clang  7.0.0svn
CGExprCXX.cpp
Go to the documentation of this file.
1 //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code dealing with code generation of C++ expressions
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGDebugInfo.h"
18 #include "CGObjCRuntime.h"
19 #include "ConstantEmitter.h"
22 #include "llvm/IR/CallSite.h"
23 #include "llvm/IR/Intrinsics.h"
24 
25 using namespace clang;
26 using namespace CodeGen;
27 
28 namespace {
29 struct MemberCallInfo {
30  RequiredArgs ReqArgs;
31  // Number of prefix arguments for the call. Ignores the `this` pointer.
32  unsigned PrefixSize;
33 };
34 }
35 
36 static MemberCallInfo
38  llvm::Value *This, llvm::Value *ImplicitParam,
39  QualType ImplicitParamTy, const CallExpr *CE,
40  CallArgList &Args, CallArgList *RtlArgs) {
41  assert(CE == nullptr || isa<CXXMemberCallExpr>(CE) ||
42  isa<CXXOperatorCallExpr>(CE));
43  assert(MD->isInstance() &&
44  "Trying to emit a member or operator call expr on a static method!");
45  ASTContext &C = CGF.getContext();
46 
47  // Push the this ptr.
48  const CXXRecordDecl *RD =
50  Args.add(RValue::get(This),
51  RD ? C.getPointerType(C.getTypeDeclType(RD)) : C.VoidPtrTy);
52 
53  // If there is an implicit parameter (e.g. VTT), emit it.
54  if (ImplicitParam) {
55  Args.add(RValue::get(ImplicitParam), ImplicitParamTy);
56  }
57 
58  const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
59  RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size(), MD);
60  unsigned PrefixSize = Args.size() - 1;
61 
62  // And the rest of the call args.
63  if (RtlArgs) {
64  // Special case: if the caller emitted the arguments right-to-left already
65  // (prior to emitting the *this argument), we're done. This happens for
66  // assignment operators.
67  Args.addFrom(*RtlArgs);
68  } else if (CE) {
69  // Special case: skip first argument of CXXOperatorCall (it is "this").
70  unsigned ArgsToSkip = isa<CXXOperatorCallExpr>(CE) ? 1 : 0;
71  CGF.EmitCallArgs(Args, FPT, drop_begin(CE->arguments(), ArgsToSkip),
72  CE->getDirectCallee());
73  } else {
74  assert(
75  FPT->getNumParams() == 0 &&
76  "No CallExpr specified for function with non-zero number of arguments");
77  }
78  return {required, PrefixSize};
79 }
80 
82  const CXXMethodDecl *MD, const CGCallee &Callee,
83  ReturnValueSlot ReturnValue,
84  llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy,
85  const CallExpr *CE, CallArgList *RtlArgs) {
86  const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
87  CallArgList Args;
88  MemberCallInfo CallInfo = commonEmitCXXMemberOrOperatorCall(
89  *this, MD, This, ImplicitParam, ImplicitParamTy, CE, Args, RtlArgs);
90  auto &FnInfo = CGM.getTypes().arrangeCXXMethodCall(
91  Args, FPT, CallInfo.ReqArgs, CallInfo.PrefixSize);
92  return EmitCall(FnInfo, Callee, ReturnValue, Args, nullptr,
93  CE ? CE->getExprLoc() : SourceLocation());
94 }
95 
97  const CXXDestructorDecl *DD, const CGCallee &Callee, llvm::Value *This,
98  llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *CE,
100  CallArgList Args;
101  commonEmitCXXMemberOrOperatorCall(*this, DD, This, ImplicitParam,
102  ImplicitParamTy, CE, Args, nullptr);
103  return EmitCall(CGM.getTypes().arrangeCXXStructorDeclaration(DD, Type),
104  Callee, ReturnValueSlot(), Args);
105 }
106 
108  const CXXPseudoDestructorExpr *E) {
109  QualType DestroyedType = E->getDestroyedType();
110  if (DestroyedType.hasStrongOrWeakObjCLifetime()) {
111  // Automatic Reference Counting:
112  // If the pseudo-expression names a retainable object with weak or
113  // strong lifetime, the object shall be released.
114  Expr *BaseExpr = E->getBase();
115  Address BaseValue = Address::invalid();
116  Qualifiers BaseQuals;
117 
118  // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
119  if (E->isArrow()) {
120  BaseValue = EmitPointerWithAlignment(BaseExpr);
121  const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>();
122  BaseQuals = PTy->getPointeeType().getQualifiers();
123  } else {
124  LValue BaseLV = EmitLValue(BaseExpr);
125  BaseValue = BaseLV.getAddress();
126  QualType BaseTy = BaseExpr->getType();
127  BaseQuals = BaseTy.getQualifiers();
128  }
129 
130  switch (DestroyedType.getObjCLifetime()) {
134  break;
135 
137  EmitARCRelease(Builder.CreateLoad(BaseValue,
138  DestroyedType.isVolatileQualified()),
140  break;
141 
143  EmitARCDestroyWeak(BaseValue);
144  break;
145  }
146  } else {
147  // C++ [expr.pseudo]p1:
148  // The result shall only be used as the operand for the function call
149  // operator (), and the result of such a call has type void. The only
150  // effect is the evaluation of the postfix-expression before the dot or
151  // arrow.
152  EmitIgnoredExpr(E->getBase());
153  }
154 
155  return RValue::get(nullptr);
156 }
157 
158 static CXXRecordDecl *getCXXRecord(const Expr *E) {
159  QualType T = E->getType();
160  if (const PointerType *PTy = T->getAs<PointerType>())
161  T = PTy->getPointeeType();
162  const RecordType *Ty = T->castAs<RecordType>();
163  return cast<CXXRecordDecl>(Ty->getDecl());
164 }
165 
166 // Note: This function also emit constructor calls to support a MSVC
167 // extensions allowing explicit constructor function call.
169  ReturnValueSlot ReturnValue) {
170  const Expr *callee = CE->getCallee()->IgnoreParens();
171 
172  if (isa<BinaryOperator>(callee))
173  return EmitCXXMemberPointerCallExpr(CE, ReturnValue);
174 
175  const MemberExpr *ME = cast<MemberExpr>(callee);
176  const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl());
177 
178  if (MD->isStatic()) {
179  // The method is static, emit it as we would a regular call.
180  CGCallee callee = CGCallee::forDirect(CGM.GetAddrOfFunction(MD), MD);
181  return EmitCall(getContext().getPointerType(MD->getType()), callee, CE,
182  ReturnValue);
183  }
184 
185  bool HasQualifier = ME->hasQualifier();
186  NestedNameSpecifier *Qualifier = HasQualifier ? ME->getQualifier() : nullptr;
187  bool IsArrow = ME->isArrow();
188  const Expr *Base = ME->getBase();
189 
190  return EmitCXXMemberOrOperatorMemberCallExpr(
191  CE, MD, ReturnValue, HasQualifier, Qualifier, IsArrow, Base);
192 }
193 
195  const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue,
196  bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow,
197  const Expr *Base) {
198  assert(isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE));
199 
200  // Compute the object pointer.
201  bool CanUseVirtualCall = MD->isVirtual() && !HasQualifier;
202 
203  const CXXMethodDecl *DevirtualizedMethod = nullptr;
204  if (CanUseVirtualCall &&
205  MD->getDevirtualizedMethod(Base, getLangOpts().AppleKext)) {
206  const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType();
207  DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl);
208  assert(DevirtualizedMethod);
209  const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent();
210  const Expr *Inner = Base->ignoreParenBaseCasts();
211  if (DevirtualizedMethod->getReturnType().getCanonicalType() !=
213  // If the return types are not the same, this might be a case where more
214  // code needs to run to compensate for it. For example, the derived
215  // method might return a type that inherits form from the return
216  // type of MD and has a prefix.
217  // For now we just avoid devirtualizing these covariant cases.
218  DevirtualizedMethod = nullptr;
219  else if (getCXXRecord(Inner) == DevirtualizedClass)
220  // If the class of the Inner expression is where the dynamic method
221  // is defined, build the this pointer from it.
222  Base = Inner;
223  else if (getCXXRecord(Base) != DevirtualizedClass) {
224  // If the method is defined in a class that is not the best dynamic
225  // one or the one of the full expression, we would have to build
226  // a derived-to-base cast to compute the correct this pointer, but
227  // we don't have support for that yet, so do a virtual call.
228  DevirtualizedMethod = nullptr;
229  }
230  }
231 
232  // C++17 demands that we evaluate the RHS of a (possibly-compound) assignment
233  // operator before the LHS.
234  CallArgList RtlArgStorage;
235  CallArgList *RtlArgs = nullptr;
236  if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(CE)) {
237  if (OCE->isAssignmentOp()) {
238  RtlArgs = &RtlArgStorage;
239  EmitCallArgs(*RtlArgs, MD->getType()->castAs<FunctionProtoType>(),
240  drop_begin(CE->arguments(), 1), CE->getDirectCallee(),
241  /*ParamsToSkip*/0, EvaluationOrder::ForceRightToLeft);
242  }
243  }
244 
245  Address This = Address::invalid();
246  if (IsArrow)
247  This = EmitPointerWithAlignment(Base);
248  else
249  This = EmitLValue(Base).getAddress();
250 
251 
252  if (MD->isTrivial() || (MD->isDefaulted() && MD->getParent()->isUnion())) {
253  if (isa<CXXDestructorDecl>(MD)) return RValue::get(nullptr);
254  if (isa<CXXConstructorDecl>(MD) &&
255  cast<CXXConstructorDecl>(MD)->isDefaultConstructor())
256  return RValue::get(nullptr);
257 
258  if (!MD->getParent()->mayInsertExtraPadding()) {
260  // We don't like to generate the trivial copy/move assignment operator
261  // when it isn't necessary; just produce the proper effect here.
262  LValue RHS = isa<CXXOperatorCallExpr>(CE)
263  ? MakeNaturalAlignAddrLValue(
264  (*RtlArgs)[0].RV.getScalarVal(),
265  (*(CE->arg_begin() + 1))->getType())
266  : EmitLValue(*CE->arg_begin());
267  EmitAggregateAssign(This, RHS.getAddress(), CE->getType());
268  return RValue::get(This.getPointer());
269  }
270 
271  if (isa<CXXConstructorDecl>(MD) &&
272  cast<CXXConstructorDecl>(MD)->isCopyOrMoveConstructor()) {
273  // Trivial move and copy ctor are the same.
274  assert(CE->getNumArgs() == 1 && "unexpected argcount for trivial ctor");
275  Address RHS = EmitLValue(*CE->arg_begin()).getAddress();
276  EmitAggregateCopy(This, RHS, (*CE->arg_begin())->getType());
277  return RValue::get(This.getPointer());
278  }
279  llvm_unreachable("unknown trivial member function");
280  }
281  }
282 
283  // Compute the function type we're calling.
284  const CXXMethodDecl *CalleeDecl =
285  DevirtualizedMethod ? DevirtualizedMethod : MD;
286  const CGFunctionInfo *FInfo = nullptr;
287  if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl))
288  FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration(
289  Dtor, StructorType::Complete);
290  else if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(CalleeDecl))
291  FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration(
292  Ctor, StructorType::Complete);
293  else
294  FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl);
295 
296  llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo);
297 
298  // C++11 [class.mfct.non-static]p2:
299  // If a non-static member function of a class X is called for an object that
300  // is not of type X, or of a type derived from X, the behavior is undefined.
301  SourceLocation CallLoc;
302  ASTContext &C = getContext();
303  if (CE)
304  CallLoc = CE->getExprLoc();
305 
306  SanitizerSet SkippedChecks;
307  if (const auto *CMCE = dyn_cast<CXXMemberCallExpr>(CE)) {
308  auto *IOA = CMCE->getImplicitObjectArgument();
309  bool IsImplicitObjectCXXThis = IsWrappedCXXThis(IOA);
310  if (IsImplicitObjectCXXThis)
311  SkippedChecks.set(SanitizerKind::Alignment, true);
312  if (IsImplicitObjectCXXThis || isa<DeclRefExpr>(IOA))
313  SkippedChecks.set(SanitizerKind::Null, true);
314  }
315  EmitTypeCheck(
316  isa<CXXConstructorDecl>(CalleeDecl) ? CodeGenFunction::TCK_ConstructorCall
318  CallLoc, This.getPointer(), C.getRecordType(CalleeDecl->getParent()),
319  /*Alignment=*/CharUnits::Zero(), SkippedChecks);
320 
321  // FIXME: Uses of 'MD' past this point need to be audited. We may need to use
322  // 'CalleeDecl' instead.
323 
324  // C++ [class.virtual]p12:
325  // Explicit qualification with the scope operator (5.1) suppresses the
326  // virtual call mechanism.
327  //
328  // We also don't emit a virtual call if the base expression has a record type
329  // because then we know what the type is.
330  bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod;
331 
332  if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(MD)) {
333  assert(CE->arg_begin() == CE->arg_end() &&
334  "Destructor shouldn't have explicit parameters");
335  assert(ReturnValue.isNull() && "Destructor shouldn't have return value");
336  if (UseVirtualCall) {
337  CGM.getCXXABI().EmitVirtualDestructorCall(
338  *this, Dtor, Dtor_Complete, This, cast<CXXMemberCallExpr>(CE));
339  } else {
340  CGCallee Callee;
341  if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier)
342  Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty);
343  else if (!DevirtualizedMethod)
344  Callee = CGCallee::forDirect(
345  CGM.getAddrOfCXXStructor(Dtor, StructorType::Complete, FInfo, Ty),
346  Dtor);
347  else {
348  const CXXDestructorDecl *DDtor =
349  cast<CXXDestructorDecl>(DevirtualizedMethod);
350  Callee = CGCallee::forDirect(
351  CGM.GetAddrOfFunction(GlobalDecl(DDtor, Dtor_Complete), Ty),
352  DDtor);
353  }
354  EmitCXXMemberOrOperatorCall(
355  CalleeDecl, Callee, ReturnValue, This.getPointer(),
356  /*ImplicitParam=*/nullptr, QualType(), CE, nullptr);
357  }
358  return RValue::get(nullptr);
359  }
360 
361  CGCallee Callee;
362  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
363  Callee = CGCallee::forDirect(
364  CGM.GetAddrOfFunction(GlobalDecl(Ctor, Ctor_Complete), Ty),
365  Ctor);
366  } else if (UseVirtualCall) {
367  Callee = CGM.getCXXABI().getVirtualFunctionPointer(*this, MD, This, Ty,
368  CE->getLocStart());
369  } else {
370  if (SanOpts.has(SanitizerKind::CFINVCall) &&
371  MD->getParent()->isDynamicClass()) {
372  llvm::Value *VTable;
373  const CXXRecordDecl *RD;
374  std::tie(VTable, RD) =
375  CGM.getCXXABI().LoadVTablePtr(*this, This, MD->getParent());
376  EmitVTablePtrCheckForCall(RD, VTable, CFITCK_NVCall, CE->getLocStart());
377  }
378 
379  if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier)
380  Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty);
381  else if (!DevirtualizedMethod)
382  Callee = CGCallee::forDirect(CGM.GetAddrOfFunction(MD, Ty), MD);
383  else {
384  Callee = CGCallee::forDirect(
385  CGM.GetAddrOfFunction(DevirtualizedMethod, Ty),
386  DevirtualizedMethod);
387  }
388  }
389 
390  if (MD->isVirtual()) {
391  This = CGM.getCXXABI().adjustThisArgumentForVirtualFunctionCall(
392  *this, CalleeDecl, This, UseVirtualCall);
393  }
394 
395  return EmitCXXMemberOrOperatorCall(
396  CalleeDecl, Callee, ReturnValue, This.getPointer(),
397  /*ImplicitParam=*/nullptr, QualType(), CE, RtlArgs);
398 }
399 
400 RValue
402  ReturnValueSlot ReturnValue) {
403  const BinaryOperator *BO =
404  cast<BinaryOperator>(E->getCallee()->IgnoreParens());
405  const Expr *BaseExpr = BO->getLHS();
406  const Expr *MemFnExpr = BO->getRHS();
407 
408  const MemberPointerType *MPT =
409  MemFnExpr->getType()->castAs<MemberPointerType>();
410 
411  const FunctionProtoType *FPT =
413  const CXXRecordDecl *RD =
414  cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl());
415 
416  // Emit the 'this' pointer.
