722  llvm::FunctionType *CheckFTy = llvm::FunctionType::get(VoidTy, {}, false);
3723  llvm::FunctionCallee CFLinkCheckFuncRef = CreateRuntimeFunction(
3724  CheckFTy, "__clang_at_available_requires_core_foundation_framework",
3725  llvm::AttributeList(), /*IsLocal=*/true);
3726  llvm::Function *CFLinkCheckFunc =
3727  cast<llvm::Function>(CFLinkCheckFuncRef.getCallee()->stripPointerCasts());
3728  if (CFLinkCheckFunc->empty()) {
3729  CFLinkCheckFunc->setLinkage(llvm::GlobalValue::LinkOnceAnyLinkage);
3730  CFLinkCheckFunc->setVisibility(llvm::GlobalValue::HiddenVisibility);
3731  CodeGenFunction CGF(*this);
3732  CGF.Builder.SetInsertPoint(CGF.createBasicBlock("", CFLinkCheckFunc));
3733  CGF.EmitNounwindRuntimeCall(CFFunc,
3734  llvm::Constant::getNullValue(VoidPtrTy));
3735  CGF.Builder.CreateUnreachable();
3736  addCompilerUsedGlobal(CFLinkCheckFunc);
3737  }
3738 }
3739 
const CGFunctionInfo & arrangeBuiltinFunctionDeclaration(QualType resultType, const FunctionArgList &args)
A builtin function is a freestanding function using the default C conventions.
Definition: CGCall.cpp:652
const llvm::DataLayout & getDataLayout() const
static Optional< llvm::Value * > tryGenerateSpecializedMessageSend(CodeGenFunction &CGF, QualType ResultType, llvm::Value *Receiver, const CallArgList &Args, Selector Sel, const ObjCMethodDecl *method, bool isClassMessage)
The ObjC runtime may provide entrypoints that are likely to be faster than an ordinary message send o...
Definition: CGObjC.cpp:371
A call to an overloaded operator written using operator syntax.
Definition: ExprCXX.h:77
The receiver is the instance of the superclass object.
Definition: ExprObjC.h:1060
ReturnValueSlot - Contains the address where the return value of a function can be stored...
Definition: CGCall.h:363
const internal::VariadicAllOfMatcher< Type > type
Matches Types in the clang AST.
static bool UseOptimizedSetter(CodeGenModule &CGM)
Definition: CGObjC.cpp:1282
Address CreateStructGEP(Address Addr, unsigned Index, const llvm::Twine &Name="")
Definition: CGBuilder.h:178
SourceLocation getRBracLoc() const
Definition: Stmt.h:1344
Defines the clang::ASTContext interface.
const BlockDecl * getBlockDecl() const
Definition: Expr.h:5398
llvm::Function * objc_retainAutoreleaseReturnValue
id objc_retainAutoreleaseReturnValue(id);
bool isClassMethod() const
Definition: DeclObjC.h:429
llvm::FunctionCallee objc_releaseRuntimeFunction
void objc_release(id); Note this is the runtime method not the intrinsic.
Represents a function declaration or definition.
Definition: Decl.h:1737
llvm::Value * EmitARCStoreStrong(LValue lvalue, llvm::Value *value, bool resultIgnored)
Store into a strong object.
Definition: CGObjC.cpp:2286
void EmitObjCRelease(llvm::Value *value, ARCPreciseLifetime_t precise)
Release the given object.
Definition: CGObjC.cpp:2618
The receiver is an object instance.
Definition: ExprObjC.h:1054
llvm::Value * EmitARCReclaimReturnedObject(const Expr *e, bool allowUnsafeClaim)
Definition: CGObjC.cpp:2824
Other implicit parameter.
Definition: Decl.h:1509
static llvm::Value * emitARCRetainCallResult(CodeGenFunction &CGF, const Expr *e)
Given that the given expression is some sort of call (which does not return retained), emit a retain following it.
Definition: CGObjC.cpp:2798
ObjCDictionaryElement getKeyValueElement(unsigned Index) const
Definition: ExprObjC.h:343
Smart pointer class that efficiently represents Objective-C method names.
llvm::Function * objc_copyWeak
void objc_copyWeak(id *dest, id *src);
QualType getObjCIdType() const
Represents the Objective-CC id type.
Definition: ASTContext.h:1848
llvm::Value * EmitARCRetainAutoreleaseScalarExpr(const Expr *expr)
Definition: CGObjC.cpp:3243
static bool hasTrivialGetExpr(const ObjCPropertyImplDecl *propImpl)
Definition: CGObjC.cpp:945
CanQualType VoidPtrTy
Definition: ASTContext.h:1043
Destroyer * getDestroyer(QualType::DestructionKind destructionKind)
Definition: CGDecl.cpp:2070
A (possibly-)qualified type.
Definition: Type.h:639
bool isBlockPointerType() const
Definition: Type.h:6314
static bool hasUnalignedAtomics(llvm::Triple::ArchType arch)
Determine whether the given architecture supports unaligned atomic accesses.
Definition: CGObjC.cpp:736
void EmitExtendGCLifetime(llvm::Value *object)
EmitExtendGCLifetime - Given a pointer to an Objective-C object, make sure it survives garbage collec...
Definition: CGObjC.cpp:3453
const CodeGenOptions & getCodeGenOpts() const
Selector getSelector() const
Definition: ExprObjC.cpp:337
llvm::Value * EmitARCExtendBlockObject(const Expr *expr)
Definition: CGObjC.cpp:3260
ObjCInterfaceDecl * getClassInterface()
Definition: DeclObjC.cpp:1143
virtual llvm::Function * GenerateMethod(const ObjCMethodDecl *OMD, const ObjCContainerDecl *CD)=0
Generate a function preamble for a method with the specified types.
Address CreateMemTemp(QualType T, const Twine &Name="tmp", Address *Alloca=nullptr)
CreateMemTemp - Create a temporary memory object of the given type, with appropriate alignmen and cas...
Definition: CGExpr.cpp:138
void enterFullExpression(const FullExpr *E)
ObjCIvarDecl * getPropertyIvarDecl() const
Definition: DeclObjC.h:2826
void EmitARCDestroyWeak(Address addr)
void @objc_destroyWeak(i8** addr) Essentially objc_storeWeak(addr, nil).
Definition: CGObjC.cpp:2422
ObjCProtocolDecl * getProtocol() const
Definition: ExprObjC.h:489
Stmt - This represents one statement.
Definition: Stmt.h:65
static llvm::Value * emitARCLoadOperation(CodeGenFunction &CGF, Address addr, llvm::Function *&fn, llvm::Intrinsic::ID IntID)
Perform an operation having the following signature: i8* (i8**)
Definition: CGObjC.cpp:1987
virtual CodeGen::RValue GenerateMessageSend(CodeGen::CodeGenFunction &CGF, ReturnValueSlot ReturnSlot, QualType ResultType, Selector Sel, llvm::Value *Receiver, const CallArgList &CallArgs, const ObjCInterfaceDecl *Class=nullptr, const ObjCMethodDecl *Method=nullptr)=0
Generate an Objective-C message send operation.
void EmitLexicalBlockEnd(CGBuilderTy &Builder, SourceLocation Loc)
Emit metadata to indicate the end of a new lexical block and pop the current block.
QualType getPointeeType() const
If this is a pointer, ObjC object pointer, or block pointer, this returns the respective pointee...
Definition: Type.cpp:505
const llvm::Triple & getTriple() const
Returns the target triple of the primary target.
Definition: TargetInfo.h:966
bool requiresCleanups() const
Determine whether this scope requires any cleanups.
Implements runtime-specific code generation functions.
Definition: CGObjCRuntime.h:63
void addConst()
Add the const type qualifier to this QualType.
