clang  9.0.0svn
CGExprCXX.cpp
Go to the documentation of this file.
1 //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code dealing with code generation of C++ expressions
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenFunction.h"
14 #include "CGCUDARuntime.h"
15 #include "CGCXXABI.h"
16 #include "CGDebugInfo.h"
17 #include "CGObjCRuntime.h"
18 #include "ConstantEmitter.h"
21 #include "llvm/IR/Intrinsics.h"
22 
23 using namespace clang;
24 using namespace CodeGen;
25 
26 namespace {
27 struct MemberCallInfo {
28  RequiredArgs ReqArgs;
29  // Number of prefix arguments for the call. Ignores the `this` pointer.
30  unsigned PrefixSize;
31 };
32 }
33 
34 static MemberCallInfo
36  llvm::Value *This, llvm::Value *ImplicitParam,
37  QualType ImplicitParamTy, const CallExpr *CE,
38  CallArgList &Args, CallArgList *RtlArgs) {
39  assert(CE == nullptr || isa<CXXMemberCallExpr>(CE) ||
40  isa<CXXOperatorCallExpr>(CE));
41  assert(MD->isInstance() &&
42  "Trying to emit a member or operator call expr on a static method!");
43 
44  // Push the this ptr.
45  const CXXRecordDecl *RD =
47  Args.add(RValue::get(This), CGF.getTypes().DeriveThisType(RD, MD));
48 
49  // If there is an implicit parameter (e.g. VTT), emit it.
50  if (ImplicitParam) {
51  Args.add(RValue::get(ImplicitParam), ImplicitParamTy);
52  }
53 
54  const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
55  RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size());
56  unsigned PrefixSize = Args.size() - 1;
57 
58  // And the rest of the call args.
59  if (RtlArgs) {
60  // Special case: if the caller emitted the arguments right-to-left already
61  // (prior to emitting the *this argument), we're done. This happens for
62  // assignment operators.
63  Args.addFrom(*RtlArgs);
64  } else if (CE) {
65  // Special case: skip first argument of CXXOperatorCall (it is "this").
66  unsigned ArgsToSkip = isa<CXXOperatorCallExpr>(CE) ? 1 : 0;
67  CGF.EmitCallArgs(Args, FPT, drop_begin(CE->arguments(), ArgsToSkip),
68  CE->getDirectCallee());
69  } else {
70  assert(
71  FPT->getNumParams() == 0 &&
72  "No CallExpr specified for function with non-zero number of arguments");
73  }
74  return {required, PrefixSize};
75 }
76 
78  const CXXMethodDecl *MD, const CGCallee &Callee,
79  ReturnValueSlot ReturnValue,
80  llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy,
81  const CallExpr *CE, CallArgList *RtlArgs) {
82  const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
83  CallArgList Args;
84  MemberCallInfo CallInfo = commonEmitCXXMemberOrOperatorCall(
85  *this, MD, This, ImplicitParam, ImplicitParamTy, CE, Args, RtlArgs);
86  auto &FnInfo = CGM.getTypes().arrangeCXXMethodCall(
87  Args, FPT, CallInfo.ReqArgs, CallInfo.PrefixSize);
88  return EmitCall(FnInfo, Callee, ReturnValue, Args, nullptr,
89  CE ? CE->getExprLoc() : SourceLocation());
90 }
91 
93  GlobalDecl Dtor, const CGCallee &Callee, llvm::Value *This,
94  llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *CE) {
95  CallArgList Args;
96  commonEmitCXXMemberOrOperatorCall(*this, cast<CXXMethodDecl>(Dtor.getDecl()),
97  This, ImplicitParam, ImplicitParamTy, CE,
98  Args, nullptr);
99  return EmitCall(CGM.getTypes().arrangeCXXStructorDeclaration(Dtor), Callee,
100  ReturnValueSlot(), Args);
101 }
102 
104  const CXXPseudoDestructorExpr *E) {
105  QualType DestroyedType = E->getDestroyedType();
106  if (DestroyedType.hasStrongOrWeakObjCLifetime()) {
107  // Automatic Reference Counting:
108  // If the pseudo-expression names a retainable object with weak or
109  // strong lifetime, the object shall be released.
110  Expr *BaseExpr = E->getBase();
111  Address BaseValue = Address::invalid();
112  Qualifiers BaseQuals;
113 
114  // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
115  if (E->isArrow()) {
116  BaseValue = EmitPointerWithAlignment(BaseExpr);
117  const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>();
118  BaseQuals = PTy->getPointeeType().getQualifiers();
119  } else {
120  LValue BaseLV = EmitLValue(BaseExpr);
121  BaseValue = BaseLV.getAddress();
122  QualType BaseTy = BaseExpr->getType();
123  BaseQuals = BaseTy.getQualifiers();
124  }
125 
126  switch (DestroyedType.getObjCLifetime()) {
130  break;
131 
133  EmitARCRelease(Builder.CreateLoad(BaseValue,
134  DestroyedType.isVolatileQualified()),
136  break;
137 
139  EmitARCDestroyWeak(BaseValue);
140  break;
141  }
142  } else {
143  // C++ [expr.pseudo]p1:
144  // The result shall only be used as the operand for the function call
145  // operator (), and the result of such a call has type void. The only
146  // effect is the evaluation of the postfix-expression before the dot or
147  // arrow.