417  Address This = Address::invalid();
418  if (BO->getOpcode() == BO_PtrMemI)
419  This = EmitPointerWithAlignment(BaseExpr);
420  else
421  This = EmitLValue(BaseExpr).getAddress();
422 
423  EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This.getPointer(),
424  QualType(MPT->getClass(), 0));
425 
426  // Get the member function pointer.
427  llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr);
428 
429  // Ask the ABI to load the callee. Note that This is modified.
430  llvm::Value *ThisPtrForCall = nullptr;
431  CGCallee Callee =
432  CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, BO, This,
433  ThisPtrForCall, MemFnPtr, MPT);
434 
435  CallArgList Args;
436 
437  QualType ThisType =
438  getContext().getPointerType(getContext().getTagDeclType(RD));
439 
440  // Push the this ptr.
441  Args.add(RValue::get(ThisPtrForCall), ThisType);
442 
443  RequiredArgs required =
444  RequiredArgs::forPrototypePlus(FPT, 1, /*FD=*/nullptr);
445 
446  // And the rest of the call args
447  EmitCallArgs(Args, FPT, E->arguments());
448  return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required,
449  /*PrefixSize=*/0),
450  Callee, ReturnValue, Args, nullptr, E->getExprLoc());
451 }
452 
453 RValue
455  const CXXMethodDecl *MD,
456  ReturnValueSlot ReturnValue) {
457  assert(MD->isInstance() &&
458  "Trying to emit a member call expr on a static method!");
459  return EmitCXXMemberOrOperatorMemberCallExpr(
460  E, MD, ReturnValue, /*HasQualifier=*/false, /*Qualifier=*/nullptr,
461  /*IsArrow=*/false, E->getArg(0));
462 }
463 
465  ReturnValueSlot ReturnValue) {
466  return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue);
467 }
468 
470  Address DestPtr,
471  const CXXRecordDecl *Base) {
472  if (Base->isEmpty())
473  return;
474 
475  DestPtr = CGF.Builder.CreateElementBitCast(DestPtr, CGF.Int8Ty);
476 
477  const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base);
478  CharUnits NVSize = Layout.getNonVirtualSize();
479 
480  // We cannot simply zero-initialize the entire base sub-object if vbptrs are
481  // present, they are initialized by the most derived class before calling the
482  // constructor.
484  Stores.emplace_back(CharUnits::Zero(), NVSize);
485 
486  // Each store is split by the existence of a vbptr.
487  CharUnits VBPtrWidth = CGF.getPointerSize();
488  std::vector<CharUnits> VBPtrOffsets =
489  CGF.CGM.getCXXABI().getVBPtrOffsets(Base);
490  for (CharUnits VBPtrOffset : VBPtrOffsets) {
491  // Stop before we hit any virtual base pointers located in virtual bases.
492  if (VBPtrOffset >= NVSize)
493  break;
494  std::pair<CharUnits, CharUnits> LastStore = Stores.pop_back_val();
495  CharUnits LastStoreOffset = LastStore.first;
496  CharUnits LastStoreSize = LastStore.second;
497 
498  CharUnits SplitBeforeOffset = LastStoreOffset;
499  CharUnits SplitBeforeSize = VBPtrOffset - SplitBeforeOffset;
500  assert(!SplitBeforeSize.isNegative() && "negative store size!");
501  if (!SplitBeforeSize.isZero())
502  Stores.emplace_back(SplitBeforeOffset, SplitBeforeSize);
503 
504  CharUnits SplitAfterOffset = VBPtrOffset + VBPtrWidth;
505  CharUnits SplitAfterSize = LastStoreSize - SplitAfterOffset;
506  assert(!SplitAfterSize.isNegative() && "negative store size!");
507  if (!SplitAfterSize.isZero())
508  Stores.emplace_back(SplitAfterOffset, SplitAfterSize);
509  }
510 
511  // If the type contains a pointer to data member we can't memset it to zero.
512  // Instead, create a null constant and copy it to the destination.
513  // TODO: there are other patterns besides zero that we can usefully memset,
514  // like -1, which happens to be the pattern used by member-pointers.
515  // TODO: isZeroInitializable can be over-conservative in the case where a
516  // virtual base contains a member pointer.
517  llvm::Constant *NullConstantForBase = CGF.CGM.EmitNullConstantForBase(Base);
518  if (!NullConstantForBase->isNullValue()) {
519  llvm::GlobalVariable *NullVariable = new llvm::GlobalVariable(
520  CGF.CGM.getModule(), NullConstantForBase->getType(),
521  /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage,
522  NullConstantForBase, Twine());
523 
524  CharUnits Align = std::max(Layout.getNonVirtualAlignment(),
525  DestPtr.getAlignment());
526  NullVariable->setAlignment(Align.getQuantity());
527 
528  Address SrcPtr = Address(CGF.EmitCastToVoidPtr(NullVariable), Align);
529 
530  // Get and call the appropriate llvm.memcpy overload.
531  for (std::pair<CharUnits, CharUnits> Store : Stores) {
532  CharUnits StoreOffset = Store.first;
533  CharUnits StoreSize = Store.second;
534  llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize);
535  CGF.Builder.CreateMemCpy(
536  CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset),
537  CGF.Builder.CreateConstInBoundsByteGEP(SrcPtr, StoreOffset),
538  StoreSizeVal);
539  }
540 
541  // Otherwise, just memset the whole thing to zero. This is legal
542  // because in LLVM, all default initializers (other than the ones we just
543  // handled above) are guaranteed to have a bit pattern of all zeros.
544  } else {
545  for (std::pair<CharUnits, CharUnits> Store : Stores) {
546  CharUnits StoreOffset = Store.first;
547  CharUnits StoreSize = Store.second;
548  llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize);
549  CGF.Builder.CreateMemSet(
550  CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset),
551  CGF.Builder.getInt8(0), StoreSizeVal);
552  }
553  }
554 }
555 
556 void
558  AggValueSlot Dest) {
559  assert(!Dest.isIgnored() && "Must have a destination!");
560  const CXXConstructorDecl *CD = E->getConstructor();
561 
562  // If we require zero initialization before (or instead of) calling the
563  // constructor, as can be the case with a non-user-provided default
564  // constructor, emit the zero initialization now, unless destination is
565  // already zeroed.
566  if (E->requiresZeroInitialization() && !Dest.isZeroed()) {
567  switch (E->getConstructionKind()) {
570  EmitNullInitialization(Dest.getAddress(), E->getType());
571  break;
575  CD->getParent());
576  break;
577  }
578  }
579 
580  // If this is a call to a trivial default constructor, do nothing.
581  if (CD->isTrivial() && CD->isDefaultConstructor())
582  return;
583 
584  // Elide the constructor if we're constructing from a temporary.
585  // The temporary check is required because Sema sets this on NRVO
586  // returns.
587  if (getLangOpts().ElideConstructors && E->isElidable()) {
588  assert(getContext().hasSameUnqualifiedType(E->getType(),
589  E->getArg(0)->getType()));
590  if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) {
591  EmitAggExpr(E->getArg(0), Dest);
592  return;
593  }
594  }
595 
596  if (const ArrayType *arrayType
597  = getContext().getAsArrayType(E->getType())) {
598  EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddress(), E);
599  } else {
601  bool ForVirtualBase = false;
602  bool Delegating = false;
603 
604  switch (E->getConstructionKind()) {
606  // We should be emitting a constructor; GlobalDecl will assert this
607  Type = CurGD.getCtorType();
608  Delegating = true;
609  break;
610 
612  Type = Ctor_Complete;
613  break;
614 
616  ForVirtualBase = true;
617  LLVM_FALLTHROUGH;
618 
620  Type = Ctor_Base;
621  }
622 
623  // Call the constructor.
624  EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating,
625  Dest.getAddress(), E);
626  }
627 }
628 
630  const Expr *Exp) {
631  if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp))
632  Exp = E->getSubExpr();
633  assert(isa<CXXConstructExpr>(Exp) &&
634  "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr");
635  const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp);
636  const CXXConstructorDecl *CD = E->getConstructor();
637  RunCleanupsScope Scope(*this);
638 
639  // If we require zero initialization before (or instead of) calling the
640  // constructor, as can be the case with a non-user-provided default
641  // constructor, emit the zero initialization now.
642  // FIXME. Do I still need this for a copy ctor synthesis?
644  EmitNullInitialization(Dest, E->getType());
645 
646  assert(!getContext().getAsConstantArrayType(E->getType())
647  && "EmitSynthesizedCXXCopyCtor - Copied-in Array");
648  EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, E);
649 }
650 
652  const CXXNewExpr *E) {
653  if (!E->isArray())
654  return CharUnits::Zero();
655 
656  // No cookie is required if the operator new[] being used is the
657  // reserved placement operator new[].
659  return CharUnits::Zero();
660 
661  return CGF.CGM.getCXXABI().GetArrayCookieSize(E);
662 }
663 
665  const CXXNewExpr *e,
666  unsigned minElements,
667  llvm::Value *&numElements,
668  llvm::Value *&sizeWithoutCookie) {
670 
671  if (!e->isArray()) {
672  CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
673  sizeWithoutCookie
674  = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity());
675  return sizeWithoutCookie;
676  }
677 
678  // The width of size_t.
679  unsigned sizeWidth = CGF.SizeTy->getBitWidth();
680 
681  // Figure out the cookie size.
682  llvm::APInt cookieSize(sizeWidth,
683  CalculateCookiePadding(CGF, e).getQuantity());
684 
685  // Emit the array size expression.
686  // We multiply the size of all dimensions for NumElements.
687  // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6.
688  numElements =
690  if (!numElements)
691  numElements = CGF.EmitScalarExpr(e->getArraySize());
692  assert(isa<llvm::IntegerType>(numElements->getType()));
693 
694  // The number of elements can be have an arbitrary integer type;
695  // essentially, we need to multiply it by a constant factor, add a
696  // cookie size, and verify that the result is representable as a
697  // size_t. That's just a gloss, though, and it's wrong in one
698  // important way: if the count is negative, it's an error even if
699  // the cookie size would bring the total size >= 0.
700  bool isSigned
702  llvm::IntegerType *numElementsType
703  = cast<llvm::IntegerType>(numElements->getType());
704  unsigned numElementsWidth = numElementsType->getBitWidth();
705 
706  // Compute the constant factor.
707  llvm::APInt arraySizeMultiplier(sizeWidth, 1);
708  while (const ConstantArrayType *CAT
709  = CGF.getContext().getAsConstantArrayType(type)) {
710  type = CAT->getElementType();
711  arraySizeMultiplier *= CAT->getSize();
712  }
713 
714  CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
715  llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity());
716  typeSizeMultiplier *= arraySizeMultiplier;
717 
718  // This will be a size_t.
719  llvm::Value *size;
720 
721  // If someone is doing 'new int[42]' there is no need to do a dynamic check.
722  // Don't bloat the -O0 code.
723  if (llvm::ConstantInt *numElementsC =
724  dyn_cast<llvm::ConstantInt>(numElements)) {
725  const llvm::APInt &count = numElementsC->getValue();
726 
727  bool hasAnyOverflow = false;
728 
729  // If 'count' was a negative number, it's an overflow.
730  if (isSigned && count.isNegative())
731  hasAnyOverflow = true;
732 
733  // We want to do all this arithmetic in size_t. If numElements is
734  // wider than that, check whether it's already too big, and if so,
735  // overflow.
736  else if (numElementsWidth > sizeWidth &&
737  numElementsWidth - sizeWidth > count.countLeadingZeros())
738  hasAnyOverflow = true;
739 
740  // Okay, compute a count at the right width.
741  llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth);
742 
743  // If there is a brace-initializer, we cannot allocate fewer elements than
744  // there are initializers. If we do, that's treated like an overflow.
745  if (adjustedCount.ult(minElements))
746  hasAnyOverflow = true;
747 
748  // Scale numElements by that. This might overflow, but we don't
749  // care because it only overflows if allocationSize does, too, and
750  // if that overflows then we shouldn't use this.
751  numElements = llvm::ConstantInt::get(CGF.SizeTy,
752  adjustedCount * arraySizeMultiplier);
753 
754  // Compute the size before cookie, and track whether it overflowed.
755  bool overflow;
756  llvm::APInt allocationSize
757  = adjustedCount.umul_ov(typeSizeMultiplier, overflow);
758  hasAnyOverflow |= overflow;
759 
760  // Add in the cookie, and check whether it's overflowed.
761  if (cookieSize != 0) {
762  // Save the current size without a cookie. This shouldn't be
763  // used if there was overflow.
764  sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
765 
766  allocationSize = allocationSize.uadd_ov(cookieSize, overflow);
767  hasAnyOverflow |= overflow;
768  }
769 
770  // On overflow, produce a -1 so operator new will fail.
771  if (hasAnyOverflow) {
772  size = llvm::Constant::getAllOnesValue(CGF.SizeTy);
773  } else {
774  size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
775  }
776 
777  // Otherwise, we might need to use the overflow intrinsics.
778  } else {
779  // There are up to five conditions we need to test for:
780  // 1) if isSigned, we need to check whether numElements is negative;
781  // 2) if numElementsWidth > sizeWidth, we need to check whether
782  // numElements is larger than something representable in size_t;
783  // 3) if minElements > 0, we need to check whether numElements is smaller
784  // than that.
785  // 4) we need to compute
786  // sizeWithoutCookie := numElements * typeSizeMultiplier
787  // and check whether it overflows; and
788  // 5) if we need a cookie, we need to compute
789  // size := sizeWithoutCookie + cookieSize
790  // and check whether it overflows.
791 
792  llvm::Value *hasOverflow = nullptr;
793 
794  // If numElementsWidth > sizeWidth, then one way or another, we're
795  // going to have to do a comparison for (2), and this happens to
796  // take care of (1), too.
797  if (numElementsWidth > sizeWidth) {
798  llvm::APInt threshold(numElementsWidth, 1);
799  threshold <<= sizeWidth;
800 
801  llvm::Value *thresholdV
802  = llvm::ConstantInt::get(numElementsType, threshold);
803 
804  hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV);
805  numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy);
806 
807  // Otherwise, if we're signed, we want to sext up to size_t.
808  } else if (isSigned) {
809  if (numElementsWidth < sizeWidth)
810  numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy);
811 
812  // If there's a non-1 type size multiplier, then we can do the
813  // signedness check at the same time as we do the multiply
814  // because a negative number times anything will cause an
815  // unsigned overflow. Otherwise, we have to do it here. But at least
816  // in this case, we can subsume the >= minElements check.