Definition: Type.h:808
static void setARCRuntimeFunctionLinkage(CodeGenModule &CGM, llvm::Value *RTF)
Definition: CGObjC.cpp:1941
bool isRecordType() const
Definition: Type.h:6379
static RValue AdjustObjCObjectType(CodeGenFunction &CGF, QualType ET, RValue Result)
Adjust the type of an Objective-C object that doesn&#39;t match up due to type erasure at various points...
Definition: CGObjC.cpp:266
virtual llvm::FunctionCallee GetGetStructFunction()=0
const Decl * CurCodeDecl
CurCodeDecl - This is the inner-most code context, which includes blocks.
Opcode getOpcode() const
Definition: Expr.h:3348
QualType getNonReferenceType() const
If Type is a reference type (e.g., const int&), returns the type that the reference refers to ("const...
Definition: Type.h:6255
Expr * getSetterCXXAssignment() const
Definition: DeclObjC.h:2856
static Destroyer destroyARCStrongPrecise
Represents Objective-C&#39;s @throw statement.
Definition: StmtObjC.h:312
void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit=false)
EmitStoreThroughLValue - Store the specified rvalue into the specified lvalue, where both are guarant...
Definition: CGExpr.cpp:1918
void GenerateObjCSetter(ObjCImplementationDecl *IMP, const ObjCPropertyImplDecl *PID)
GenerateObjCSetter - Synthesize an Objective-C property setter function for the given property...
Definition: CGObjC.cpp:1467
Represents a call to a C++ constructor.
Definition: ExprCXX.h:1261
const ObjCObjectPointerType * getAsObjCInterfacePointerType() const
Definition: Type.cpp:1612
bool isZero() const
isZero - Test whether the quantity equals zero.
Definition: CharUnits.h:115
static llvm::Value * emitARCStoreOperation(CodeGenFunction &CGF, Address addr, llvm::Value *value, llvm::Function *&fn, llvm::Intrinsic::ID IntID, bool ignored)
Perform an operation having the following signature: i8* (i8**, i8*)
Definition: CGObjC.cpp:2011
QualType withConst() const
Definition: Type.h:811
The l-value was an access to a declared entity or something equivalently strong, like the address of ...
void EmitARCCopyWeak(Address dst, Address src)
void @objc_copyWeak(i8** dest, i8** src) Disregards the current value in dest.
Definition: CGObjC.cpp:2447
llvm::Value * EmitObjCMRRAutoreleasePoolPush()
Produce the code to do an MRR version objc_autoreleasepool_push.
Definition: CGObjC.cpp:2514
Floating point control options.
Definition: LangOptions.h:306
llvm::Constant * GenerateObjCAtomicSetterCopyHelperFunction(const ObjCPropertyImplDecl *PID)
GenerateObjCAtomicSetterCopyHelperFunction - Given a c++ object type with non-trivial copy assignment...
Definition: CGObjC.cpp:3471
llvm::Value * EmitARCRetainNonBlock(llvm::Value *value)
Retain the given object, with normal retain semantics.
Definition: CGObjC.cpp:2104
static llvm::Value * emitARCRetainLoadOfScalar(CodeGenFunction &CGF, LValue lvalue, QualType type)
Definition: CGObjC.cpp:3213
param_const_iterator param_end() const
Definition: DeclObjC.h:351
void createImplicitParams(ASTContext &Context, const ObjCInterfaceDecl *ID)
createImplicitParams - Used to lazily create the self and cmd implict parameters. ...
Definition: DeclObjC.cpp:1122
llvm::function_ref< llvm::Value *(CodeGenFunction &CGF, llvm::Value *value)> ValueTransform
Definition: CGObjC.cpp:2752
static CXXOperatorCallExpr * Create(const ASTContext &Ctx, OverloadedOperatorKind OpKind, Expr *Fn, ArrayRef< Expr *> Args, QualType Ty, ExprValueKind VK, SourceLocation OperatorLoc, FPOptions FPFeatures, ADLCallKind UsesADL=NotADL)
Definition: ExprCXX.cpp:556
Address GetAddrOfLocalVar(const VarDecl *VD)
GetAddrOfLocalVar - Return the address of a local variable.
static CXXConstructExpr * Create(const ASTContext &Ctx, QualType Ty, SourceLocation Loc, CXXConstructorDecl *Ctor, bool Elidable, ArrayRef< Expr *> Args, bool HadMultipleCandidates, bool ListInitialization, bool StdInitListInitialization, bool ZeroInitialization, ConstructionKind ConstructKind, SourceRange ParenOrBraceRange)
Create a C++ construction expression.
Definition: ExprCXX.cpp:983
Represents a variable declaration or definition.
Definition: Decl.h:812
Objects with "hidden" visibility are not seen by the dynamic linker.
Definition: Visibility.h:36
const internal::VariadicDynCastAllOfMatcher< Stmt, Expr > expr
Matches expressions.
const T * getAs() const
Member-template getAs<specific type>&#39;.
Definition: Type.h:6766
bool hasPointerRepresentation() const
Whether this type is represented natively as a pointer.
Definition: Type.h:6697
virtual StringRef getARCRetainAutoreleasedReturnValueMarker() const
Retrieve the address of a function to call immediately before calling objc_retainAutoreleasedReturnVa...
Definition: TargetInfo.h:155
uint64_t getProfileCount(const Stmt *S)
Get the profiler&#39;s count for the given statement.
llvm::Value * EmitObjCAutoreleasePoolPush()
Produce the code to do a objc_autoreleasepool_push.
Definition: CGObjC.cpp:2470
This class gathers all debug information during compilation and is responsible for emitting to llvm g...
Definition: CGDebugInfo.h:53
ObjCMethodDecl - Represents an instance or class method declaration.
Definition: DeclObjC.h:138
llvm::Value * EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty)
Definition: CGObjC.cpp:3660
llvm::Value * getPointer() const
Definition: Address.h:37
llvm::Constant * getAtomicSetterHelperFnMap(QualType Ty)
Defines the Objective-C statement AST node classes.
static bool shouldRetainObjCLifetime(Qualifiers::ObjCLifetime lifetime)
Definition: CGObjC.cpp:2674
Represents an expression – generally a full-expression – that introduces cleanups to be run at the ...
Definition: ExprCXX.h:3088
Represents a parameter to a function.
Definition: Decl.h:1549
llvm::Value * EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E)
Definition: CGObjC.cpp:244
The collection of all-type qualifiers we support.
Definition: Type.h:137
void add(RValue rvalue, QualType type)
Definition: CGCall.h:287
A jump destination is an abstract label, branching to which may require a jump out through normal cle...
bool isARCPseudoStrong() const
Determine whether this variable is an ARC pseudo-__strong variable.
Definition: Decl.h:1359
llvm::Value * EmitObjCThrowOperand(const Expr *expr)
Definition: CGObjC.cpp:3278
bool isXValue() const
Definition: Expr.h:253
const Stmt * getSubStmt() const
Definition: StmtObjC.h:355
llvm::Function * objc_retainAutorelease
id objc_retainAutorelease(id);
const AstTypeMatcher< RecordType > recordType
Matches record types (e.g.
llvm::Constant * getAtomicGetterHelperFnMap(QualType Ty)
One of these records is kept for each identifier that is lexed.
void emitDestroy(Address addr, QualType type, Destroyer *destroyer, bool useEHCleanupForArray)
emitDestroy - Immediately perform the destruction of the given object.
Definition: CGDecl.cpp:2145
Address getAddress() const
Definition: CGValue.h:326
bool isStr(const char(&Str)[StrLen]) const
Return true if this is the identifier for the specified string.
Expr * getGetterCXXConstructor() const
Definition: DeclObjC.h:2848
static void emitStructGetterCall(CodeGenFunction &CGF, ObjCIvarDecl *ivar, bool isAtomic, bool hasStrong)
emitStructGetterCall - Call the runtime function to load a property into the return value slot...
Definition: CGObjC.cpp:704
Represents a class type in Objective C.
Definition: Type.h:5548
CodeGenFunction - This class organizes the per-function state that is used while generating LLVM code...
llvm::Type * ConvertType(QualType T)
ConvertType - Convert type T into a llvm::Type.
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition: ASTContext.h:154
const ParmVarDecl *const * param_const_iterator
Definition: DeclObjC.h:342
std::pair< LValue, llvm::Value * > EmitARCStoreAutoreleasing(const BinaryOperator *e)
Definition: CGObjC.cpp:3416
llvm::Value * EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr)
Definition: CGObjC.cpp:1924
bool hasOptimizedSetter() const
Does this runtime supports optimized setter entrypoints?
Definition: ObjCRuntime.h:266
llvm::Function * objc_initWeak
id objc_initWeak(id*, id);
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Stmt.cpp:263
SetterKind getSetterKind() const
getSetterKind - Return the method used for doing assignment in the property setter.
Definition: DeclObjC.h:893
llvm::Value * EmitARCRetainAutoreleaseReturnValue(llvm::Value *value)
Do a fused retain/autorelease of the given object.
Definition: CGObjC.cpp:2340
Represents a member of a struct/union/class.
Definition: Decl.h:2578
CharUnits getAlignment() const
Definition: CGValue.h:315
llvm::FunctionCallee objc_autoreleaseRuntimeFunction
id objc_autorelease(id); Note this is the runtime method not the intrinsic.
StringLiteral * getString()
Definition: ExprObjC.h:62
bool isReferenceType() const
Definition: Type.h:6318
ObjCMethodDecl * getSetterMethodDecl() const
Definition: DeclObjC.h:924
Denotes a cleanup that should run when a scope is exited using exceptional control flow (a throw stat...
Definition: EHScopeStack.h:80
Token - This structure provides full information about a lexed token.
Definition: Token.h:34
llvm::Value * EmitARCAutoreleaseReturnValue(llvm::Value *value)
Autorelease the given object.
Definition: CGObjC.cpp:2330
static AggValueSlot forAddr(Address addr, Qualifiers quals, IsDestructed_t isDestructed, NeedsGCBarriers_t needsGC, IsAliased_t isAliased, Overlap_t mayOverlap, IsZeroed_t isZeroed=IsNotZeroed, IsSanitizerChecked_t isChecked=IsNotSanitizerChecked)
forAddr - Make a slot for an aggregate value.
Definition: CGValue.h:513
void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, ObjCMethodDecl *MD, bool ctor)
Definition: CGObjC.cpp:1548
Expr * getSubExpr()
Definition: Expr.h:3088
CleanupKind getCleanupKind(QualType::DestructionKind kind)
ObjCArrayLiteral - used for objective-c array containers; as in: @["Hello", NSApp, [NSNumber numberWithInt:42]];.
Definition: ExprObjC.h:176
llvm::Value * EmitObjCBoxedExpr(const ObjCBoxedExpr *E)
EmitObjCBoxedExpr - This routine generates code to call the appropriate expression boxing method...
Definition: CGObjC.cpp:59
IdentifierTable & Idents
Definition: ASTContext.h:565
An r-value expression (a pr-value in the C++11 taxonomy) produces a temporary value.
Definition: Specifiers.h:109
Selector getSelector() const
Definition: ExprObjC.h:441
void EmitStoreOfScalar(llvm::Value *Value, Address Addr, bool Volatile, QualType Ty, AlignmentSource Source=AlignmentSource::Type, bool isInit=false, bool isNontemporal=false)
EmitStoreOfScalar - Store a scalar value to an address, taking care to appropriately convert from the...
ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc)
EmitLoadOfComplex - Load a complex number from the specified l-value.
const Expr *const * const_semantics_iterator
Definition: Expr.h:5573
bool isUnarySelector() const
llvm::FunctionCallee objc_alloc_init
void objc_alloc_init(id);
virtual CodeGen::RValue GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF, ReturnValueSlot ReturnSlot, QualType ResultType, Selector Sel, const ObjCInterfaceDecl *Class, bool isCategoryImpl, llvm::Value *Self, bool IsClassMessage, const CallArgList &CallArgs, const ObjCMethodDecl *Method=nullptr)=0
Generate an Objective-C message send operation to the super class initiated in a method for Class and...
RValue EmitAnyExpr(const Expr *E, AggValueSlot aggSlot=AggValueSlot::ignored(), bool ignoreResult=false)
EmitAnyExpr - Emit code to compute the specified expression which can have any type.
Definition: CGExpr.cpp:193
bool isGLValue() const
Definition: Expr.h:254
ObjCMethodFamily getMethodFamily() const
Determines the family of this method.
Definition: DeclObjC.cpp:985
llvm::Value * EmitARCStoreStrongCall(Address addr, llvm::Value *value, bool resultIgnored)
Store into a strong object.
Definition: CGObjC.cpp:2262
ARCPreciseLifetime_t isARCPreciseLifetime() const
Definition: CGValue.h:284
llvm::Function * objc_release
void objc_release(id);
llvm::Value * EmitObjCAutorelease(llvm::Value *value, llvm::Type *returnType)
Autorelease the given object.
Definition: CGObjC.cpp:2598
llvm::Value * EmitObjCStringLiteral(const ObjCStringLiteral *E)
Emits an instance of NSConstantString representing the object.
Definition: CGObjC.cpp:45
bool isBitField() const
Determines whether this field is a bitfield.
Definition: Decl.h:2656
Selector getNullarySelector(IdentifierInfo *ID)
ObjCContainerDecl - Represents a container for method declarations.
Definition: DeclObjC.h:968
Address CreateElementBitCast(Address Addr, llvm::Type *Ty, const llvm::Twine &Name="")
Cast the element type of the given address to a different type, preserving information like the align...
Definition: CGBuilder.h:156
CharUnits - This is an opaque type for sizes expressed in character units.
Definition: CharUnits.h:37
void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise)
Destroy a __strong variable.
Definition: CGObjC.cpp:2248
static llvm::Value * emitARCUnsafeClaimCallResult(CodeGenFunction &CGF, const Expr *e)
Given that the given expression is some sort of call (which does not return retained), perform an unsafeClaim following it.
Definition: CGObjC.cpp:2812
static void emitARCCopyOperation(CodeGenFunction &CGF, Address dst, Address src, llvm::Function *&fn, llvm::Intrinsic::ID IntID)
Perform an operation having the following signature: void (i8**, i8**)
Definition: CGObjC.cpp:2038
Qualifiers::GC getObjCGCAttrKind(QualType Ty) const
Return one of the GCNone, Weak or Strong Objective-C garbage collection attributes.
llvm::CallInst * EmitRuntimeCall(llvm::FunctionCallee callee, const Twine &name="")
static Optional< llvm::Value * > tryEmitSpecializedAllocInit(CodeGenFunction &CGF, const ObjCMessageExpr *OME)
Instead of &#39;[[MyClass alloc] init]&#39;, try to generate &#39;objc_alloc_init(MyClass)&#39;.
Definition: CGObjC.cpp:435
SourceLocation getLBracLoc() const
Definition: Stmt.h:1343
PropertyAttributeKind getPropertyAttributes() const
Definition: DeclObjC.h:839
static llvm::Value * emitObjCValueOperation(CodeGenFunction &CGF, llvm::Value *value, llvm::Type *returnType, llvm::FunctionCallee &fn, StringRef fnName, bool MayThrow)
Perform an operation having the signature i8* (i8*) where a null input causes a no-op and returns nul...
Definition: CGObjC.cpp:2058
semantics_iterator semantics_end()
Definition: Expr.h:5580
A builtin binary operation expression such as "x + y" or "x <= y".