817  if (typeSizeMultiplier == 1)
818  hasOverflow = CGF.Builder.CreateICmpSLT(numElements,
819  llvm::ConstantInt::get(CGF.SizeTy, minElements));
820 
821  // Otherwise, zext up to size_t if necessary.
822  } else if (numElementsWidth < sizeWidth) {
823  numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy);
824  }
825 
826  assert(numElements->getType() == CGF.SizeTy);
827 
828  if (minElements) {
829  // Don't allow allocation of fewer elements than we have initializers.
830  if (!hasOverflow) {
831  hasOverflow = CGF.Builder.CreateICmpULT(numElements,
832  llvm::ConstantInt::get(CGF.SizeTy, minElements));
833  } else if (numElementsWidth > sizeWidth) {
834  // The other existing overflow subsumes this check.
835  // We do an unsigned comparison, since any signed value < -1 is
836  // taken care of either above or below.
837  hasOverflow = CGF.Builder.CreateOr(hasOverflow,
838  CGF.Builder.CreateICmpULT(numElements,
839  llvm::ConstantInt::get(CGF.SizeTy, minElements)));
840  }
841  }
842 
843  size = numElements;
844 
845  // Multiply by the type size if necessary. This multiplier
846  // includes all the factors for nested arrays.
847  //
848  // This step also causes numElements to be scaled up by the
849  // nested-array factor if necessary. Overflow on this computation
850  // can be ignored because the result shouldn't be used if
851  // allocation fails.
852  if (typeSizeMultiplier != 1) {
853  llvm::Value *umul_with_overflow
854  = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy);
855 
856  llvm::Value *tsmV =
857  llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier);
858  llvm::Value *result =
859  CGF.Builder.CreateCall(umul_with_overflow, {size, tsmV});
860 
861  llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
862  if (hasOverflow)
863  hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
864  else
865  hasOverflow = overflowed;
866 
867  size = CGF.Builder.CreateExtractValue(result, 0);
868 
869  // Also scale up numElements by the array size multiplier.
870  if (arraySizeMultiplier != 1) {
871  // If the base element type size is 1, then we can re-use the
872  // multiply we just did.
873  if (typeSize.isOne()) {
874  assert(arraySizeMultiplier == typeSizeMultiplier);
875  numElements = size;
876 
877  // Otherwise we need a separate multiply.
878  } else {
879  llvm::Value *asmV =
880  llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier);
881  numElements = CGF.Builder.CreateMul(numElements, asmV);
882  }
883  }
884  } else {
885  // numElements doesn't need to be scaled.
886  assert(arraySizeMultiplier == 1);
887  }
888 
889  // Add in the cookie size if necessary.
890  if (cookieSize != 0) {
891  sizeWithoutCookie = size;
892 
893  llvm::Value *uadd_with_overflow
894  = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy);
895 
896  llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize);
897  llvm::Value *result =
898  CGF.Builder.CreateCall(uadd_with_overflow, {size, cookieSizeV});
899 
900  llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
901  if (hasOverflow)
902  hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
903  else
904  hasOverflow = overflowed;
905 
906  size = CGF.Builder.CreateExtractValue(result, 0);
907  }
908 
909  // If we had any possibility of dynamic overflow, make a select to
910  // overwrite 'size' with an all-ones value, which should cause
911  // operator new to throw.
912  if (hasOverflow)
913  size = CGF.Builder.CreateSelect(hasOverflow,
914  llvm::Constant::getAllOnesValue(CGF.SizeTy),
915  size);
916  }
917 
918  if (cookieSize == 0)
919  sizeWithoutCookie = size;
920  else
921  assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?");
922 
923  return size;
924 }
925 
926 static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init,
927  QualType AllocType, Address NewPtr) {
928  // FIXME: Refactor with EmitExprAsInit.
929  switch (CGF.getEvaluationKind(AllocType)) {
930  case TEK_Scalar:
931  CGF.EmitScalarInit(Init, nullptr,
932  CGF.MakeAddrLValue(NewPtr, AllocType), false);
933  return;
934  case TEK_Complex:
935  CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType),
936  /*isInit*/ true);
937  return;
938  case TEK_Aggregate: {
939  AggValueSlot Slot
940  = AggValueSlot::forAddr(NewPtr, AllocType.getQualifiers(),
944  CGF.EmitAggExpr(Init, Slot);
945  return;
946  }
947  }
948  llvm_unreachable("bad evaluation kind");
949 }
950 
952  const CXXNewExpr *E, QualType ElementType, llvm::Type *ElementTy,
953  Address BeginPtr, llvm::Value *NumElements,
954  llvm::Value *AllocSizeWithoutCookie) {
955  // If we have a type with trivial initialization and no initializer,
956  // there's nothing to do.
957  if (!E->hasInitializer())
958  return;
959 
960  Address CurPtr = BeginPtr;
961 
962  unsigned InitListElements = 0;
963 
964  const Expr *Init = E->getInitializer();
965  Address EndOfInit = Address::invalid();
966  QualType::DestructionKind DtorKind = ElementType.isDestructedType();
968  llvm::Instruction *CleanupDominator = nullptr;
969 
970  CharUnits ElementSize = getContext().getTypeSizeInChars(ElementType);
971  CharUnits ElementAlign =
972  BeginPtr.getAlignment().alignmentOfArrayElement(ElementSize);
973 
974  // Attempt to perform zero-initialization using memset.
975  auto TryMemsetInitialization = [&]() -> bool {
976  // FIXME: If the type is a pointer-to-data-member under the Itanium ABI,
977  // we can initialize with a memset to -1.
978  if (!CGM.getTypes().isZeroInitializable(ElementType))
979  return false;
980 
981  // Optimization: since zero initialization will just set the memory
982  // to all zeroes, generate a single memset to do it in one shot.
983 
984  // Subtract out the size of any elements we've already initialized.
985  auto *RemainingSize = AllocSizeWithoutCookie;
986  if (InitListElements) {
987  // We know this can't overflow; we check this when doing the allocation.
988  auto *InitializedSize = llvm::ConstantInt::get(
989  RemainingSize->getType(),
990  getContext().getTypeSizeInChars(ElementType).getQuantity() *
991  InitListElements);
992  RemainingSize = Builder.CreateSub(RemainingSize, InitializedSize);
993  }
994 
995  // Create the memset.
996  Builder.CreateMemSet(CurPtr, Builder.getInt8(0), RemainingSize, false);
997  return true;
998  };
999 
1000  // If the initializer is an initializer list, first do the explicit elements.
1001  if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
1002  // Initializing from a (braced) string literal is a special case; the init
1003  // list element does not initialize a (single) array element.
1004  if (ILE->isStringLiteralInit()) {
1005  // Initialize the initial portion of length equal to that of the string
1006  // literal. The allocation must be for at least this much; we emitted a
1007  // check for that earlier.
1008  AggValueSlot Slot =
1009  AggValueSlot::forAddr(CurPtr, ElementType.getQualifiers(),
1013  EmitAggExpr(ILE->getInit(0), Slot);
1014 
1015  // Move past these elements.
1016  InitListElements =
1017  cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe())
1018  ->getSize().getZExtValue();
1019  CurPtr =
1020  Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(),
1021  Builder.getSize(InitListElements),
1022  "string.init.end"),
1023  CurPtr.getAlignment().alignmentAtOffset(InitListElements *
1024  ElementSize));
1025 
1026  // Zero out the rest, if any remain.
1027  llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
1028  if (!ConstNum || !ConstNum->equalsInt(InitListElements)) {
1029  bool OK = TryMemsetInitialization();
1030  (void)OK;
1031  assert(OK && "couldn't memset character type?");
1032  }
1033  return;
1034  }
1035 
1036  InitListElements = ILE->getNumInits();
1037 
1038  // If this is a multi-dimensional array new, we will initialize multiple
1039  // elements with each init list element.
1040  QualType AllocType = E->getAllocatedType();
1041  if (const ConstantArrayType *CAT = dyn_cast_or_null<ConstantArrayType>(
1042  AllocType->getAsArrayTypeUnsafe())) {
1043  ElementTy = ConvertTypeForMem(AllocType);
1044  CurPtr = Builder.CreateElementBitCast(CurPtr, ElementTy);
1045  InitListElements *= getContext().getConstantArrayElementCount(CAT);
1046  }
1047 
1048  // Enter a partial-destruction Cleanup if necessary.
1049  if (needsEHCleanup(DtorKind)) {
1050  // In principle we could tell the Cleanup where we are more
1051  // directly, but the control flow can get so varied here that it
1052  // would actually be quite complex. Therefore we go through an
1053  // alloca.
1054  EndOfInit = CreateTempAlloca(BeginPtr.getType(), getPointerAlign(),
1055  "array.init.end");
1056  CleanupDominator = Builder.CreateStore(BeginPtr.getPointer(), EndOfInit);
1057  pushIrregularPartialArrayCleanup(BeginPtr.getPointer(), EndOfInit,
1058  ElementType, ElementAlign,
1059  getDestroyer(DtorKind));
1060  Cleanup = EHStack.stable_begin();
1061  }
1062 
1063  CharUnits StartAlign = CurPtr.getAlignment();
1064  for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) {
1065  // Tell the cleanup that it needs to destroy up to this
1066  // element. TODO: some of these stores can be trivially
1067  // observed to be unnecessary.
1068  if (EndOfInit.isValid()) {
1069  auto FinishedPtr =
1070  Builder.CreateBitCast(CurPtr.getPointer(), BeginPtr.getType());
1071  Builder.CreateStore(FinishedPtr, EndOfInit);
1072  }
1073  // FIXME: If the last initializer is an incomplete initializer list for
1074  // an array, and we have an array filler, we can fold together the two
1075  // initialization loops.
1076  StoreAnyExprIntoOneUnit(*this, ILE->getInit(i),
1077  ILE->getInit(i)->getType(), CurPtr);
1078  CurPtr = Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(),
1079  Builder.getSize(1),
1080  "array.exp.next"),
1081  StartAlign.alignmentAtOffset((i + 1) * ElementSize));
1082  }
1083 
1084  // The remaining elements are filled with the array filler expression.
1085  Init = ILE->getArrayFiller();
1086 
1087  // Extract the initializer for the individual array elements by pulling
1088  // out the array filler from all the nested initializer lists. This avoids
1089  // generating a nested loop for the initialization.
1090  while (Init && Init->getType()->isConstantArrayType()) {
1091  auto *SubILE = dyn_cast<InitListExpr>(Init);
1092  if (!SubILE)
1093  break;
1094  assert(SubILE->getNumInits() == 0 && "explicit inits in array filler?");
1095  Init = SubILE->getArrayFiller();
1096  }
1097 
1098  // Switch back to initializing one base element at a time.
1099  CurPtr = Builder.CreateBitCast(CurPtr, BeginPtr.getType());
1100  }
1101 
1102  // If all elements have already been initialized, skip any further
1103  // initialization.
1104  llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
1105  if (ConstNum && ConstNum->getZExtValue() <= InitListElements) {
1106  // If there was a Cleanup, deactivate it.
1107  if (CleanupDominator)
1108  DeactivateCleanupBlock(Cleanup, CleanupDominator);
1109  return;
1110  }
1111 
1112  assert(Init && "have trailing elements to initialize but no initializer");
1113 
1114  // If this is a constructor call, try to optimize it out, and failing that
1115  // emit a single loop to initialize all remaining elements.
1116  if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
1117  CXXConstructorDecl *Ctor = CCE->getConstructor();
1118  if (Ctor->isTrivial()) {
1119  // If new expression did not specify value-initialization, then there
1120  // is no initialization.
1121  if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty())
1122  return;
1123 
1124  if (TryMemsetInitialization())
1125  return;
1126  }
1127 
1128  // Store the new Cleanup position for irregular Cleanups.
1129  //
1130  // FIXME: Share this cleanup with the constructor call emission rather than
1131  // having it create a cleanup of its own.
1132  if (EndOfInit.isValid())
1133  Builder.CreateStore(CurPtr.getPointer(), EndOfInit);
1134 
1135  // Emit a constructor call loop to initialize the remaining elements.
1136  if (InitListElements)
1137  NumElements = Builder.CreateSub(
1138  NumElements,
1139  llvm::ConstantInt::get(NumElements->getType(), InitListElements));
1140  EmitCXXAggrConstructorCall(Ctor, NumElements, CurPtr, CCE,
1141  CCE->requiresZeroInitialization());
1142  return;
1143  }
1144 
1145  // If this is value-initialization, we can usually use memset.
1146  ImplicitValueInitExpr IVIE(ElementType);
1147  if (isa<ImplicitValueInitExpr>(Init)) {
1148  if (TryMemsetInitialization())
1149  return;
1150 
1151  // Switch to an ImplicitValueInitExpr for the element type. This handles
1152  // only one case: multidimensional array new of pointers to members. In
1153  // all other cases, we already have an initializer for the array element.
1154  Init = &IVIE;
1155  }
1156 
1157  // At this point we should have found an initializer for the individual
1158  // elements of the array.
1159  assert(getContext().hasSameUnqualifiedType(ElementType, Init->getType()) &&
1160  "got wrong type of element to initialize");
1161 
1162  // If we have an empty initializer list, we can usually use memset.
1163  if (auto *ILE = dyn_cast<InitListExpr>(Init))
1164  if (ILE->getNumInits() == 0 && TryMemsetInitialization())
1165  return;
1166 
1167  // If we have a struct whose every field is value-initialized, we can
1168  // usually use memset.
1169  if (auto *ILE = dyn_cast<InitListExpr>(Init)) {
1170  if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
1171  if (RType->getDecl()->isStruct()) {
1172  unsigned NumElements = 0;
1173  if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RType->getDecl()))
1174  NumElements = CXXRD->getNumBases();
1175  for (auto *Field : RType->getDecl()->fields())
1176  if (!Field->isUnnamedBitfield())
1177  ++NumElements;
1178  // FIXME: Recurse into nested InitListExprs.
1179  if (ILE->getNumInits() == NumElements)
1180  for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
1181  if (!isa<ImplicitValueInitExpr>(ILE->getInit(i)))
1182  --NumElements;
1183  if (ILE->getNumInits() == NumElements && TryMemsetInitialization())
1184  return;
1185  }
1186  }
1187  }
1188 
1189  // Create the loop blocks.
1190  llvm::BasicBlock *EntryBB = Builder.GetInsertBlock();
1191  llvm::BasicBlock *LoopBB = createBasicBlock("new.loop");
1192  llvm::BasicBlock *ContBB = createBasicBlock("new.loop.end");
1193 
1194  // Find the end of the array, hoisted out of the loop.
1195  llvm::Value *EndPtr =
1196  Builder.CreateInBoundsGEP(BeginPtr.getPointer(), NumElements, "array.end");
1197 
1198  // If the number of elements isn't constant, we have to now check if there is
1199  // anything left to initialize.
1200  if (!ConstNum) {
1201  llvm::Value *IsEmpty =
1202  Builder.CreateICmpEQ(CurPtr.getPointer(), EndPtr, "array.isempty");
1203  Builder.CreateCondBr(IsEmpty, ContBB, LoopBB);
1204  }
1205 
1206  // Enter the loop.