Definition: Expr.h:3313
bool isVolatileQualified() const
Determine whether this type is volatile-qualified.
Definition: Type.h:6152
llvm::Value * EmitARCUnsafeUnretainedScalarExpr(const Expr *expr)
EmitARCUnsafeUnretainedScalarExpr - Semantically equivalent to immediately releasing the resut of Emi...
Definition: CGObjC.cpp:3354
void setAtomicGetterHelperFnMap(QualType Ty, llvm::Constant *Fn)
Defines the Diagnostic-related interfaces.
virtual bool shouldSuppressTailCallsOfRetainAutoreleasedReturnValue() const
Determine whether a call to objc_retainAutoreleasedReturnValue should be marked as &#39;notail&#39;...
Definition: TargetInfo.h:161
llvm::Value * EmitARCLoadWeak(Address addr)
i8* @objc_loadWeak(i8** addr) Essentially objc_autorelease(objc_loadWeakRetained(addr)).
Definition: CGObjC.cpp:2377
ObjCStringLiteral, used for Objective-C string literals i.e.
Definition: ExprObjC.h:50
Scope - A scope is a transient data structure that is used while parsing the program.
Definition: Scope.h:40
llvm::Value * EmitObjCAllocInit(llvm::Value *value, llvm::Type *resultType)
Definition: CGObjC.cpp:2555
llvm::BasicBlock * createBasicBlock(const Twine &name="", llvm::Function *parent=nullptr, llvm::BasicBlock *before=nullptr)
createBasicBlock - Create an LLVM basic block.
llvm::Value * EmitARCRetainScalarExpr(const Expr *expr)
EmitARCRetainScalarExpr - Semantically equivalent to EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a best-effort attempt to peephole expressions that naturally produce retained objects.
Definition: CGObjC.cpp:3227
void EmitIgnoredExpr(const Expr *E)
EmitIgnoredExpr - Emit an expression in a context which ignores the result.
Definition: CGExpr.cpp:181
static bool shouldEmitSeparateBlockRetain(const Expr *e)
Determine whether it might be important to emit a separate objc_retain_block on the result of the giv...
Definition: CGObjC.cpp:2838
Denotes a cleanup that should run when a scope is exited using normal control flow (falling off the e...
Definition: EHScopeStack.h:84
CastExpr - Base class for type casts, including both implicit casts (ImplicitCastExpr) and explicit c...
Definition: Expr.h:3036
void ForceCleanup(std::initializer_list< llvm::Value **> ValuesToReload={})
Force the emission of cleanups now, instead of waiting until this object is destroyed.
llvm::Constant * CreateRuntimeVariable(llvm::Type *Ty, StringRef Name)
Create a new runtime global variable with the specified type and name.
Expr * Key
The key for the dictionary element.
Definition: ExprObjC.h:246
ObjCMethodDecl * getArrayWithObjectsMethod() const
Definition: ExprObjC.h:227
GlobalDecl CurGD
CurGD - The GlobalDecl for the current function being compiled.
An ordinary object is located at an address in memory.
Definition: Specifiers.h:125
void incrementProfileCounter(const Stmt *S, llvm::Value *StepV=nullptr)
Increment the profiler&#39;s counter for the given statement by StepV.
uint64_t getCurrentProfileCount()
Get the profiler&#39;s current count.
llvm::Value * EmitObjCRetainNonBlock(llvm::Value *value, llvm::Type *returnType)
Retain the given object, with normal retain semantics.
Definition: CGObjC.cpp:2608
llvm::Function * objc_moveWeak
void objc_moveWeak(id *dest, id *src);
Represents an ObjC class declaration.
Definition: DeclObjC.h:1171
QualType getReturnType() const
Definition: DeclObjC.h:322
ObjCInterfaceDecl * getInterface() const
Gets the interface declaration for this object type, if the base type really is an interface...
Definition: Type.h:5783
static TryEmitResult tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e)
Definition: CGObjC.cpp:3209
bool isAtomic() const
isAtomic - Return true if the property is atomic.
Definition: DeclObjC.h:867
llvm::Value * EmitARCRetainAutoreleasedReturnValue(llvm::Value *value)
Retain the given object which is the result of a function call.
Definition: CGObjC.cpp:2187
static FunctionDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation NLoc, DeclarationName N, QualType T, TypeSourceInfo *TInfo, StorageClass SC, bool isInlineSpecified=false, bool hasWrittenPrototype=true, bool isConstexprSpecified=false)
Definition: Decl.h:1874
llvm::Value * EmitARCRetainAutoreleaseNonBlock(llvm::Value *value)
Do a fused retain/autorelease of the given object.
Definition: CGObjC.cpp:2369
This object can be modified without requiring retains or releases.
Definition: Type.h:158
ObjCMethodDecl * getDictWithObjectsMethod() const
Definition: ExprObjC.h:357
llvm::Value * EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, SourceLocation Loc, AlignmentSource Source=AlignmentSource::Type, bool isNontemporal=false)
EmitLoadOfScalar - Load a scalar value from an address, taking care to appropriately convert from the...
ObjCPropertyImplDecl - Represents implementation declaration of a property in a class or category imp...
Definition: DeclObjC.h:2758
RValue EmitObjCMessageExpr(const ObjCMessageExpr *E, ReturnValueSlot Return=ReturnValueSlot())
Definition: CGObjC.cpp:466
bool hasAttr() const
Definition: DeclBase.h:533
static llvm::Value * emitARCValueOperation(CodeGenFunction &CGF, llvm::Value *value, llvm::Type *returnType, llvm::Function *&fn, llvm::Intrinsic::ID IntID, llvm::CallInst::TailCallKind tailKind=llvm::CallInst::TCK_None)
Perform an operation having the signature i8* (i8*) where a null input causes a no-op and returns nul...
Definition: CGObjC.cpp:1961
CompoundStmt - This represents a group of statements like { stmt stmt }.
Definition: Stmt.h:1251
AutoVarEmission EmitAutoVarAlloca(const VarDecl &var)
EmitAutoVarAlloca - Emit the alloca and debug information for a local variable.
Definition: CGDecl.cpp:1437
std::pair< llvm::Value *, llvm::Value * > ComplexPairTy
llvm::Function * objc_unsafeClaimAutoreleasedReturnValue
id objc_unsafeClaimAutoreleasedReturnValue(id);
const TargetCodeGenInfo & getTargetCodeGenInfo()
void EmitAnyExprToMem(const Expr *E, Address Location, Qualifiers Quals, bool IsInitializer)
EmitAnyExprToMem - Emits the code necessary to evaluate an arbitrary expression into the given memory...
Definition: CGExpr.cpp:222
llvm::Function * objc_retainAutoreleasedReturnValue
id objc_retainAutoreleasedReturnValue(id);
CastKind
CastKind - The kind of operation required for a conversion.
RValue - This trivial value class is used to represent the result of an expression that is evaluated...
Definition: CGValue.h:38
CleanupKind getARCCleanupKind()
Retrieves the default cleanup kind for an ARC cleanup.
SourceLocation getEndLoc() const LLVM_READONLY
Definition: DeclObjC.cpp:979
bool canAvoidCopyToHeap() const
Definition: Decl.h:4011
llvm::Value * emitScalarConstant(const ConstantEmission &Constant, Expr *E)
Definition: CGExpr.cpp:1505
llvm::Value * EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored)
i8* @objc_storeWeak(i8** addr, i8* value) Returns value.
Definition: CGObjC.cpp:2392
static TypeEvaluationKind getEvaluationKind(QualType T)
getEvaluationKind - Return the TypeEvaluationKind of QualType T.
CGObjCRuntime & getObjCRuntime()
Return a reference to the configured Objective-C runtime.