1207  EmitBlock(LoopBB);
1208 
1209  // Set up the current-element phi.
1210  llvm::PHINode *CurPtrPhi =
1211  Builder.CreatePHI(CurPtr.getType(), 2, "array.cur");
1212  CurPtrPhi->addIncoming(CurPtr.getPointer(), EntryBB);
1213 
1214  CurPtr = Address(CurPtrPhi, ElementAlign);
1215 
1216  // Store the new Cleanup position for irregular Cleanups.
1217  if (EndOfInit.isValid())
1218  Builder.CreateStore(CurPtr.getPointer(), EndOfInit);
1219 
1220  // Enter a partial-destruction Cleanup if necessary.
1221  if (!CleanupDominator && needsEHCleanup(DtorKind)) {
1222  pushRegularPartialArrayCleanup(BeginPtr.getPointer(), CurPtr.getPointer(),
1223  ElementType, ElementAlign,
1224  getDestroyer(DtorKind));
1225  Cleanup = EHStack.stable_begin();
1226  CleanupDominator = Builder.CreateUnreachable();
1227  }
1228 
1229  // Emit the initializer into this element.
1230  StoreAnyExprIntoOneUnit(*this, Init, Init->getType(), CurPtr);
1231 
1232  // Leave the Cleanup if we entered one.
1233  if (CleanupDominator) {
1234  DeactivateCleanupBlock(Cleanup, CleanupDominator);
1235  CleanupDominator->eraseFromParent();
1236  }
1237 
1238  // Advance to the next element by adjusting the pointer type as necessary.
1239  llvm::Value *NextPtr =
1240  Builder.CreateConstInBoundsGEP1_32(ElementTy, CurPtr.getPointer(), 1,
1241  "array.next");
1242 
1243  // Check whether we've gotten to the end of the array and, if so,
1244  // exit the loop.
1245  llvm::Value *IsEnd = Builder.CreateICmpEQ(NextPtr, EndPtr, "array.atend");
1246  Builder.CreateCondBr(IsEnd, ContBB, LoopBB);
1247  CurPtrPhi->addIncoming(NextPtr, Builder.GetInsertBlock());
1248 
1249  EmitBlock(ContBB);
1250 }
1251 
1252 static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E,
1253  QualType ElementType, llvm::Type *ElementTy,
1254  Address NewPtr, llvm::Value *NumElements,
1255  llvm::Value *AllocSizeWithoutCookie) {
1256  ApplyDebugLocation DL(CGF, E);
1257  if (E->isArray())
1258  CGF.EmitNewArrayInitializer(E, ElementType, ElementTy, NewPtr, NumElements,
1259  AllocSizeWithoutCookie);
1260  else if (const Expr *Init = E->getInitializer())
1261  StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr);
1262 }
1263 
1264 /// Emit a call to an operator new or operator delete function, as implicitly
1265 /// created by new-expressions and delete-expressions.
1267  const FunctionDecl *CalleeDecl,
1268  const FunctionProtoType *CalleeType,
1269  const CallArgList &Args) {
1270  llvm::Instruction *CallOrInvoke;
1271  llvm::Constant *CalleePtr = CGF.CGM.GetAddrOfFunction(CalleeDecl);
1272  CGCallee Callee = CGCallee::forDirect(CalleePtr, CalleeDecl);
1273  RValue RV =
1275  Args, CalleeType, /*chainCall=*/false),
1276  Callee, ReturnValueSlot(), Args, &CallOrInvoke);
1277 
1278  /// C++1y [expr.new]p10:
1279  /// [In a new-expression,] an implementation is allowed to omit a call
1280  /// to a replaceable global allocation function.
1281  ///
1282  /// We model such elidable calls with the 'builtin' attribute.
1283  llvm::Function *Fn = dyn_cast<llvm::Function>(CalleePtr);
1284  if (CalleeDecl->isReplaceableGlobalAllocationFunction() &&
1285  Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) {
1286  // FIXME: Add addAttribute to CallSite.
1287  if (llvm::CallInst *CI = dyn_cast<llvm::CallInst>(CallOrInvoke))
1288  CI->addAttribute(llvm::AttributeList::FunctionIndex,
1289  llvm::Attribute::Builtin);
1290  else if (llvm::InvokeInst *II = dyn_cast<llvm::InvokeInst>(CallOrInvoke))
1291  II->addAttribute(llvm::AttributeList::FunctionIndex,
1292  llvm::Attribute::Builtin);
1293  else
1294  llvm_unreachable("unexpected kind of call instruction");
1295  }
1296 
1297  return RV;
1298 }
1299 
1301  const Expr *Arg,
1302  bool IsDelete) {
1303  CallArgList Args;
1304  const Stmt *ArgS = Arg;
1305  EmitCallArgs(Args, *Type->param_type_begin(), llvm::makeArrayRef(ArgS));
1306  // Find the allocation or deallocation function that we're calling.
1307  ASTContext &Ctx = getContext();
1308  DeclarationName Name = Ctx.DeclarationNames
1309  .getCXXOperatorName(IsDelete ? OO_Delete : OO_New);
1310  for (auto *Decl : Ctx.getTranslationUnitDecl()->lookup(Name))
1311  if (auto *FD = dyn_cast<FunctionDecl>(Decl))
1312  if (Ctx.hasSameType(FD->getType(), QualType(Type, 0)))
1313  return EmitNewDeleteCall(*this, cast<FunctionDecl>(Decl), Type, Args);
1314  llvm_unreachable("predeclared global operator new/delete is missing");
1315 }
1316 
1317 namespace {
1318 /// The parameters to pass to a usual operator delete.
1319 struct UsualDeleteParams {
1320  bool DestroyingDelete = false;
1321  bool Size = false;
1322  bool Alignment = false;
1323 };
1324 }
1325 
1326 static UsualDeleteParams getUsualDeleteParams(const FunctionDecl *FD) {
1327  UsualDeleteParams Params;
1328 
1329  const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>();
1330  auto AI = FPT->param_type_begin(), AE = FPT->param_type_end();
1331 
1332  // The first argument is always a void*.
1333  ++AI;
1334 
1335  // The next parameter may be a std::destroying_delete_t.
1336  if (FD->isDestroyingOperatorDelete()) {
1337  Params.DestroyingDelete = true;
1338  assert(AI != AE);
1339  ++AI;
1340  }
1341 
1342  // Figure out what other parameters we should be implicitly passing.
1343  if (AI != AE && (*AI)->isIntegerType()) {
1344  Params.Size = true;
1345  ++AI;
1346  }
1347 
1348  if (AI != AE && (*AI)->isAlignValT()) {
1349  Params.Alignment = true;
1350  ++AI;
1351  }
1352 
1353  assert(AI == AE && "unexpected usual deallocation function parameter");
1354  return Params;
1355 }
1356 
1357 namespace {
1358  /// A cleanup to call the given 'operator delete' function upon abnormal
1359  /// exit from a new expression. Templated on a traits type that deals with
1360  /// ensuring that the arguments dominate the cleanup if necessary.
1361  template<typename Traits>
1362  class CallDeleteDuringNew final : public EHScopeStack::Cleanup {
1363  /// Type used to hold llvm::Value*s.
1364  typedef typename Traits::ValueTy ValueTy;
1365  /// Type used to hold RValues.
1366  typedef typename Traits::RValueTy RValueTy;
1367  struct PlacementArg {
1368  RValueTy ArgValue;
1369  QualType ArgType;
1370  };
1371 
1372  unsigned NumPlacementArgs : 31;
1373  unsigned PassAlignmentToPlacementDelete : 1;
1374  const FunctionDecl *OperatorDelete;
1375  ValueTy Ptr;
1376  ValueTy AllocSize;
1377  CharUnits AllocAlign;
1378 
1379  PlacementArg *getPlacementArgs() {
1380  return reinterpret_cast<PlacementArg *>(this + 1);
1381  }
1382 
1383  public:
1384  static size_t getExtraSize(size_t NumPlacementArgs) {
1385  return NumPlacementArgs * sizeof(PlacementArg);
1386  }
1387 
1388  CallDeleteDuringNew(size_t NumPlacementArgs,
1389  const FunctionDecl *OperatorDelete, ValueTy Ptr,
1390  ValueTy AllocSize, bool PassAlignmentToPlacementDelete,
1391  CharUnits AllocAlign)
1392  : NumPlacementArgs(NumPlacementArgs),
1393  PassAlignmentToPlacementDelete(PassAlignmentToPlacementDelete),
1394  OperatorDelete(OperatorDelete), Ptr(Ptr), AllocSize(AllocSize),
1395  AllocAlign(AllocAlign) {}
1396 
1397  void setPlacementArg(unsigned I, RValueTy Arg, QualType Type) {
1398  assert(I < NumPlacementArgs && "index out of range");
1399  getPlacementArgs()[I] = {Arg, Type};
1400  }
1401 
1402  void Emit(CodeGenFunction &CGF, Flags flags) override {
1403  const FunctionProtoType *FPT =
1404  OperatorDelete->getType()->getAs<FunctionProtoType>();
1405  CallArgList DeleteArgs;
1406 
1407  // The first argument is always a void* (or C* for a destroying operator
1408  // delete for class type C).
1409  DeleteArgs.add(Traits::get(CGF, Ptr), FPT->getParamType(0));
1410 
1411  // Figure out what other parameters we should be implicitly passing.
1412  UsualDeleteParams Params;
1413  if (NumPlacementArgs) {
1414  // A placement deallocation function is implicitly passed an alignment
1415  // if the placement allocation function was, but is never passed a size.
1416  Params.Alignment = PassAlignmentToPlacementDelete;
1417  } else {
1418  // For a non-placement new-expression, 'operator delete' can take a
1419  // size and/or an alignment if it has the right parameters.
1420  Params = getUsualDeleteParams(OperatorDelete);
1421  }
1422 
1423  assert(!Params.DestroyingDelete &&
1424  "should not call destroying delete in a new-expression");
1425 
1426  // The second argument can be a std::size_t (for non-placement delete).
1427  if (Params.Size)
1428  DeleteArgs.add(Traits::get(CGF, AllocSize),
1429  CGF.getContext().getSizeType());
1430 
1431  // The next (second or third) argument can be a std::align_val_t, which
1432  // is an enum whose underlying type is std::size_t.
1433  // FIXME: Use the right type as the parameter type. Note that in a call
1434  // to operator delete(size_t, ...), we may not have it available.
1435  if (Params.Alignment)
1436  DeleteArgs.add(RValue::get(llvm::ConstantInt::get(
1437  CGF.SizeTy, AllocAlign.getQuantity())),
1438  CGF.getContext().getSizeType());
1439 
1440  // Pass the rest of the arguments, which must match exactly.
1441  for (unsigned I = 0; I != NumPlacementArgs; ++I) {
1442  auto Arg = getPlacementArgs()[I];
1443  DeleteArgs.add(Traits::get(CGF, Arg.ArgValue), Arg.ArgType);
1444  }
1445 
1446  // Call 'operator delete'.
1447  EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs);
1448  }
1449  };
1450 }
1451 
1452 /// Enter a cleanup to call 'operator delete' if the initializer in a
1453 /// new-expression throws.
1455  const CXXNewExpr *E,
1456  Address NewPtr,
1457  llvm::Value *AllocSize,
1458  CharUnits AllocAlign,
1459  const CallArgList &NewArgs) {
1460  unsigned NumNonPlacementArgs = E->passAlignment() ? 2 : 1;
1461 
1462  // If we're not inside a conditional branch, then the cleanup will
1463  // dominate and we can do the easier (and more efficient) thing.
1464  if (!CGF.isInConditionalBranch()) {
1465  struct DirectCleanupTraits {
1466  typedef llvm::Value *ValueTy;
1467  typedef RValue RValueTy;
1468  static RValue get(CodeGenFunction &, ValueTy V) { return RValue::get(V); }
1469  static RValue get(CodeGenFunction &, RValueTy V) { return V; }
1470  };
1471 
1472  typedef CallDeleteDuringNew<DirectCleanupTraits> DirectCleanup;
1473 
1474  DirectCleanup *Cleanup = CGF.EHStack
1475  .pushCleanupWithExtra<DirectCleanup>(EHCleanup,
1476  E->getNumPlacementArgs(),
1477  E->getOperatorDelete(),
1478  NewPtr.getPointer(),
1479  AllocSize,
1480  E->passAlignment(),
1481  AllocAlign);
1482  for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) {
1483  auto &Arg = NewArgs[I + NumNonPlacementArgs];
1484  Cleanup->setPlacementArg(I, Arg.RV, Arg.Ty);
1485  }
1486 
1487  return;
1488  }
1489 
1490  // Otherwise, we need to save all this stuff.
1493  DominatingValue<RValue>::saved_type SavedAllocSize =
1494  DominatingValue<RValue>::save(CGF, RValue::get(AllocSize));
1495 
1496  struct ConditionalCleanupTraits {
1497  typedef DominatingValue<RValue>::saved_type ValueTy;
1498  typedef DominatingValue<RValue>::saved_type RValueTy;
1499  static RValue get(CodeGenFunction &CGF, ValueTy V) {
1500  return V.restore(CGF);
1501  }
1502  };
1503  typedef CallDeleteDuringNew<ConditionalCleanupTraits> ConditionalCleanup;
1504 
1505  ConditionalCleanup *Cleanup = CGF.EHStack
1506  .pushCleanupWithExtra<ConditionalCleanup>(EHCleanup,
1507  E->getNumPlacementArgs(),
1508  E->getOperatorDelete(),
1509  SavedNewPtr,
1510  SavedAllocSize,
1511  E->passAlignment(),
1512  AllocAlign);
1513  for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) {
1514  auto &Arg = NewArgs[I + NumNonPlacementArgs];
1515  Cleanup->setPlacementArg(I, DominatingValue<RValue>::save(CGF, Arg.RV),
1516  Arg.Ty);
1517  }
1518 
1519  CGF.initFullExprCleanup();
1520 }
1521 
1523  // The element type being allocated.
1524  QualType allocType = getContext().getBaseElementType(E->getAllocatedType());
1525 
1526  // 1. Build a call to the allocation function.
1527  FunctionDecl *allocator = E->getOperatorNew();
1528 
1529  // If there is a brace-initializer, cannot allocate fewer elements than inits.
1530  unsigned minElements = 0;
1531  if (E->isArray() && E->hasInitializer()) {
1532  const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer());
1533  if (ILE && ILE->isStringLiteralInit())
1534  minElements =
1535  cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe())
1536  ->getSize().getZExtValue();
1537  else if (ILE)
1538  minElements = ILE->getNumInits();
1539  }
1540 
1541  llvm::Value *numElements = nullptr;
1542  llvm::Value *allocSizeWithoutCookie = nullptr;
1543  llvm::Value *allocSize =
1544  EmitCXXNewAllocSize(*this, E, minElements, numElements,
1545  allocSizeWithoutCookie);
1546  CharUnits allocAlign = getContext().getTypeAlignInChars(allocType);
1547 
1548  // Emit the allocation call. If the allocator is a global placement
1549  // operator, just "inline" it directly.
1550  Address allocation = Address::invalid();
1551  CallArgList allocatorArgs;
1552  if (allocator->isReservedGlobalPlacementOperator()) {
1553  assert(E->getNumPlacementArgs() == 1);
1554  const Expr *arg = *E->placement_arguments().begin();
1555 
1556  LValueBaseInfo BaseInfo;
1557  allocation = EmitPointerWithAlignment(arg, &BaseInfo);
1558 
1559  // The pointer expression will, in many cases, be an opaque void*.