ObjCMethodDecl * getBoxingMethod() const
Definition: ExprObjC.h:137
static bool shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr *message)
Decide whether to extend the lifetime of the receiver of a returns-inner-pointer message.
Definition: CGObjC.cpp:284
virtual llvm::FunctionCallee GetPropertyGetFunction()=0
Return the runtime function for getting properties.
Represent the declaration of a variable (in which case it is an lvalue) a function (in which case it ...
Definition: Decl.h:636
This represents one expression.
Definition: Expr.h:108
bool hasAtomicCopyHelper() const
Definition: ObjCRuntime.h:388
void EmitARCMoveWeak(Address dst, Address src)
void @objc_moveWeak(i8** dest, i8** src) Disregards the current value in dest.
Definition: CGObjC.cpp:2438
void EmitAutoVarInit(const AutoVarEmission &emission)
Definition: CGDecl.cpp:1717
static Address invalid()
Definition: Address.h:34
bool hasLocalStorage() const
Returns true if a variable with function scope is a non-static local variable.
Definition: Decl.h:1035
Enters a new scope for capturing cleanups, all of which will be executed once the scope is exited...
virtual llvm::FunctionCallee GetCppAtomicObjectGetFunction()=0
API for atomic copying of qualified aggregates with non-trivial copy assignment (c++) in getter...
void GenerateObjCMethod(const ObjCMethodDecl *OMD)
Generate an Objective-C method.
Definition: CGObjC.cpp:693
void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo, llvm::iterator_range< CallExpr::const_arg_iterator > ArgRange, AbstractCallee AC=AbstractCallee(), unsigned ParamsToSkip=0, EvaluationOrder Order=EvaluationOrder::Default)
EmitCallArgs - Emit call arguments for a function.
static void emitStructSetterCall(CodeGenFunction &CGF, ObjCMethodDecl *OMD, ObjCIvarDecl *ivar)
emitStructSetterCall - Call the runtime function to store the value from the first formal parameter i...
Definition: CGObjC.cpp:1178
static CGCallee forDirect(llvm::Constant *functionPtr, const CGCalleeInfo &abstractInfo=CGCalleeInfo())
Definition: CGCall.h:133
bool isObjCRetainableType() const
Definition: Type.cpp:4000
virtual void EmitThrowStmt(CodeGen::CodeGenFunction &CGF, const ObjCAtThrowStmt &S, bool ClearInsertionPoint=true)=0
BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
Definition: Expr.h:5384
Expr * getCallee()
Definition: Expr.h:2547
llvm::FunctionCallee objc_alloc
void objc_alloc(id);
llvm::PointerType * getType() const
Return the type of the pointer value.
Definition: Address.h:43
ObjCLifetime getObjCLifetime() const
Definition: Type.h:327
CharUnits getTypeAlignInChars(QualType T) const
Return the ABI-specified alignment of a (complete) type T, in characters.
StringRef getNameForSlot(unsigned argIndex) const
Retrieve the name at a given position in the selector.
ObjCDictionaryLiteral - AST node to represent objective-c dictionary literals; as in:"name" : NSUserN...
Definition: ExprObjC.h:287
DeclContext * getDeclContext()
Definition: DeclBase.h:429
virtual llvm::FunctionCallee GetPropertySetFunction()=0
Return the runtime function for setting properties.
Represents Objective-C&#39;s @synchronized statement.
Definition: StmtObjC.h:261
ObjCSelectorExpr used for @selector in Objective-C.
Definition: ExprObjC.h:428
static CharUnits fromQuantity(QuantityType Quantity)
fromQuantity - Construct a CharUnits quantity from a raw integer type.
Definition: CharUnits.h:62
void generateObjCSetterBody(const ObjCImplementationDecl *classImpl, const ObjCPropertyImplDecl *propImpl, llvm::Constant *AtomicHelperFn)
Definition: CGObjC.cpp:1289
virtual void EmitTryStmt(CodeGen::CodeGenFunction &CGF, const ObjCAtTryStmt &S)=0
llvm::Value * EmitARCAutorelease(llvm::Value *value)
Autorelease the given object.
Definition: CGObjC.cpp:2321
llvm::LLVMContext & getLLVMContext()
SmallVector< llvm::OperandBundleDef, 1 > getBundlesForFunclet(llvm::Value *Callee)
Definition: CGCall.cpp:3689
const CGFunctionInfo & arrangeBuiltinFunctionCall(QualType resultType, const CallArgList &args)
Definition: CGCall.cpp:639
QualType getType() const
Definition: Expr.h:130
virtual llvm::Value * GetSelector(CodeGenFunction &CGF, Selector Sel)=0
Get a selector for the specified name and type values.
Expr * getElement(unsigned Index)
getElement - Return the Element at the specified index.
Definition: ExprObjC.h:218
clang::ObjCRuntime ObjCRuntime
Definition: LangOptions.h:206
QualType getConstantArrayType(QualType EltTy, const llvm::APInt &ArySize, ArrayType::ArraySizeModifier ASM, unsigned IndexTypeQuals) const
Return the unique reference to the type for a constant array of the specified element type...
LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T)
An expression that sends a message to the given Objective-C object or class.
Definition: ExprObjC.h:903
SourceLocation getEnd() const
UnaryOperator - This represents the unary-expression&#39;s (except sizeof and alignof), the postinc/postdec operators from postfix-expression, and various extensions.
Definition: Expr.h:1929
bool isInstanceMethod() const
Definition: DeclObjC.h:421
QualType getFunctionType(QualType ResultTy, ArrayRef< QualType > Args, const FunctionProtoType::ExtProtoInfo &EPI) const
Return a normal function type with a typed argument list.
Definition: ASTContext.h:1379
ReceiverKind getReceiverKind() const
Determine the kind of receiver that this message is being sent to.
Definition: ExprObjC.h:1187
ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr)
Try to emit a reference to the given value without producing it as an l-value.
Definition: CGExpr.cpp:1424
unsigned getNumArgs() const
const TargetInfo & getTarget() const
ValueDecl * getDecl()
Definition: Expr.h:1147
const Qualifiers & getQuals() const
Definition: CGValue.h:310
Selector getSelector() const
Definition: DeclObjC.h:320
const LangOptions & getLangOpts() const
ASTContext & getContext() const
ImplicitParamDecl * getSelfDecl() const
Definition: DeclObjC.h:413
bool hasEmptyCollections() const
Are the empty collection symbols available?
Definition: ObjCRuntime.h:419
QualType getType() const
Definition: DeclObjC.h:828
GlobalDecl - represents a global declaration.
Definition: GlobalDecl.h:34
bool isConstQualified() const
Determine whether this type is const-qualified.
Definition: Type.h:6141
virtual void EmitSynchronizedStmt(CodeGen::CodeGenFunction &CGF, const ObjCAtSynchronizedStmt &S)=0
The l-value was considered opaque, so the alignment was determined from a type.
There is no lifetime qualification on this type.
Definition: Type.h:154
OpaqueValueExpr - An expression referring to an opaque object of a fixed type and value class...
Definition: Expr.h:978
Address CreateBitCast(Address Addr, llvm::Type *Ty, const llvm::Twine &Name="")
Definition: CGBuilder.h:141
llvm::Function * objc_loadWeakRetained
id objc_loadWeakRetained(id*);
SelectorTable & Selectors
Definition: ASTContext.h:566
Assigning into this object requires the old value to be released and the new value to be retained...
Definition: Type.h:165
Kind
QualType getCanonicalType() const
Definition: Type.h:6121
PseudoObjectExpr - An expression which accesses a pseudo-object l-value.
Definition: Expr.h:5506
IdentifierInfo * getIdentifierInfoForSlot(unsigned argIndex) const
Retrieve the identifier at a given position in the selector.
llvm::FunctionCallee objc_autoreleasePoolPop
void objc_autoreleasePoolPop(void*);
bool isExpressibleAsConstantInitializer() const
Definition: ExprObjC.h:143
ObjCMethodFamily getMethodFamily() const
Derive the conventional family of this method.
static llvm::Value * emitARCUnsafeUnretainedScalarExpr(CodeGenFunction &CGF, const Expr *e)
Definition: CGObjC.cpp:3345
Encodes a location in the source.
void EnsureInsertPoint()
EnsureInsertPoint - Ensure that an insertion point is defined so that emitted IR has a place to go...
llvm::Value * EmitObjCArrayLiteral(const ObjCArrayLiteral *E)
Definition: CGObjC.cpp:240
body_range body()
Definition: Stmt.h:1284
llvm::Function * clang_arc_use
void clang.arc.use(...);
IdentifierInfo & get(StringRef Name)
Return the identifier token info for the specified named identifier.
static void emitCPPObjectAtomicGetterCall(CodeGenFunction &CGF, llvm::Value *returnAddr, ObjCIvarDecl *ivar, llvm::Constant *AtomicHelperFn)
emitCPPObjectAtomicGetterCall - Call the runtime function to copy the ivar into the resturn slot...
Definition: CGObjC.cpp:970
virtual llvm::FunctionCallee GetSetStructFunction()=0
void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise)
Release the given object.
Definition: CGObjC.cpp:2217
LValue EmitDeclRefLValue(const DeclRefExpr *E)
Definition: CGExpr.cpp:2447
std::pair< LValue, llvm::Value * > EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored)
Definition: CGObjC.cpp:3366
virtual ConstantAddress GenerateConstantString(const StringLiteral *)=0
Generate a constant string object.
LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK)
Same as EmitLValue but additionally we generate checking code to guard against undefined behavior...
Definition: CGExpr.cpp:1207
AggValueSlot::Overlap_t overlapForReturnValue()
Determine whether a return value slot may overlap some other object.
CastKind getCastKind() const
Definition: Expr.h:3082
RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, ReturnValueSlot ReturnValue, const CallArgList &Args, llvm::CallBase **callOrInvoke, SourceLocation Loc)
EmitCall - Generate a call of the given function, expecting the given result type, and using the given argument list which specifies both the LLVM arguments and the types they were derived from.
Definition: CGCall.cpp:3787
unsigned getNumElements() const
getNumElements - Return number of elements of objective-c dictionary literal.
Definition: ExprObjC.h:341
void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S)
Definition: CGObjC.cpp:1600
llvm::Value * EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value)
Claim a possibly-autoreleased return value at +0.
Definition: CGObjC.cpp:2208
DeclStmt - Adaptor class for mixing declarations with statements and expressions. ...
Definition: Stmt.h:1153
Address CreateConstArrayGEP(Address Addr, uint64_t Index, const llvm::Twine &Name="")
Given addr = [n x T]* ...
Definition: CGBuilder.h:198
Stmt * getBody() const override
Retrieve the body of this method, if it has one.
Definition: DeclObjC.cpp:851
virtual llvm::FunctionCallee EnumerationMutationFunction()=0
EnumerationMutationFunction - Return the function that&#39;s called by the compiler when a mutation is de...
static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF, LValue lvalue, QualType type)
Definition: CGObjC.cpp:2689
const CGFunctionInfo & arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD)
Objective-C methods are C functions with some implicit parameters.
Definition: CGCall.cpp:457
void EmitStmt(const Stmt *S, ArrayRef< const Attr *> Attrs=None)
EmitStmt - Emit the code for the statement.
Definition: CGStmt.cpp:44
virtual llvm::Value * EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF)
llvm::Function * objc_destroyWeak
void objc_destroyWeak(id*);
ObjCEntrypoints & getObjCEntrypoints() const
llvm::Function * objc_storeWeak
id objc_storeWeak(id*, id);
llvm::FunctionCallee objc_retainRuntimeFunction
id objc_retain(id); Note this is the runtime method not the intrinsic.
CanQualType VoidTy
Definition: ASTContext.h:1015
ObjCProtocolExpr used for protocol expression in Objective-C.
Definition: ExprObjC.h:473
virtual llvm::Value * GenerateProtocolRef(CodeGenFunction &CGF, const ObjCProtocolDecl *OPD)=0
Emit the code to return the named protocol as an object, as in a @protocol expression.
llvm::InlineAsm * retainAutoreleasedReturnValueMarker
A void(void) inline asm to use to mark that the return value of a call will be immediately retain...
bool isObjCObjectPointerType() const
Definition: Type.h:6403
An aligned address.
Definition: Address.h:24
void StartFunction(GlobalDecl GD, QualType RetTy, llvm::Function *Fn, const CGFunctionInfo &FnInfo, const FunctionArgList &Args, SourceLocation Loc=SourceLocation(), SourceLocation StartLoc=SourceLocation())
Emit code for the start of a function.
Represents one property declaration in an Objective-C interface.
Definition: DeclObjC.h:728
ImplicitCastExpr - Allows us to explicitly represent implicit type conversions, which have no direct ...
Definition: Expr.h:3153
DestructionKind isDestructedType() const
Returns a nonzero value if objects of this type require non-trivial work to clean up after...
Definition: Type.h:1159
All available information about a concrete callee.
Definition: CGCall.h:66
JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target)
The given basic block lies in the current EH scope, but may be a target of a potentially scope-crossi...
Expr * getSubExpr()
Definition: ExprObjC.h:134
llvm::Value * EmitObjCAlloc(llvm::Value *value, llvm::Type *returnType)
Allocate the given objc object.
Definition: CGObjC.cpp:2539
const ObjCMethodDecl * getMethodDecl() const
Definition: ExprObjC.h:1309
static void destroyARCStrongWithStore(CodeGenFunction &CGF, Address addr, QualType type)
Like CodeGenFunction::destroyARCStrong, but do it with a call.
Definition: CGObjC.cpp:1505
Assigning into this object requires a lifetime extension.
Definition: Type.h:171
QualType getType() const
Definition: CGValue.h:263
ObjCBoxedExpr - used for generalized expression boxing.
Definition: ExprObjC.h:116
llvm::Value * EmitARCRetain(QualType type, llvm::Value *value)
Produce the code to do a retain.
Definition: CGObjC.cpp:2095
void emitARCMoveAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr)
Definition: CGObjC.cpp:2460
bool hasSameUnqualifiedType(QualType T1, QualType T2) const
Determine whether the given types are equivalent after cvr-qualifiers have been removed.
Definition: ASTContext.h:2306
static Destroyer destroyARCStrongImprecise
void FinishFunction(SourceLocation EndLoc=SourceLocation())
FinishFunction - Complete IR generation of the current function.
Expr * Value
The value of the dictionary element.
Definition: ExprObjC.h:249
std::pair< CharUnits, CharUnits > getTypeInfoInChars(const Type *T) const
ConstantAddress GetAddrOfConstantCString(const std::string &Str, const char *GlobalName=nullptr)
Returns a pointer to a character array containing the literal and a terminating &#39;\0&#39; character...
Expr * getLHS() const
Definition: Expr.h:3353
void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr)
Produce the code to do a primitive release.
Definition: CGObjC.cpp:2564
llvm::Value * EmitScalarExpr(const Expr *E, bool IgnoreResultAssign=false)
EmitScalarExpr - Emit the computation of the specified expression of LLVM scalar type, returning the result.
Expr * getInstanceReceiver()
Returns the object expression (receiver) for an instance message, or null for a message that is not a...
Definition: ExprObjC.h:1213
FunctionArgList - Type for representing both the decl and type of parameters to a function...
Definition: CGCall.h:358
ObjCIvarDecl * getNextIvar()
Definition: DeclObjC.h:1977
llvm::Value * getScalarVal() const
getScalarVal() - Return the Value* of this scalar value.