1560  // In these cases, discard the computed alignment and use the
1561  // formal alignment of the allocated type.
1562  if (BaseInfo.getAlignmentSource() != AlignmentSource::Decl)
1563  allocation = Address(allocation.getPointer(), allocAlign);
1564 
1565  // Set up allocatorArgs for the call to operator delete if it's not
1566  // the reserved global operator.
1567  if (E->getOperatorDelete() &&
1569  allocatorArgs.add(RValue::get(allocSize), getContext().getSizeType());
1570  allocatorArgs.add(RValue::get(allocation.getPointer()), arg->getType());
1571  }
1572 
1573  } else {
1574  const FunctionProtoType *allocatorType =
1575  allocator->getType()->castAs<FunctionProtoType>();
1576  unsigned ParamsToSkip = 0;
1577 
1578  // The allocation size is the first argument.
1579  QualType sizeType = getContext().getSizeType();
1580  allocatorArgs.add(RValue::get(allocSize), sizeType);
1581  ++ParamsToSkip;
1582 
1583  if (allocSize != allocSizeWithoutCookie) {
1584  CharUnits cookieAlign = getSizeAlign(); // FIXME: Ask the ABI.
1585  allocAlign = std::max(allocAlign, cookieAlign);
1586  }
1587 
1588  // The allocation alignment may be passed as the second argument.
1589  if (E->passAlignment()) {
1590  QualType AlignValT = sizeType;
1591  if (allocatorType->getNumParams() > 1) {
1592  AlignValT = allocatorType->getParamType(1);
1593  assert(getContext().hasSameUnqualifiedType(
1594  AlignValT->castAs<EnumType>()->getDecl()->getIntegerType(),
1595  sizeType) &&
1596  "wrong type for alignment parameter");
1597  ++ParamsToSkip;
1598  } else {
1599  // Corner case, passing alignment to 'operator new(size_t, ...)'.
1600  assert(allocator->isVariadic() && "can't pass alignment to allocator");
1601  }
1602  allocatorArgs.add(
1603  RValue::get(llvm::ConstantInt::get(SizeTy, allocAlign.getQuantity())),
1604  AlignValT);
1605  }
1606 
1607  // FIXME: Why do we not pass a CalleeDecl here?
1608  EmitCallArgs(allocatorArgs, allocatorType, E->placement_arguments(),
1609  /*AC*/AbstractCallee(), /*ParamsToSkip*/ParamsToSkip);
1610 
1611  RValue RV =
1612  EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs);
1613 
1614  // If this was a call to a global replaceable allocation function that does
1615  // not take an alignment argument, the allocator is known to produce
1616  // storage that's suitably aligned for any object that fits, up to a known
1617  // threshold. Otherwise assume it's suitably aligned for the allocated type.
1618  CharUnits allocationAlign = allocAlign;
1619  if (!E->passAlignment() &&
1621  unsigned AllocatorAlign = llvm::PowerOf2Floor(std::min<uint64_t>(
1622  Target.getNewAlign(), getContext().getTypeSize(allocType)));
1623  allocationAlign = std::max(
1624  allocationAlign, getContext().toCharUnitsFromBits(AllocatorAlign));
1625  }
1626 
1627  allocation = Address(RV.getScalarVal(), allocationAlign);
1628  }
1629 
1630  // Emit a null check on the allocation result if the allocation
1631  // function is allowed to return null (because it has a non-throwing
1632  // exception spec or is the reserved placement new) and we have an
1633  // interesting initializer.
1634  bool nullCheck = E->shouldNullCheckAllocation(getContext()) &&
1635  (!allocType.isPODType(getContext()) || E->hasInitializer());
1636 
1637  llvm::BasicBlock *nullCheckBB = nullptr;
1638  llvm::BasicBlock *contBB = nullptr;
1639 
1640  // The null-check means that the initializer is conditionally
1641  // evaluated.
1642  ConditionalEvaluation conditional(*this);
1643 
1644  if (nullCheck) {
1645  conditional.begin(*this);
1646 
1647  nullCheckBB = Builder.GetInsertBlock();
1648  llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull");
1649  contBB = createBasicBlock("new.cont");
1650 
1651  llvm::Value *isNull =
1652  Builder.CreateIsNull(allocation.getPointer(), "new.isnull");
1653  Builder.CreateCondBr(isNull, contBB, notNullBB);
1654  EmitBlock(notNullBB);
1655  }
1656 
1657  // If there's an operator delete, enter a cleanup to call it if an
1658  // exception is thrown.
1659  EHScopeStack::stable_iterator operatorDeleteCleanup;
1660  llvm::Instruction *cleanupDominator = nullptr;
1661  if (E->getOperatorDelete() &&
1663  EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocAlign,
1664  allocatorArgs);
1665  operatorDeleteCleanup = EHStack.stable_begin();
1666  cleanupDominator = Builder.CreateUnreachable();
1667  }
1668 
1669  assert((allocSize == allocSizeWithoutCookie) ==
1670  CalculateCookiePadding(*this, E).isZero());
1671  if (allocSize != allocSizeWithoutCookie) {
1672  assert(E->isArray());
1673  allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation,
1674  numElements,
1675  E, allocType);
1676  }
1677 
1678  llvm::Type *elementTy = ConvertTypeForMem(allocType);
1679  Address result = Builder.CreateElementBitCast(allocation, elementTy);
1680 
1681  // Passing pointer through invariant.group.barrier to avoid propagation of
1682  // vptrs information which may be included in previous type.
1683  // To not break LTO with different optimizations levels, we do it regardless
1684  // of optimization level.
1685  if (CGM.getCodeGenOpts().StrictVTablePointers &&
1686  allocator->isReservedGlobalPlacementOperator())
1687  result = Address(Builder.CreateInvariantGroupBarrier(result.getPointer()),
1688  result.getAlignment());
1689 
1690  EmitNewInitializer(*this, E, allocType, elementTy, result, numElements,
1691  allocSizeWithoutCookie);
1692  if (E->isArray()) {
1693  // NewPtr is a pointer to the base element type. If we're
1694  // allocating an array of arrays, we'll need to cast back to the
1695  // array pointer type.
1696  llvm::Type *resultType = ConvertTypeForMem(E->getType());
1697  if (result.getType() != resultType)
1698  result = Builder.CreateBitCast(result, resultType);
1699  }
1700 
1701  // Deactivate the 'operator delete' cleanup if we finished
1702  // initialization.
1703  if (operatorDeleteCleanup.isValid()) {
1704  DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator);
1705  cleanupDominator->eraseFromParent();
1706  }
1707 
1708  llvm::Value *resultPtr = result.getPointer();
1709  if (nullCheck) {
1710  conditional.end(*this);
1711 
1712  llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
1713  EmitBlock(contBB);
1714 
1715  llvm::PHINode *PHI = Builder.CreatePHI(resultPtr->getType(), 2);
1716  PHI->addIncoming(resultPtr, notNullBB);
1717  PHI->addIncoming(llvm::Constant::getNullValue(resultPtr->getType()),
1718  nullCheckBB);
1719 
1720  resultPtr = PHI;
1721  }
1722 
1723  return resultPtr;
1724 }
1725 
1727  llvm::Value *Ptr, QualType DeleteTy,
1728  llvm::Value *NumElements,
1729  CharUnits CookieSize) {
1730  assert((!NumElements && CookieSize.isZero()) ||
1731  DeleteFD->getOverloadedOperator() == OO_Array_Delete);
1732 
1733  const FunctionProtoType *DeleteFTy =
1734  DeleteFD->getType()->getAs<FunctionProtoType>();
1735 
1736  CallArgList DeleteArgs;
1737 
1738  auto Params = getUsualDeleteParams(DeleteFD);
1739  auto ParamTypeIt = DeleteFTy->param_type_begin();
1740 
1741  // Pass the pointer itself.
1742  QualType ArgTy = *ParamTypeIt++;
1743  llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy));
1744  DeleteArgs.add(RValue::get(DeletePtr), ArgTy);
1745 
1746  // Pass the std::destroying_delete tag if present.
1747  if (Params.DestroyingDelete) {
1748  QualType DDTag = *ParamTypeIt++;
1749  // Just pass an 'undef'. We expect the tag type to be an empty struct.
1750  auto *V = llvm::UndefValue::get(getTypes().ConvertType(DDTag));
1751  DeleteArgs.add(RValue::get(V), DDTag);
1752  }
1753 
1754  // Pass the size if the delete function has a size_t parameter.
1755  if (Params.Size) {
1756  QualType SizeType = *ParamTypeIt++;
1757  CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy);
1758  llvm::Value *Size = llvm::ConstantInt::get(ConvertType(SizeType),
1759  DeleteTypeSize.getQuantity());
1760 
1761  // For array new, multiply by the number of elements.
1762  if (NumElements)
1763  Size = Builder.CreateMul(Size, NumElements);
1764 
1765  // If there is a cookie, add the cookie size.
1766  if (!CookieSize.isZero())
1767  Size = Builder.CreateAdd(
1768  Size, llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity()));
1769 
1770  DeleteArgs.add(RValue::get(Size), SizeType);
1771  }
1772 
1773  // Pass the alignment if the delete function has an align_val_t parameter.
1774  if (Params.Alignment) {
1775  QualType AlignValType = *ParamTypeIt++;
1776  CharUnits DeleteTypeAlign = getContext().toCharUnitsFromBits(
1777  getContext().getTypeAlignIfKnown(DeleteTy));
1778  llvm::Value *Align = llvm::ConstantInt::get(ConvertType(AlignValType),
1779  DeleteTypeAlign.getQuantity());
1780  DeleteArgs.add(RValue::get(Align), AlignValType);
1781  }
1782 
1783  assert(ParamTypeIt == DeleteFTy->param_type_end() &&
1784  "unknown parameter to usual delete function");
1785 
1786  // Emit the call to delete.
1787  EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs);
1788 }
1789 
1790 namespace {
1791  /// Calls the given 'operator delete' on a single object.
1792  struct CallObjectDelete final : EHScopeStack::Cleanup {
1793  llvm::Value *Ptr;
1794  const FunctionDecl *OperatorDelete;
1795  QualType ElementType;
1796 
1797  CallObjectDelete(llvm::Value *Ptr,
1798  const FunctionDecl *OperatorDelete,
1799  QualType ElementType)
1800  : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {}
1801 
1802  void Emit(CodeGenFunction &CGF, Flags flags) override {
1803  CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType);
1804  }
1805  };
1806 }
1807 
1808 void
1810  llvm::Value *CompletePtr,
1811  QualType ElementType) {
1812  EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, CompletePtr,
1813  OperatorDelete, ElementType);
1814 }
1815 
1816 /// Emit the code for deleting a single object with a destroying operator
1817 /// delete. If the element type has a non-virtual destructor, Ptr has already
1818 /// been converted to the type of the parameter of 'operator delete'. Otherwise
1819 /// Ptr points to an object of the static type.
1821  const CXXDeleteExpr *DE, Address Ptr,
1822  QualType ElementType) {
1823  auto *Dtor = ElementType->getAsCXXRecordDecl()->getDestructor();
1824  if (Dtor && Dtor->isVirtual())
1825  CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType,
1826  Dtor);
1827  else
1828  CGF.EmitDeleteCall(DE->getOperatorDelete(), Ptr.getPointer(), ElementType);
1829 }
1830 
1831 /// Emit the code for deleting a single object.
1833  const CXXDeleteExpr *DE,
1834  Address Ptr,
1835  QualType ElementType) {
1836  // C++11 [expr.delete]p3:
1837  // If the static type of the object to be deleted is different from its
1838  // dynamic type, the static type shall be a base class of the dynamic type
1839  // of the object to be deleted and the static type shall have a virtual
1840  // destructor or the behavior is undefined.
1842  DE->getExprLoc(), Ptr.getPointer(),
1843  ElementType);
1844 
1845  const FunctionDecl *OperatorDelete = DE->getOperatorDelete();
1846  assert(!OperatorDelete->isDestroyingOperatorDelete());
1847 
1848  // Find the destructor for the type, if applicable. If the
1849  // destructor is virtual, we'll just emit the vcall and return.
1850  const CXXDestructorDecl *Dtor = nullptr;
1851  if (const RecordType *RT = ElementType->getAs<RecordType>()) {
1852  CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1853  if (RD->hasDefinition() && !RD->hasTrivialDestructor()) {
1854  Dtor = RD->getDestructor();
1855 
1856  if (Dtor->isVirtual()) {
1857  CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType,
1858  Dtor);
1859  return;
1860  }
1861  }
1862  }
1863 
1864  // Make sure that we call delete even if the dtor throws.
1865  // This doesn't have to a conditional cleanup because we're going
1866  // to pop it off in a second.
1867  CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup,
1868  Ptr.getPointer(),
1869  OperatorDelete, ElementType);
1870 
1871  if (Dtor)
1873  /*ForVirtualBase=*/false,
1874  /*Delegating=*/false,
1875  Ptr);
1876  else if (auto Lifetime = ElementType.getObjCLifetime()) {
1877  switch (Lifetime) {
1878  case Qualifiers::OCL_None:
1881  break;
1882 
1885  break;
1886 
1887  case Qualifiers::OCL_Weak:
1888  CGF.EmitARCDestroyWeak(Ptr);
1889  break;
1890  }
1891  }
1892 
1893  CGF.PopCleanupBlock();
1894 }
1895 
1896 namespace {
1897  /// Calls the given 'operator delete' on an array of objects.
1898  struct CallArrayDelete final : EHScopeStack::Cleanup {
1899  llvm::Value *Ptr;
1900  const FunctionDecl *OperatorDelete;
1901  llvm::Value *NumElements;
1902  QualType ElementType;
1903  CharUnits CookieSize;
1904 
1905  CallArrayDelete(llvm::Value *Ptr,
1906  const FunctionDecl *OperatorDelete,
1907  llvm::Value *NumElements,
1908  QualType ElementType,
1909  CharUnits CookieSize)
1910  : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements),
1911  ElementType(ElementType), CookieSize(CookieSize) {}
1912 
1913  void Emit(CodeGenFunction &CGF, Flags flags) override {
1914  CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType, NumElements,
1915  CookieSize);
1916  }
1917  };
1918 }
1919 
1920 /// Emit the code for deleting an array of objects.
1922  const CXXDeleteExpr *E,
1923  Address deletedPtr,
1924  QualType elementType) {
1925  llvm::Value *numElements = nullptr;
1926  llvm::Value *allocatedPtr = nullptr;
1927  CharUnits cookieSize;
1928  CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType,
1929  numElements, allocatedPtr, cookieSize);
1930 
1931  assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer");
1932 
1933  // Make sure that we call delete even if one of the dtors throws.
1934  const FunctionDecl *operatorDelete = E->getOperatorDelete();
1935  CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup,
1936  allocatedPtr, operatorDelete,
1937  numElements, elementType,
1938  cookieSize);
1939 
1940  // Destroy the elements.
1941  if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) {
1942  assert(numElements && "no element count for a type with a destructor!");
1943 
1944  CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
1945  CharUnits elementAlign =
1946  deletedPtr.getAlignment().alignmentOfArrayElement(elementSize);
1947 
1948  llvm::Value *arrayBegin = deletedPtr.getPointer();
1949  llvm::Value *arrayEnd =
1950  CGF.Builder.CreateInBoundsGEP(arrayBegin, numElements, "delete.end");
1951 
1952  // Note that it is legal to allocate a zero-length array, and we
1953  // can never fold the check away because the length should always
1954  // come from a cookie.