Definition: CGValue.h:58
Expr * getResultExpr()
Return the result-bearing expression, or null if there is none.
Definition: Expr.h:5561
llvm::CallBase * EmitCallOrInvoke(llvm::FunctionCallee Callee, ArrayRef< llvm::Value *> Args, const Twine &Name="")
Emits a call or invoke instruction to the given function, depending on the current state of the EH st...
Definition: CGCall.cpp:3757
void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S)
Definition: CGObjC.cpp:1897
void ErrorUnsupported(const Stmt *S, const char *Type)
Print out an error that codegen doesn&#39;t support the specified stmt yet.
CGFunctionInfo - Class to encapsulate the information about a function definition.
This class organizes the cross-function state that is used while generating LLVM code.
const ObjCInterfaceDecl * getClassInterface() const
Definition: DeclObjC.h:2439
Dataflow Directional Tag Classes.
llvm::Value * EmitObjCAllocWithZone(llvm::Value *value, llvm::Type *returnType)
Allocate the given objc object.
Definition: CGObjC.cpp:2548
void GenerateObjCGetter(ObjCImplementationDecl *IMP, const ObjCPropertyImplDecl *PID)
GenerateObjCGetter - Synthesize an Objective-C property getter function.
Definition: CGObjC.cpp:931
void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr)
Produce the code to do a primitive release.
Definition: CGObjC.cpp:2482
The basic abstraction for the target Objective-C runtime.
Definition: ObjCRuntime.h:27
llvm::Value * EmitARCLoadWeakRetained(Address addr)
i8* @objc_loadWeakRetained(i8** addr)
Definition: CGObjC.cpp:2384
static ReturnStmt * Create(const ASTContext &Ctx, SourceLocation RL, Expr *E, const VarDecl *NRVOCandidate)
Create a return statement.
Definition: Stmt.cpp:1056
QualType getSuperType() const
Retrieve the type referred to by &#39;super&#39;.
Definition: ExprObjC.h:1289
llvm::LoadInst * CreateAlignedLoad(llvm::Value *Addr, CharUnits Align, const llvm::Twine &Name="")
Definition: CGBuilder.h:90
void EmitARCIntrinsicUse(ArrayRef< llvm::Value *> values)
Given a number of pointers, inform the optimizer that they&#39;re being intrinsically used up until this ...
Definition: CGObjC.cpp:1931
llvm::Constant * getPointer() const
Definition: Address.h:83
llvm::LoadInst * CreateLoad(Address Addr, const llvm::Twine &Name="")
Definition: CGBuilder.h:69
bool isKeywordSelector() const
U cast(CodeGen::Address addr)
Definition: Address.h:108
virtual llvm::FunctionCallee GetOptimizedPropertySetFunction(bool atomic, bool copy)=0
Return the runtime function for optimized setting properties.
const ObjCObjectType * getObjectType() const
Gets the type pointed to by this ObjC pointer.
Definition: Type.h:5845
QualType TypeOfSelfObject()
TypeOfSelfObject - Return type of object that this self represents.
Definition: CGObjC.cpp:1592
Checking the destination of a store. Must be suitably sized and aligned.
llvm::Function * getIntrinsic(unsigned IID, ArrayRef< llvm::Type *> Tys=None)
llvm::StoreInst * CreateStore(llvm::Value *Val, Address Addr, bool IsVolatile=false)
Definition: CGBuilder.h:107
semantics_iterator semantics_begin()
Definition: Expr.h:5574
static AggValueSlot forLValue(const LValue &LV, IsDestructed_t isDestructed, NeedsGCBarriers_t needsGC, IsAliased_t isAliased, Overlap_t mayOverlap, IsZeroed_t isZeroed=IsNotZeroed, IsSanitizerChecked_t isChecked=IsNotSanitizerChecked)
Definition: CGValue.h:539
llvm::Constant * GenerateObjCAtomicGetterCopyHelperFunction(const ObjCPropertyImplDecl *PID)
Definition: CGObjC.cpp:3555
llvm::Module & getModule() const
static bool hasTrivialSetExpr(const ObjCPropertyImplDecl *PID)
Definition: CGObjC.cpp:1258
void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S)
Definition: CGObjC.cpp:1893
LValue MakeAddrLValue(Address Addr, QualType T, AlignmentSource Source=AlignmentSource::Type)
static CharUnits getMaxAtomicAccessSize(CodeGenModule &CGM, llvm::Triple::ArchType arch)
Return the maximum size that permits atomic accesses for the given architecture.
Definition: CGObjC.cpp:744
void EmitAggExpr(const Expr *E, AggValueSlot AS)
EmitAggExpr - Emit the computation of the specified expression of aggregate type. ...
Definition: CGExprAgg.cpp:1821
QualType getClassReceiver() const
Returns the type of a class message send, or NULL if the message is not a class message.
Definition: ExprObjC.h:1232
Represents a pointer to an Objective C object.
Definition: Type.h:5804
void EmitAutoVarCleanups(const AutoVarEmission &emission)
Definition: CGDecl.cpp:2022
ObjCImplementationDecl - Represents a class definition - this is where method definitions are specifi...
Definition: DeclObjC.h:2551
A helper class that allows the use of isa/cast/dyncast to detect TagType objects of structs/unions/cl...
Definition: Type.h:4380
static llvm::Value * emitARCOperationAfterCall(CodeGenFunction &CGF, llvm::Value *value, ValueTransform doAfterCall, ValueTransform doFallback)
Insert code immediately after a call.
Definition: CGObjC.cpp:2755
llvm::FunctionCallee objc_autoreleasePoolPopInvoke
void objc_autoreleasePoolPop(void*); Note this method is used when we are using exception handling ...
unsigned getNumElements() const
getNumElements - Return number of elements of objective-c array literal.
Definition: ExprObjC.h:215
Represents Objective-C&#39;s collection statement.
Definition: StmtObjC.h:23
CodeGenTypes & getTypes() const
void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit)
EmitStoreOfComplex - Store a complex number into the specified l-value.
bool hasNonTrivialObjCLifetime() const
Definition: Type.h:1063
Selector getSelector(unsigned NumArgs, IdentifierInfo **IIV)
Can create any sort of selector.
llvm::Type * getElementType() const
Return the type of the values stored in this address.
Definition: Address.h:51
This class organizes the cross-module state that is used while lowering AST types to LLVM types...
Definition: CodeGenTypes.h:59
void getObjCEncodingForType(QualType T, std::string &S, const FieldDecl *Field=nullptr, QualType *NotEncodedT=nullptr) const
Emit the Objective-CC type encoding for the given type T into S.
bool isDelegateInitCall() const
isDelegateInitCall - Answers whether this message send has been tagged as a "delegate init call"...
Definition: ExprObjC.h:1366
LValue EmitLValueForIvar(QualType ObjectTy, llvm::Value *Base, const ObjCIvarDecl *Ivar, unsigned CVRQualifiers)
Definition: CGExpr.cpp:4565
param_const_iterator param_begin() const
Definition: DeclObjC.h:347
llvm::Value * EmitIvarOffset(const ObjCInterfaceDecl *Interface, const ObjCIvarDecl *Ivar)
Definition: CGExpr.cpp:4560
void SetInternalFunctionAttributes(GlobalDecl GD, llvm::Function *F, const CGFunctionInfo &FI)
Set the attributes on the LLVM function for the given decl and function info.
llvm::Value * EmitARCRetainAutorelease(QualType type, llvm::Value *value)
Do a fused retain/autorelease of the given object.
Definition: CGObjC.cpp:2352
llvm::Function * objc_autoreleaseReturnValue
id objc_autoreleaseReturnValue(id);
Internal linkage, which indicates that the entity can be referred to from within the translation unit...