1955  CGF.emitArrayDestroy(arrayBegin, arrayEnd, elementType, elementAlign,
1956  CGF.getDestroyer(dtorKind),
1957  /*checkZeroLength*/ true,
1958  CGF.needsEHCleanup(dtorKind));
1959  }
1960 
1961  // Pop the cleanup block.
1962  CGF.PopCleanupBlock();
1963 }
1964 
1966  const Expr *Arg = E->getArgument();
1967  Address Ptr = EmitPointerWithAlignment(Arg);
1968 
1969  // Null check the pointer.
1970  llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull");
1971  llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end");
1972 
1973  llvm::Value *IsNull = Builder.CreateIsNull(Ptr.getPointer(), "isnull");
1974 
1975  Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull);
1976  EmitBlock(DeleteNotNull);
1977 
1978  QualType DeleteTy = E->getDestroyedType();
1979 
1980  // A destroying operator delete overrides the entire operation of the
1981  // delete expression.
1983  EmitDestroyingObjectDelete(*this, E, Ptr, DeleteTy);
1984  EmitBlock(DeleteEnd);
1985  return;
1986  }
1987 
1988  // We might be deleting a pointer to array. If so, GEP down to the
1989  // first non-array element.
1990  // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*)
1991  if (DeleteTy->isConstantArrayType()) {
1992  llvm::Value *Zero = Builder.getInt32(0);
1994 
1995  GEP.push_back(Zero); // point at the outermost array
1996 
1997  // For each layer of array type we're pointing at:
1998  while (const ConstantArrayType *Arr
1999  = getContext().getAsConstantArrayType(DeleteTy)) {
2000  // 1. Unpeel the array type.
2001  DeleteTy = Arr->getElementType();
2002 
2003  // 2. GEP to the first element of the array.
2004  GEP.push_back(Zero);
2005  }
2006 
2007  Ptr = Address(Builder.CreateInBoundsGEP(Ptr.getPointer(), GEP, "del.first"),
2008  Ptr.getAlignment());
2009  }
2010 
2011  assert(ConvertTypeForMem(DeleteTy) == Ptr.getElementType());
2012 
2013  if (E->isArrayForm()) {
2014  EmitArrayDelete(*this, E, Ptr, DeleteTy);
2015  } else {
2016  EmitObjectDelete(*this, E, Ptr, DeleteTy);
2017  }
2018 
2019  EmitBlock(DeleteEnd);
2020 }
2021 
2022 static bool isGLValueFromPointerDeref(const Expr *E) {
2023  E = E->IgnoreParens();
2024 
2025  if (const auto *CE = dyn_cast<CastExpr>(E)) {
2026  if (!CE->getSubExpr()->isGLValue())
2027  return false;
2028  return isGLValueFromPointerDeref(CE->getSubExpr());
2029  }
2030 
2031  if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E))
2032  return isGLValueFromPointerDeref(OVE->getSourceExpr());
2033 
2034  if (const auto *BO = dyn_cast<BinaryOperator>(E))
2035  if (BO->getOpcode() == BO_Comma)
2036  return isGLValueFromPointerDeref(BO->getRHS());
2037 
2038  if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(E))
2039  return isGLValueFromPointerDeref(ACO->getTrueExpr()) ||
2040  isGLValueFromPointerDeref(ACO->getFalseExpr());
2041 
2042  // C++11 [expr.sub]p1:
2043  // The expression E1[E2] is identical (by definition) to *((E1)+(E2))
2044  if (isa<ArraySubscriptExpr>(E))
2045  return true;
2046 
2047  if (const auto *UO = dyn_cast<UnaryOperator>(E))
2048  if (UO->getOpcode() == UO_Deref)
2049  return true;
2050 
2051  return false;
2052 }
2053 
2055  llvm::Type *StdTypeInfoPtrTy) {
2056  // Get the vtable pointer.
2057  Address ThisPtr = CGF.EmitLValue(E).getAddress();
2058 
2059  QualType SrcRecordTy = E->getType();
2060 
2061  // C++ [class.cdtor]p4:
2062  // If the operand of typeid refers to the object under construction or
2063  // destruction and the static type of the operand is neither the constructor
2064  // or destructor’s class nor one of its bases, the behavior is undefined.
2066  ThisPtr.getPointer(), SrcRecordTy);
2067 
2068  // C++ [expr.typeid]p2:
2069  // If the glvalue expression is obtained by applying the unary * operator to
2070  // a pointer and the pointer is a null pointer value, the typeid expression
2071  // throws the std::bad_typeid exception.
2072  //
2073  // However, this paragraph's intent is not clear. We choose a very generous
2074  // interpretation which implores us to consider comma operators, conditional
2075  // operators, parentheses and other such constructs.
2077  isGLValueFromPointerDeref(E), SrcRecordTy)) {
2078  llvm::BasicBlock *BadTypeidBlock =
2079  CGF.createBasicBlock("typeid.bad_typeid");
2080  llvm::BasicBlock *EndBlock = CGF.createBasicBlock("typeid.end");
2081 
2082  llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr.getPointer());
2083  CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock);
2084 
2085  CGF.EmitBlock(BadTypeidBlock);
2086  CGF.CGM.getCXXABI().EmitBadTypeidCall(CGF);
2087  CGF.EmitBlock(EndBlock);
2088  }
2089 
2090  return CGF.CGM.getCXXABI().EmitTypeid(CGF, SrcRecordTy, ThisPtr,
2091  StdTypeInfoPtrTy);
2092 }
2093 
2095  llvm::Type *StdTypeInfoPtrTy =
2096  ConvertType(E->getType())->getPointerTo();
2097 
2098  if (E->isTypeOperand()) {
2099  llvm::Constant *TypeInfo =
2100  CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand(getContext()));
2101  return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy);
2102  }
2103 
2104  // C++ [expr.typeid]p2:
2105  // When typeid is applied to a glvalue expression whose type is a
2106  // polymorphic class type, the result refers to a std::type_info object
2107  // representing the type of the most derived object (that is, the dynamic
2108  // type) to which the glvalue refers.
2109  if (E->isPotentiallyEvaluated())
2110  return EmitTypeidFromVTable(*this, E->getExprOperand(),
2111  StdTypeInfoPtrTy);
2112 
2113  QualType OperandTy = E->getExprOperand()->getType();
2114  return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy),
2115  StdTypeInfoPtrTy);
2116 }
2117 
2119  QualType DestTy) {
2120  llvm::Type *DestLTy = CGF.ConvertType(DestTy);
2121  if (DestTy->isPointerType())
2122  return llvm::Constant::getNullValue(DestLTy);
2123 
2124  /// C++ [expr.dynamic.cast]p9:
2125  /// A failed cast to reference type throws std::bad_cast
2126  if (!CGF.CGM.getCXXABI().EmitBadCastCall(CGF))
2127  return nullptr;
2128 
2129  CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end"));
2130  return llvm::UndefValue::get(DestLTy);
2131 }
2132 
2134  const CXXDynamicCastExpr *DCE) {
2135  CGM.EmitExplicitCastExprType(DCE, this);
2136  QualType DestTy = DCE->getTypeAsWritten();
2137 
2138  QualType SrcTy = DCE->getSubExpr()->getType();
2139 
2140  // C++ [expr.dynamic.cast]p7:
2141  // If T is "pointer to cv void," then the result is a pointer to the most
2142  // derived object pointed to by v.
2143  const PointerType *DestPTy = DestTy->getAs<PointerType>();
2144 
2145  bool isDynamicCastToVoid;
2146  QualType SrcRecordTy;
2147  QualType DestRecordTy;
2148  if (DestPTy) {
2149  isDynamicCastToVoid = DestPTy->getPointeeType()->isVoidType();
2150  SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType();
2151  DestRecordTy = DestPTy->getPointeeType();
2152  } else {
2153  isDynamicCastToVoid = false;
2154  SrcRecordTy = SrcTy;
2155  DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType();
2156  }
2157 
2158  // C++ [class.cdtor]p5:
2159  // If the operand of the dynamic_cast refers to the object under
2160  // construction or destruction and the static type of the operand is not a
2161  // pointer to or object of the constructor or destructor’s own class or one
2162  // of its bases, the dynamic_cast results in undefined behavior.
2163  EmitTypeCheck(TCK_DynamicOperation, DCE->getExprLoc(), ThisAddr.getPointer(),
2164  SrcRecordTy);
2165 
2166  if (DCE->isAlwaysNull())
2167  if (llvm::Value *T = EmitDynamicCastToNull(*this, DestTy))
2168  return T;
2169 
2170  assert(SrcRecordTy->isRecordType() && "source type must be a record type!");
2171 
2172  // C++ [expr.dynamic.cast]p4:
2173  // If the value of v is a null pointer value in the pointer case, the result
2174  // is the null pointer value of type T.
2175  bool ShouldNullCheckSrcValue =
2176  CGM.getCXXABI().shouldDynamicCastCallBeNullChecked(SrcTy->isPointerType(),
2177  SrcRecordTy);
2178 
2179  llvm::BasicBlock *CastNull = nullptr;
2180  llvm::BasicBlock *CastNotNull = nullptr;
2181  llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end");
2182 
2183  if (ShouldNullCheckSrcValue) {
2184  CastNull = createBasicBlock("dynamic_cast.null");
2185  CastNotNull = createBasicBlock("dynamic_cast.notnull");
2186 
2187  llvm::Value *IsNull = Builder.CreateIsNull(ThisAddr.getPointer());
2188  Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
2189  EmitBlock(CastNotNull);
2190  }
2191 
2192  llvm::Value *Value;
2193  if (isDynamicCastToVoid) {
2194  Value = CGM.getCXXABI().EmitDynamicCastToVoid(*this, ThisAddr, SrcRecordTy,
2195  DestTy);
2196  } else {
2197  assert(DestRecordTy->isRecordType() &&
2198  "destination type must be a record type!");
2199  Value = CGM.getCXXABI().EmitDynamicCastCall(*this, ThisAddr, SrcRecordTy,
2200  DestTy, DestRecordTy, CastEnd);
2201  CastNotNull = Builder.GetInsertBlock();
2202  }
2203 
2204  if (ShouldNullCheckSrcValue) {
2205  EmitBranch(CastEnd);
2206 
2207  EmitBlock(CastNull);
2208  EmitBranch(CastEnd);
2209  }
2210 
2211  EmitBlock(CastEnd);
2212 
2213  if (ShouldNullCheckSrcValue) {
2214  llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
2215  PHI->addIncoming(Value, CastNotNull);
2216  PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull);
2217 
2218  Value = PHI;
2219  }
2220 
2221  return Value;
2222 }
2223 
2225  RunCleanupsScope Scope(*this);
2226  LValue SlotLV = MakeAddrLValue(Slot.getAddress(), E->getType());
2227 
2230  e = E->capture_init_end();
2231  i != e; ++i, ++CurField) {
2232  // Emit initialization
2233  LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField);
2234  if (CurField->hasCapturedVLAType()) {
2235  auto VAT = CurField->getCapturedVLAType();
2236  EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV);
2237  } else {
2238  EmitInitializerForField(*CurField, LV, *i);
2239  }
2240  }
2241 }
A call to an overloaded operator written using operator syntax.
Definition: ExprCXX.h:78
ReturnValueSlot - Contains the address where the return value of a function can be stored...
Definition: CGCall.h:281
virtual void EmitBadTypeidCall(CodeGenFunction &CGF)=0
An instance of this class is created to represent a function declaration or definition.
Definition: Decl.h:1697
bool isReservedGlobalPlacementOperator() const
Determines whether this operator new or delete is one of the reserved global placement operators: voi...
Definition: Decl.cpp:2680
Address getAddress() const
Definition: CGValue.h:555
Complete object ctor.
Definition: ABI.h:26
PointerType - C99 6.7.5.1 - Pointer Declarators.
Definition: Type.h:2283
QualType getPointeeType() const
Definition: Type.h:2296
llvm::iterator_range< arg_iterator > placement_arguments()
Definition: ExprCXX.h:2018
Destroyer * getDestroyer(QualType::DestructionKind destructionKind)
Definition: CGDecl.cpp:1461
A (possibly-)qualified type.
Definition: Type.h:653
static RValue EmitNewDeleteCall(CodeGenFunction &CGF, const FunctionDecl *CalleeDecl, const FunctionProtoType *CalleeType, const CallArgList &Args)
Emit a call to an operator new or operator delete function, as implicitly created by new-expressions ...
Definition: CGExprCXX.cpp:1266
bool isPODType(const ASTContext &Context) const
Determine whether this is a Plain Old Data (POD) type (C++ 3.9p10).
Definition: Type.cpp:2061
static CGCallee BuildAppleKextVirtualCall(CodeGenFunction &CGF, GlobalDecl GD, llvm::Type *Ty, const CXXRecordDecl *RD)
Definition: CGCXX.cpp:260
ValueDecl * getMemberDecl() const
Retrieve the member declaration to which this expression refers.
Definition: Expr.h:2492
Expr * getArg(unsigned Arg)
getArg - Return the specified argument.
Definition: Expr.h:2287
void EmitARCDestroyWeak(Address addr)
void @objc_destroyWeak(i8** addr) Essentially objc_storeWeak(addr, nil).
Definition: CGObjC.cpp:2296
const ASTRecordLayout & getASTRecordLayout(const RecordDecl *D) const
Get or compute information about the layout of the specified record (struct/union/class) D...
Stmt - This represents one statement.
Definition: Stmt.h:66
unsigned getNumArgs() const
getNumArgs - Return the number of actual arguments to this call.
Definition: Expr.h:2275
void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType, llvm::Type *ElementTy, Address NewPtr, llvm::Value *NumElements, llvm::Value *AllocSizeWithoutCookie)
Definition: CGExprCXX.cpp:951
QualType getPointeeType() const
If this is a pointer, ObjC object pointer, or block pointer, this returns the respective pointee...
Definition: Type.cpp:456
virtual bool shouldTypeidBeNullChecked(bool IsDeref, QualType SrcRecordTy)=0
Checking the &#39;this&#39; pointer for a constructor call.
bool isRecordType() const
Definition: Type.h:6015
Expr * getBase() const
Definition: Expr.h:2486
Decl - This represents one declaration (or definition), e.g.
Definition: DeclBase.h:86
void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V, QualType Type, CharUnits Alignment=CharUnits::Zero(), SanitizerSet SkippedChecks=SanitizerSet())
Emit a check that V is the address of storage of the appropriate size and alignment for an object of ...
Definition: CGExpr.cpp:591
bool isVirtual() const
Definition: DeclCXX.h:2009
FunctionDecl * getOperatorNew() const
Definition: ExprCXX.h:1945
Opcode getOpcode() const
Definition: Expr.h:3035
bool hasQualifier() const
Determines whether this member expression actually had a C++ nested-name-specifier prior to the name ...
Definition: Expr.h:2506
const void * Store
Store - This opaque type encapsulates an immutable mapping from locations to values.
Definition: StoreRef.h:26
The base class of the type hierarchy.
Definition: Type.h:1351
bool requiresZeroInitialization() const
Whether this construction first requires zero-initialization before the initializer is called...
Definition: ExprCXX.h:1329
void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit)
EmitComplexExprIntoLValue - Emit the given expression of complex type and place its result into the s...
Represents an array type, per C99 6.7.5.2 - Array Declarators.
Definition: Type.h:2558
Represents a call to a C++ constructor.
Definition: ExprCXX.h:1239
RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E, ReturnValueSlot ReturnValue)
Definition: CGExprCXX.cpp:168
bool isZero() const
isZero - Test whether the quantity equals zero.
Definition: CharUnits.h:116
The l-value was an access to a declared entity or something equivalently strong, like the address of ...
llvm::IntegerType * Int8Ty
i8, i16, i32, and i64
Represents a C++ constructor within a class.
Definition: DeclCXX.h:2397
Expr * ignoreParenBaseCasts() LLVM_READONLY
Ignore parentheses and derived-to-base casts.
Definition: Expr.cpp:2535
static llvm::Value * EmitCXXNewAllocSize(CodeGenFunction &CGF, const CXXNewExpr *e, unsigned minElements, llvm::Value *&numElements, llvm::Value *&sizeWithoutCookie)
Definition: CGExprCXX.cpp:664
RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, ReturnValueSlot ReturnValue, const CallArgList &Args, llvm::Instruction **callOrInvoke, SourceLocation Loc)
EmitCall - Generate a call of the given function, expecting the given result type, and using the given argument list which specifies both the LLVM arguments and the types they were derived from.
Definition: CGCall.cpp:3719
static saved_type save(CodeGenFunction &CGF, type value)
Definition: EHScopeStack.h:60
QualType getReturnType() const
Definition: Decl.h:2220
unsigned getNumParams() const
Definition: Type.h:3489
const T * getAs() const
Member-template getAs<specific type>&#39;.
Definition: Type.h:6305
IsZeroed_t isZeroed() const
Definition: CGValue.h:580
Address CreateConstInBoundsByteGEP(Address Addr, CharUnits Offset, const llvm::Twine &Name="")
Given a pointer to i8, adjust it by a given constant offset.
Definition: CGBuilder.h:234
llvm::Value * getPointer() const
Definition: Address.h:38
unsigned getNumPlacementArgs() const
Definition: ExprCXX.h:1959
static MemberCallInfo commonEmitCXXMemberOrOperatorCall(CodeGenFunction &CGF, const CXXMethodDecl *MD, llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *CE, CallArgList &Args, CallArgList *RtlArgs)
Definition: CGExprCXX.cpp:37
RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, ReturnValueSlot ReturnValue)
Definition: CGExprCXX.cpp:464
bool hasDefinition() const
Definition: DeclCXX.h:738
Expr * getExprOperand() const
Definition: ExprCXX.h:695
Represents an expression – generally a full-expression – that introduces cleanups to be run at the ...
Definition: ExprCXX.h:3003
RValue EmitCXXMemberOrOperatorCall(const CXXMethodDecl *Method, const CGCallee &Callee, ReturnValueSlot ReturnValue, llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *E, CallArgList *RtlArgs)
Definition: CGExprCXX.cpp:81
The collection of all-type qualifiers we support.
Definition: Type.h:152
CXXRecordDecl * getLambdaClass() const
Retrieve the class that corresponds to the lambda.
Definition: ExprCXX.cpp:999
bool mayInsertExtraPadding(bool EmitRemark=false) const
Whether we are allowed to insert extra padding between fields.
Definition: Decl.cpp:4007
bool isMoveAssignmentOperator() const
Determine whether this is a move assignment operator.
Definition: DeclCXX.cpp:1880
bool isEmpty() const
Determine whether this is an empty class in the sense of (C++11 [meta.unary.prop]).
Definition: DeclCXX.h:1279
An object to manage conditionally-evaluated expressions.
llvm::Value * EmitCXXNewExpr(const CXXNewExpr *E)
Definition: CGExprCXX.cpp:1522
Address getAddress() const
Definition: CGValue.h:324
CodeGenFunction - This class organizes the per-function state that is used while generating LLVM code...
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition: ASTContext.h:149
llvm::Value * EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE)
Definition: CGExprCXX.cpp:2133
static llvm::Value * EmitTypeidFromVTable(CodeGenFunction &CGF, const Expr *E, llvm::Type *StdTypeInfoPtrTy)
Definition: CGExprCXX.cpp:2054
Denotes a cleanup that should run when a scope is exited using exceptional control flow (a throw stat...
Definition: EHScopeStack.h:81
QualType getDestroyedType() const
Retrieve the type being destroyed.
Definition: ExprCXX.cpp:246
static CharUnits Zero()
Zero - Construct a CharUnits quantity of zero.
Definition: CharUnits.h:53
A metaprogramming class for ensuring that a value will dominate an arbitrary position in a function...
Definition: EHScopeStack.h:66
Expr * getSubExpr()
Definition: Expr.h:2770
bool isReplaceableGlobalAllocationFunction(bool *IsAligned=nullptr) const
Determines whether this function is one of the replaceable global allocation functions: void *operato...
Definition: Decl.cpp:2703
Describes an C or C++ initializer list.
Definition: Expr.h:3881
A C++ typeid expression (C++ [expr.typeid]), which gets the type_info that corresponds to the supplie...
Definition: ExprCXX.h:638
Expr * getArraySize()
Definition: ExprCXX.h:1952
FunctionDecl * getOperatorDelete() const
Definition: ExprCXX.h:2126
Base object ctor.
Definition: ABI.h:27
bool isElidable() const
Whether this construction is elidable.
Definition: ExprCXX.h:1308
Address CreateElementBitCast(Address Addr, llvm::Type *Ty, const llvm::Twine &Name="")
Cast the element type of the given address to a different type, preserving information like the align...
Definition: CGBuilder.h:157
CharUnits - This is an opaque type for sizes expressed in character units.
Definition: CharUnits.h:38
void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise)
Destroy a __strong variable.
Definition: CGObjC.cpp:2120
const ArrayType * getAsArrayTypeUnsafe() const
A variant of getAs<> for array types which silently discards qualifiers from the outermost type...
Definition: Type.h:6354
capture_init_iterator capture_init_begin()
Retrieve the first initialization argument for this lambda expression (which initializes the first ca...
Definition: ExprCXX.h:1728
bool isOne() const
isOne - Test whether the quantity equals one.
Definition: CharUnits.h:119
Expr * getInitializer()
The initializer of this new-expression.
Definition: ExprCXX.h:1990
CharUnits getAlignment() const
Return the alignment of this pointer.
Definition: Address.h:67
A builtin binary operation expression such as "x + y" or "x <= y".
Definition: Expr.h:2994
bool isVolatileQualified() const
Determine whether this type is volatile-qualified.
Definition: Type.h:5788
Checking the operand of a dynamic_cast or a typeid expression.
bool needsEHCleanup(QualType::DestructionKind kind)
Determines whether an EH cleanup is required to destroy a type with the given destruction kind...
llvm::CallInst * CreateMemCpy(Address Dest, Address Src, llvm::Value *Size, bool IsVolatile=false)
Definition: CGBuilder.h:259
const Type * getClass() const
Definition: Type.h:2536
bool isArrow() const
Definition: Expr.h:2591
Scope - A scope is a transient data structure that is used while parsing the program.
Definition: Scope.h:39
static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init, QualType AllocType, Address NewPtr)
Definition: CGExprCXX.cpp:926
void initFullExprCleanup()
Set up the last cleaup that was pushed as a conditional full-expression cleanup.
Definition: CGCleanup.cpp:284
void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr, QualType DeleteTy, llvm::Value *NumElements=nullptr, CharUnits CookieSize=CharUnits())
Definition: CGExprCXX.cpp:1726
field_iterator field_begin() const
Definition: Decl.cpp:3960
param_type_iterator param_type_begin() const
Definition: Type.h:3641
llvm::BasicBlock * createBasicBlock(const Twine &name="", llvm::Function *parent=nullptr, llvm::BasicBlock *before=nullptr)
createBasicBlock - Create an LLVM basic block.
static void EmitNullBaseClassInitialization(CodeGenFunction &CGF, Address DestPtr, const CXXRecordDecl *Base)
Definition: CGExprCXX.cpp:469
A C++ lambda expression, which produces a function object (of unspecified type) that can be invoked l...
Definition: ExprCXX.h:1583
bool hasTrivialDestructor() const
Determine whether this class has a trivial destructor (C++ [class.dtor]p3)
Definition: DeclCXX.h:1404
bool isInstance() const
Definition: DeclCXX.h:1992
CXXDestructorDecl * getDestructor() const
Returns the destructor decl for this class.
Definition: DeclCXX.cpp:1458
CXXMethodDecl * getCorrespondingMethodInClass(const CXXRecordDecl *RD, bool MayBeBase=false)
Find the method in RD that corresponds to this one.
Definition: DeclCXX.cpp:1655
bool isNegative() const
isNegative - Test whether the quantity is less than zero.
Definition: CharUnits.h:125
This object can be modified without requiring retains or releases.
Definition: Type.h:173
arg_iterator arg_end()
Definition: Expr.h:2318
Checking the &#39;this&#39; pointer for a call to a non-static member function.
lookup_result lookup(DeclarationName Name) const
lookup - Find the declarations (if any) with the given Name in this context.
Definition: DeclBase.cpp:1523
bool isArrayForm() const
Definition: ExprCXX.h:2115
QualType getTypeAsWritten() const
getTypeAsWritten - Returns the type that this expression is casting to, as written in the source code...
Definition: Expr.h:2920
bool isValid() const
Definition: Address.h:36
void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest)
Definition: CGExprCXX.cpp:557
Represents a C++ pseudo-destructor (C++ [expr.pseudo]).
Definition: ExprCXX.h:2200
void addFrom(const CallArgList &other)
Add all the arguments from another CallArgList to this one.
Definition: CGCall.h:214
CXXRecordDecl * getAsCXXRecordDecl() const
Retrieves the CXXRecordDecl that this type refers to, either because the type is a RecordType or beca...
Definition: Type.cpp:1590
Represents a prototype with parameter type info, e.g.
Definition: Type.h:3268
bool isDynamicClass() const
Definition: DeclCXX.h:751
virtual CharUnits GetArrayCookieSize(const CXXNewExpr *expr)
Returns the extra size required in order to store the array cookie for the given new-expression.
Definition: CGCXXABI.cpp:168
OverloadedOperatorKind getOverloadedOperator() const
getOverloadedOperator - Which C++ overloaded operator this function represents, if any...
Definition: Decl.cpp:3172
CXXConstructorDecl * getConstructor() const
Get the constructor that this expression will (ultimately) call.
Definition: ExprCXX.h:1302
NestedNameSpecifier * getQualifier() const
If the member name was qualified, retrieves the nested-name-specifier that precedes the member name...
Definition: Expr.h:2521
RValue - This trivial value class is used to represent the result of an expression that is evaluated...
Definition: CGValue.h:39
QuantityType getQuantity() const
getQuantity - Get the raw integer representation of this quantity.
Definition: CharUnits.h:179
ASTRecordLayout - This class contains layout information for one RecordDecl, which is a struct/union/...
Definition: RecordLayout.h:39
static TypeEvaluationKind getEvaluationKind(QualType T)
getEvaluationKind - Return the TypeEvaluationKind of QualType T.
Expr - This represents one expression.
Definition: Expr.h:106
bool isVariadic() const
Whether this function is variadic.
Definition: Decl.cpp:2574
bool isDefaulted() const
Whether this function is defaulted per C++0x.
Definition: Decl.h:2016
static Address invalid()
Definition: Address.h:35
static void EnterNewDeleteCleanup(CodeGenFunction &CGF, const CXXNewExpr *E, Address NewPtr, llvm::Value *AllocSize, CharUnits AllocAlign, const CallArgList &NewArgs)
Enter a cleanup to call &#39;operator delete&#39; if the initializer in a new-expression throws.
Definition: CGExprCXX.cpp:1454
virtual void ReadArrayCookie(CodeGenFunction &CGF, Address Ptr, const CXXDeleteExpr *expr, QualType ElementType, llvm::Value *&NumElements, llvm::Value *&AllocPtr, CharUnits &CookieSize)
Reads the array cookie associated with the given pointer, if it has one.
Definition: CGCXXABI.cpp:208
Enters a new scope for capturing cleanups, all of which will be executed once the scope is exited...
const FunctionProtoType * T
RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E)
Definition: CGExprCXX.cpp:107
void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete, llvm::Value *CompletePtr, QualType ElementType)
Definition: CGExprCXX.cpp:1809
void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo, llvm::iterator_range< CallExpr::const_arg_iterator > ArgRange, AbstractCallee AC=AbstractCallee(), unsigned ParamsToSkip=0, EvaluationOrder Order=EvaluationOrder::Default)
EmitCallArgs - Emit call arguments for a function.
const T * castAs() const
Member-template castAs<specific type>.
Definition: Type.h:6368
static CGCallee forDirect(llvm::Constant *functionPtr, const CGCalleeInfo &abstractInfo=CGCalleeInfo())
Definition: CGCall.h:125
SourceLocation getExprLoc() const LLVM_READONLY
Definition: ExprCXX.h:189
Represents a C++ destructor within a class.
Definition: DeclCXX.h:2620
unsigned getNumInits() const
Definition: Expr.h:3911
const Expr * getCallee() const
Definition: Expr.h:2258
bool isArrow() const
Determine whether this pseudo-destructor expression was written using an &#39;->&#39; (otherwise, it used a &#39;.
Definition: ExprCXX.h:2263
llvm::PointerType * getType() const
Return the type of the pointer value.
Definition: Address.h:44
virtual bool EmitBadCastCall(CodeGenFunction &CGF)=0
void add(RValue rvalue, QualType type, bool needscopy=false)
Definition: CGCall.h:207
const AstTypeMatcher< ArrayType > arrayType
Matches all kinds of arrays.
A class for recording the number of arguments that a function signature requires. ...
bool isTemporaryObject(ASTContext &Ctx, const CXXRecordDecl *TempTy) const
Determine whether the result of this expression is a temporary object of the given class type...
Definition: Expr.cpp:2659
QualType getType() const
Definition: Expr.h:128
void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest)
Definition: CGExprCXX.cpp:2224
RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue, bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow, const Expr *Base)
Definition: CGExprCXX.cpp:194
CharUnits alignmentOfArrayElement(CharUnits elementSize) const
Given that this is the alignment of the first element of an array, return the minimum alignment of an...
Definition: CharUnits.h:197
bool hasInitializer() const
Whether this new-expression has any initializer at all.
Definition: ExprCXX.h:1980
QualType getRecordType(const RecordDecl *Decl) const
static void EmitObjectDelete(CodeGenFunction &CGF, const CXXDeleteExpr *DE, Address Ptr, QualType ElementType)
Emit the code for deleting a single object.
Definition: CGExprCXX.cpp:1832
llvm::CallInst * CreateMemSet(Address Dest, llvm::Value *Value, llvm::Value *Size, bool IsVolatile=false)
Definition: CGBuilder.h:281
llvm::Value * EmitCastToVoidPtr(llvm::Value *value)
Emit a cast to void* in the appropriate address space.
Definition: CGExpr.cpp:50
QualType getTypeOperand(ASTContext &Context) const
Retrieves the type operand of this typeid() expression after various required adjustments (removing r...