Definition: Linkage.h:31
llvm::FunctionCallee CreateRuntimeFunction(llvm::FunctionType *Ty, StringRef Name, llvm::AttributeList ExtraAttrs=llvm::AttributeList(), bool Local=false)
Create or return a runtime function declaration with the specified type and name. ...
void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false)
EmitBlock - Emit the given block.
Definition: CGStmt.cpp:450
void setAtomicSetterHelperFnMap(QualType Ty, llvm::Constant *Fn)
llvm::Function * objc_autorelease
id objc_autorelease(id);
void EmitARCInitWeak(Address addr, llvm::Value *value)
i8* @objc_initWeak(i8** addr, i8* value) Returns value.
Definition: CGObjC.cpp:2404
ARCPreciseLifetime_t
Does an ARC strong l-value have precise lifetime?
Definition: CGValue.h:119
uint64_t getTypeSize(QualType T) const
Return the size of the specified (complete) type T, in bits.
Definition: ASTContext.h:2072
ObjCIvarRefExpr - A reference to an ObjC instance variable.
Definition: ExprObjC.h:512
llvm::ConstantInt * getSize(CharUnits numChars)
Emit the given number of characters as a value of type size_t.
const Decl * CurFuncDecl
CurFuncDecl - Holds the Decl for the current outermost non-closure context.
CanQualType getCanonicalType(QualType T) const
Return the canonical (structural) type corresponding to the specified potentially non-canonical type ...
Definition: ASTContext.h:2266
virtual llvm::Value * GetClass(CodeGenFunction &CGF, const ObjCInterfaceDecl *OID)=0
GetClass - Return a reference to the class for the given interface decl.
llvm::FunctionCallee objc_allocWithZone
void objc_allocWithZone(id);
Reading or writing from this object requires a barrier call.
Definition: Type.h:168
void EmitLexicalBlockStart(CGBuilderTy &Builder, SourceLocation Loc)
Emit metadata to indicate the beginning of a new lexical block and push the block onto the stack...
int64_t toBits(CharUnits CharSize) const
Convert a size in characters to a size in bits.
TranslationUnitDecl * getTranslationUnitDecl() const
Definition: ASTContext.h:1008
llvm::iterator_range< arg_iterator > arguments()
Definition: ExprObjC.h:1414
A non-RAII class containing all the information about a bound opaque value.
QualType getUnqualifiedType() const
Retrieve the unqualified variant of the given type, removing as little sugar as possible.
Definition: Type.h:6162
llvm::Value * EmitObjCCollectionLiteral(const Expr *E, const ObjCMethodDecl *MethodWithObjects)
Definition: CGObjC.cpp:117
llvm::BasicBlock * getInvokeDest()
bool isVoidType() const
Definition: Type.h:6558
void EmitReturnStmt(const ReturnStmt &S)
EmitReturnStmt - Note that due to GCC extensions, this can have an operand if the function returns vo...
Definition: CGStmt.cpp:1038
llvm::Function * objc_storeStrong
void objc_storeStrong(id*, id);
llvm::Type * ConvertType(QualType T)
ObjCIvarDecl - Represents an ObjC instance variable.
Definition: DeclObjC.h:1944
static llvm::Constant * getNullForVariable(Address addr)
Given the address of a variable of pointer type, find the correct null to store into it...
Definition: CGObjC.cpp:39
LValue EmitLValue(const Expr *E)
EmitLValue - Emit code to compute a designator that specifies the location of the expression...
Definition: CGExpr.cpp:1243
Address ReturnValue
ReturnValue - The temporary alloca to hold the return value.
QualType getPointerType(QualType T) const
Return the uniqued reference to the type for a pointer to the specified type.
ImplicitParamDecl * getCmdDecl() const
Definition: DeclObjC.h:415
llvm::Function * objc_loadWeak
id objc_loadWeak(id*);
The receiver is a class.
Definition: ExprObjC.h:1051
Represents Objective-C&#39;s @try ... @catch ... @finally statement.
Definition: StmtObjC.h:153
SourceRange getSourceRange() const LLVM_READONLY
SourceLocation tokens are not useful in isolation - they are low level value objects created/interpre...
Definition: Stmt.cpp:251
bool AutoreleaseResult
In ARC, whether we should autorelease the return value.
RValue EmitLoadOfLValue(LValue V, SourceLocation Loc)
EmitLoadOfLValue - Given an expression that represents a value lvalue, this method emits the address ...
Definition: CGExpr.cpp:1765
llvm::Value * EmitARCRetainBlock(llvm::Value *value, bool mandatory)
Retain the given block, with _Block_copy semantics.
Definition: CGObjC.cpp:2116
void generateObjCGetterBody(const ObjCImplementationDecl *classImpl, const ObjCPropertyImplDecl *propImpl, const ObjCMethodDecl *GetterMothodDecl, llvm::Constant *AtomicHelperFn)
Definition: CGObjC.cpp:1000
CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
Definition: Expr.h:2429
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: DeclObjC.h:282
void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD)
StartObjCMethod - Begin emission of an ObjCMethod.
Definition: CGObjC.cpp:653
llvm::Constant * tryEmitAbstract(const Expr *E, QualType T)
Try to emit the result of the given expression as an abstract constant.
bool hasARCUnsafeClaimAutoreleasedReturnValue() const
Is objc_unsafeClaimAutoreleasedReturnValue available?
Definition: ObjCRuntime.h:402
static Decl::Kind getKind(const Decl *D)
Definition: DeclBase.cpp:957
QualType getObjCFastEnumerationStateType()
Retrieve the record type that describes the state of an Objective-C fast enumeration loop (for...
void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr)
Definition: CGObjC.cpp:2667
bool hasNativeARC() const
Does this runtime natively provide the ARC entrypoints?
Definition: ObjCRuntime.h:161
llvm::Function * objc_retain
id objc_retain(id);
void EmitAggregateCopy(LValue Dest, LValue Src, QualType EltTy, AggValueSlot::Overlap_t MayOverlap, bool isVolatile=false)
EmitAggregateCopy - Emit an aggregate copy.
Definition: CGExprAgg.cpp:1867
A reference to a declared variable, function, enum, etc.
Definition: Expr.h:1074
static RValue get(llvm::Value *V)
Definition: CGValue.h:85
Expr * getRHS() const
Definition: Expr.h:3355
ObjCPropertyDecl * getPropertyDecl() const
Definition: DeclObjC.h:2817
llvm::Function * objc_autoreleasePoolPush
void *objc_autoreleasePoolPush(void);
static const Expr * findWeakLValue(const Expr *E)
Given an expression of ObjC pointer type, check whether it was immediately loaded from an ARC __weak ...
Definition: CGObjC.cpp:343
CharUnits getTypeSizeInChars(QualType T) const
Return the size of the specified (complete) type T, in characters.
static void emitAutoreleasedReturnValueMarker(CodeGenFunction &CGF)
Definition: CGObjC.cpp:2139
Address EmitCompoundStmtWithoutScope(const CompoundStmt &S, bool GetLast=false, AggValueSlot AVS=AggValueSlot::ignored())
Definition: CGStmt.cpp:380
llvm::Value * LoadObjCSelf()
LoadObjCSelf - Load the value of self.
Definition: CGObjC.cpp:1584
QualType getType() const
Definition: Decl.h:647
An l-value expression is a reference to an object with independent storage.
Definition: Specifiers.h:113
A trivial tuple used to represent a source range.
void EmitObjCAtTryStmt(const ObjCAtTryStmt &S)
Definition: CGObjC.cpp:1889
LValue - This represents an lvalue references.
Definition: CGValue.h:166
An abstract representation of regular/ObjC call/message targets.
ObjCMethodDecl * getGetterMethodDecl() const
Definition: DeclObjC.h:921
Information for lazily generating a cleanup.
Definition: EHScopeStack.h:146