Definition: ExprCXX.cpp:77
void emitArrayDestroy(llvm::Value *begin, llvm::Value *end, QualType elementType, CharUnits elementAlign, Destroyer *destroyer, bool checkZeroLength, bool useEHCleanup)
emitArrayDestroy - Destroys all the elements of the given array, beginning from last to first...
Definition: CGDecl.cpp:1576
bool isTrivial() const
Whether this function is "trivial" in some specialized C++ senses.
Definition: Decl.h:2011
QualType getDestroyedType() const
Retrieve the type being destroyed.
Definition: ExprCXX.cpp:178
static AggValueSlot forAddr(Address addr, Qualifiers quals, IsDestructed_t isDestructed, NeedsGCBarriers_t needsGC, IsAliased_t isAliased, IsZeroed_t isZeroed=IsNotZeroed)
forAddr - Make a slot for an aggregate value.
Definition: CGValue.h:495
GlobalDecl - represents a global declaration.
Definition: GlobalDecl.h:35
The l-value was considered opaque, so the alignment was determined from a type.
RecordDecl * getDecl() const
Definition: Type.h:3986
Expr * getArgument()
Definition: ExprCXX.h:2128
bool isAlignValT() const
Definition: Type.cpp:2363
There is no lifetime qualification on this type.
Definition: Type.h:169
A C++ dynamic_cast expression (C++ [expr.dynamic.cast]).
Definition: ExprCXX.h:338
void set(SanitizerMask K, bool Value)
Enable or disable a certain (single) sanitizer.
Definition: Sanitizers.h:59
Assigning into this object requires the old value to be released and the new value to be retained...
Definition: Type.h:180
QualType getCanonicalType() const
Definition: Type.h:5757
llvm::Value * EmitCXXTypeidExpr(const CXXTypeidExpr *E)
Definition: CGExprCXX.cpp:2094
Encodes a location in the source.
A helper class that allows the use of isa/cast/dyncast to detect TagType objects of enums...
Definition: Type.h:4002
virtual llvm::Value * EmitTypeid(CodeGenFunction &CGF, QualType SrcRecordTy, Address ThisPtr, llvm::Type *StdTypeInfoPtrTy)=0
A saved depth on the scope stack.
Definition: EHScopeStack.h:107
static CXXRecordDecl * getCXXRecord(const Expr *E)
Definition: CGExprCXX.cpp:158
Represents a new-expression for memory allocation and constructor calls, e.g: "new CXXNewExpr(foo)"...
Definition: ExprCXX.h:1845
Represents a call to a member function that may be written either with member call syntax (e...
Definition: ExprCXX.h:164
An aggregate value slot.
Definition: CGValue.h:434
A scoped helper to set the current debug location to the specified location or preferred location of ...
Definition: CGDebugInfo.h:620
static void EmitArrayDelete(CodeGenFunction &CGF, const CXXDeleteExpr *E, Address deletedPtr, QualType elementType)
Emit the code for deleting an array of objects.
Definition: CGExprCXX.cpp:1921
Represents a static or instance method of a struct/union/class.
Definition: DeclCXX.h:1964
const ConstantArrayType * getAsConstantArrayType(QualType T) const
Definition: ASTContext.h:2328
Represents a C++ nested name specifier, such as "\::std::vector<int>::".
llvm::Constant * EmitNullConstantForBase(const CXXRecordDecl *Record)
Return a null constant appropriate for zero-initializing a base class with the given type...
QualType getAllocatedType() const
Definition: ExprCXX.h:1919
bool isSignedIntegerOrEnumerationType() const
Determines whether this is an integer type that is signed or an enumeration types whose underlying ty...
Definition: Type.cpp:1816
bool isArray() const
Definition: ExprCXX.h:1950
arg_range arguments()
Definition: Expr.h:2312
virtual void emitVirtualObjectDelete(CodeGenFunction &CGF, const CXXDeleteExpr *DE, Address Ptr, QualType ElementType, const CXXDestructorDecl *Dtor)=0
An aligned address.
Definition: Address.h:25
DestructionKind isDestructedType() const
Returns a nonzero value if objects of this type require non-trivial work to clean up after...
Definition: Type.h:1096
All available information about a concrete callee.
Definition: CGCall.h:66
const CXXRecordDecl * getBestDynamicClassType() const
For an expression of class type or pointer to class type, return the most derived class decl the expr...
Definition: Expr.cpp:63
Complete object dtor.
Definition: ABI.h:36
EnumDecl * getDecl() const
Definition: Type.h:4009
RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, ReturnValueSlot ReturnValue)
Definition: CGExprCXX.cpp:401
Assigning into this object requires a lifetime extension.
Definition: Type.h:186
static void EmitDestroyingObjectDelete(CodeGenFunction &CGF, const CXXDeleteExpr *DE, Address Ptr, QualType ElementType)
Emit the code for deleting a single object with a destroying operator delete.
Definition: CGExprCXX.cpp:1820
RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type, const Expr *Arg, bool IsDelete)
Definition: CGExprCXX.cpp:1300
bool passAlignment() const
Indicates whether the required alignment should be implicitly passed to the allocation function...
Definition: ExprCXX.h:2004
FunctionDecl * getOperatorDelete() const
Definition: ExprCXX.h:1947
CXXCtorType
C++ constructor types.
Definition: ABI.h:25
SourceLocation getExprLoc() const LLVM_READONLY
getExprLoc - Return the preferred location for the arrow when diagnosing a problem with a generic exp...
Definition: Expr.cpp:216
Expr * getLHS() const
Definition: Expr.h:3038
llvm::Value * EmitScalarExpr(const Expr *E, bool IgnoreResultAssign=false)
EmitScalarExpr - Emit the computation of the specified expression of LLVM scalar type, returning the result.
static CharUnits CalculateCookiePadding(CodeGenFunction &CGF, const CXXNewExpr *E)
Definition: CGExprCXX.cpp:651
CharUnits getNonVirtualAlignment() const
getNonVirtualSize - Get the non-virtual alignment (in chars) of an object, which is the alignment of ...
Definition: RecordLayout.h:201
CGFunctionInfo - Class to encapsulate the information about a function definition.
CharUnits alignmentAtOffset(CharUnits offset) const
Given that this is a non-zero alignment value, what is the alignment at the given offset...
Definition: CharUnits.h:190
bool isTypeOperand() const
Definition: ExprCXX.h:678
Dataflow Directional Tag Classes.
void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type, bool ForVirtualBase, bool Delegating, Address This)
Definition: CGClass.cpp:2343
Represents a delete expression for memory deallocation and destructor calls, e.g. ...
Definition: ExprCXX.h:2074
FunctionDecl * getDirectCallee()
If the callee is a FunctionDecl, return it. Otherwise return 0.
Definition: Expr.cpp:1216
bool isInConditionalBranch() const
isInConditionalBranch - Return true if we&#39;re currently emitting one branch or the other of a conditio...
DeclarationName - The name of a declaration.
const CXXRecordDecl * getParent() const
Returns the parent of this method declaration, which is the class in which this method is defined...
Definition: DeclCXX.h:2085
llvm::Function * getIntrinsic(unsigned IID, ArrayRef< llvm::Type *> Tys=None)
A pointer to member type per C++ 8.3.3 - Pointers to members.
Definition: Type.h:2502
bool isCopyAssignmentOperator() const
Determine whether this is a copy-assignment operator, regardless of whether it was declared implicitl...
Definition: DeclCXX.cpp:1859
bool isDestroyingOperatorDelete() const
Determine whether this is a destroying operator delete.
Definition: Decl.cpp:2769
llvm::Module & getModule() const
LValue MakeAddrLValue(Address Addr, QualType T, AlignmentSource Source=AlignmentSource::Type)
specific_decl_iterator - Iterates over a subrange of declarations stored in a DeclContext, providing only those that are of type SpecificDecl (or a class derived from it).
Definition: DeclBase.h:1596
void EmitAggExpr(const Expr *E, AggValueSlot AS)
EmitAggExpr - Emit the computation of the specified expression of aggregate type. ...
Definition: CGExprAgg.cpp:1522
bool isStringLiteralInit() const
Definition: Expr.cpp:1919
static llvm::Value * EmitDynamicCastToNull(CodeGenFunction &CGF, QualType DestTy)
Definition: CGExprCXX.cpp:2118
AlignmentSource getAlignmentSource() const
Definition: CGValue.h:156
A helper class that allows the use of isa/cast/dyncast to detect TagType objects of structs/unions/cl...
Definition: Type.h:3976
CXXMethodDecl * getDevirtualizedMethod(const Expr *Base, bool IsAppleKext)
If it&#39;s possible to devirtualize a call to this method, return the called function.
Definition: DeclCXX.cpp:1713
bool isIntegerType() const
isIntegerType() does not include complex integers (a GCC extension).
Definition: Type.h:6191
arg_iterator arg_begin()
Definition: Expr.h:2317
llvm::Type * getElementType() const
Return the type of the values stored in this address.
Definition: Address.h:52
Represents a call to a CUDA kernel function.
Definition: ExprCXX.h:203
SourceLocation getLocStart() const LLVM_READONLY
Definition: Expr.cpp:1326
void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue, bool capturedByInit)
Definition: CGDecl.cpp:713
Expr * getArg(unsigned Arg)
Return the specified argument.
Definition: ExprCXX.h:1365
Base for LValueReferenceType and RValueReferenceType.
Definition: Type.h:2419
void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp)
Definition: CGExprCXX.cpp:629
llvm::Constant * GetAddrOfFunction(GlobalDecl GD, llvm::Type *Ty=nullptr, bool ForVTable=false, bool DontDefer=false, ForDefinition_t IsForDefinition=NotForDefinition)
Return the address of the given function.
void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false)
EmitBlock - Emit the given block.
Definition: CGStmt.cpp:445
bool isConstantArrayType() const
Definition: Type.h:5995
char __ovld __cnfn max(char x, char y)
Returns y if x < y, otherwise it returns x.
static bool isGLValueFromPointerDeref(const Expr *E)
Definition: CGExprCXX.cpp:2022
llvm::ConstantInt * getSize(CharUnits numChars)
Emit the given number of characters as a value of type size_t.
Reading or writing from this object requires a barrier call.
Definition: Type.h:183
QualType getParamType(unsigned i) const
Definition: Type.h:3491
MemberExpr - [C99 6.5.2.3] Structure and Union Members.
Definition: Expr.h:2396
Represents a C++ struct/union/class.
Definition: DeclCXX.h:299
virtual const CXXRecordDecl * getThisArgumentTypeForMethod(const CXXMethodDecl *MD)
Get the type of the implicit "this" parameter used by a method.
Definition: CGCXXABI.h:330
bool isVoidType() const
Definition: Type.h:6169
bool hasStrongOrWeakObjCLifetime() const
Definition: Type.h:1078
static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E, QualType ElementType, llvm::Type *ElementTy, Address NewPtr, llvm::Value *NumElements, llvm::Value *AllocSizeWithoutCookie)
Definition: CGExprCXX.cpp:1252
llvm::Type * ConvertType(QualType T)
Qualifiers getQualifiers() const
Retrieve the set of qualifiers applied to this type.
Definition: Type.h:5745
void EmitCXXDeleteExpr(const CXXDeleteExpr *E)
Definition: CGExprCXX.cpp:1965
LValue EmitLValue(const Expr *E)
EmitLValue - Emit code to compute a designator that specifies the location of the expression...
Definition: CGExpr.cpp:1174
CharUnits getNonVirtualSize() const
getNonVirtualSize - Get the non-virtual size (in chars) of an object, which is the size of the object...
Definition: RecordLayout.h:193
T * pushCleanupWithExtra(CleanupKind Kind, size_t N, As... A)
Push a cleanup with non-constant storage requirements on the stack.
Definition: EHScopeStack.h:305
static UsualDeleteParams getUsualDeleteParams(const FunctionDecl *FD)
Definition: CGExprCXX.cpp:1326
CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
Definition: Expr.h:2218
QualType getIntegerType() const
getIntegerType - Return the integer type this enum decl corresponds to.
Definition: Decl.h:3377
llvm::Constant * tryEmitAbstract(const Expr *E, QualType T)
Try to emit the result of the given expression as an abstract constant.
CGCXXABI & getCXXABI() const
capture_init_iterator capture_init_end()
Retrieve the iterator pointing one past the last initialization argument for this lambda expression...
Definition: ExprCXX.h:1740
bool isAlwaysNull() const
isAlwaysNull - Return whether the result of the dynamic_cast is proven to always be null...
Definition: ExprCXX.cpp:612
static RValue get(llvm::Value *V)
Definition: CGValue.h:86
bool isUnion() const
Definition: Decl.h:3178
static RequiredArgs forPrototypePlus(const FunctionProtoType *prototype, unsigned additional, const FunctionDecl *FD)
Compute the arguments required by the given formal prototype, given that there may be some additional...
Expr * getRHS() const
Definition: Expr.h:3040
Expr *const * const_capture_init_iterator
Const iterator that walks over the capture initialization arguments.
Definition: ExprCXX.h:1714
bool isPointerType() const
Definition: Type.h:5942
const CGFunctionInfo & arrangeFreeFunctionCall(const CallArgList &Args, const FunctionType *Ty, bool ChainCall)
Figure out the rules for calling a function with the given formal type using the given arguments...
Definition: CGCall.cpp:597
CharUnits getTypeSizeInChars(QualType T) const
Return the size of the specified (complete) type T, in characters.
virtual std::vector< CharUnits > getVBPtrOffsets(const CXXRecordDecl *RD)
Gets the offsets of all the virtual base pointers in a given class.
Definition: CGCXXABI.cpp:305
QualType getType() const
Definition: Decl.h:638
bool shouldNullCheckAllocation(const ASTContext &Ctx) const
True if the allocation result needs to be null-checked.
Definition: ExprCXX.cpp:171
LValue - This represents an lvalue references.
Definition: CGValue.h:167
An abstract representation of regular/ObjC call/message targets.
Information for lazily generating a cleanup.
Definition: EHScopeStack.h:147
bool isPotentiallyEvaluated() const
Determine whether this typeid has a type operand which is potentially evaluated, per C++11 [expr...
Definition: ExprCXX.cpp:62
RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue)
Definition: CGExprCXX.cpp:454
TranslationUnitDecl * getTranslationUnitDecl()
Definition: DeclBase.cpp:350
CallArgList - Type for representing both the value and type of arguments in a call.
Definition: CGCall.h:182
void PopCleanupBlock(bool FallThroughIsBranchThrough=false)
PopCleanupBlock - Will pop the cleanup entry on the stack and process all branch fixups.
Definition: CGCleanup.cpp:640
Represents the canonical version of C arrays with a specified constant size.
Definition: Type.h:2618
Represents an implicitly-generated value initialization of an object of a given type.
Definition: Expr.h:4589
QualType getPointeeType() const
Definition: Type.h:2522
Expr * IgnoreParens() LLVM_READONLY
IgnoreParens - Ignore parentheses.
Definition: Expr.cpp:2434
ConstructionKind getConstructionKind() const
Determine whether this constructor is actually constructing a base class (rather than a complete obje...
Definition: ExprCXX.h:1336
CanQualType getSizeType() const
Return the unique type for "size_t" (C99 7.17), defined in <stddef.h>.
Qualifiers::ObjCLifetime getObjCLifetime() const
Returns lifetime attribute of this type.
Definition: Type.h:1070
param_type_iterator param_type_end() const
Definition: Type.h:3645