148  EmitIgnoredExpr(E->getBase());
149  }
150 
151  return RValue::get(nullptr);
152 }
153 
154 static CXXRecordDecl *getCXXRecord(const Expr *E) {
155  QualType T = E->getType();
156  if (const PointerType *PTy = T->getAs<PointerType>())
157  T = PTy->getPointeeType();
158  const RecordType *Ty = T->castAs<RecordType>();
159  return cast<CXXRecordDecl>(Ty->getDecl());
160 }
161 
162 // Note: This function also emit constructor calls to support a MSVC
163 // extensions allowing explicit constructor function call.
165  ReturnValueSlot ReturnValue) {
166  const Expr *callee = CE->getCallee()->IgnoreParens();
167 
168  if (isa<BinaryOperator>(callee))
169  return EmitCXXMemberPointerCallExpr(CE, ReturnValue);
170 
171  const MemberExpr *ME = cast<MemberExpr>(callee);
172  const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl());
173 
174  if (MD->isStatic()) {
175  // The method is static, emit it as we would a regular call.
176  CGCallee callee =
177  CGCallee::forDirect(CGM.GetAddrOfFunction(MD), GlobalDecl(MD));
178  return EmitCall(getContext().getPointerType(MD->getType()), callee, CE,
179  ReturnValue);
180  }
181 
182  bool HasQualifier = ME->hasQualifier();
183  NestedNameSpecifier *Qualifier = HasQualifier ? ME->getQualifier() : nullptr;
184  bool IsArrow = ME->isArrow();
185  const Expr *Base = ME->getBase();
186 
187  return EmitCXXMemberOrOperatorMemberCallExpr(
188  CE, MD, ReturnValue, HasQualifier, Qualifier, IsArrow, Base);
189 }
190 
192  const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue,
193  bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow,
194  const Expr *Base) {
195  assert(isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE));
196 
197  // Compute the object pointer.
198  bool CanUseVirtualCall = MD->isVirtual() && !HasQualifier;
199 
200  const CXXMethodDecl *DevirtualizedMethod = nullptr;
201  if (CanUseVirtualCall &&
202  MD->getDevirtualizedMethod(Base, getLangOpts().AppleKext)) {
203  const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType();
204  DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl);
205  assert(DevirtualizedMethod);
206  const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent();
207  const Expr *Inner = Base->ignoreParenBaseCasts();
208  if (DevirtualizedMethod->getReturnType().getCanonicalType() !=
210  // If the return types are not the same, this might be a case where more
211  // code needs to run to compensate for it. For example, the derived
212  // method might return a type that inherits form from the return
213  // type of MD and has a prefix.
214  // For now we just avoid devirtualizing these covariant cases.
215  DevirtualizedMethod = nullptr;
216  else if (getCXXRecord(Inner) == DevirtualizedClass)
217  // If the class of the Inner expression is where the dynamic method
218  // is defined, build the this pointer from it.
219  Base = Inner;
220  else if (getCXXRecord(Base) != DevirtualizedClass) {
221  // If the method is defined in a class that is not the best dynamic
222  // one or the one of the full expression, we would have to build
223  // a derived-to-base cast to compute the correct this pointer, but
224  // we don't have support for that yet, so do a virtual call.
225  DevirtualizedMethod = nullptr;
226  }
227  }
228 
229  // C++17 demands that we evaluate the RHS of a (possibly-compound) assignment
230  // operator before the LHS.
231  CallArgList RtlArgStorage;
232  CallArgList *RtlArgs = nullptr;
233  if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(CE)) {
234  if (OCE->isAssignmentOp()) {
235  RtlArgs = &RtlArgStorage;
236  EmitCallArgs(*RtlArgs, MD->getType()->castAs<FunctionProtoType>(),
237  drop_begin(CE->arguments(), 1), CE->getDirectCallee(),
238  /*ParamsToSkip*/0, EvaluationOrder::ForceRightToLeft);
239  }
240  }
241 
242  LValue This;
243  if (IsArrow) {
244  LValueBaseInfo BaseInfo;
245  TBAAAccessInfo TBAAInfo;
246  Address ThisValue = EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo);
247  This = MakeAddrLValue(ThisValue, Base->getType(), BaseInfo, TBAAInfo);
248  } else {
249  This = EmitLValue(Base);
250  }
251 
252  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
253  // This is the MSVC p->Ctor::Ctor(...) extension. We assume that's
254  // constructing a new complete object of type Ctor.
255  assert(!RtlArgs);
256  assert(ReturnValue.isNull() && "Constructor shouldn't have return value");
257  CallArgList Args;
259  *this, Ctor, This.getPointer(), /*ImplicitParam=*/nullptr,
260  /*ImplicitParamTy=*/QualType(), CE, Args, nullptr);
261 
262  EmitCXXConstructorCall(Ctor, Ctor_Complete, /*ForVirtualBase=*/false,
263  /*Delegating=*/false, This.getAddress(), Args,
265  /*NewPointerIsChecked=*/false);
266  return RValue::get(nullptr);
267  }
268 
269  if (MD->isTrivial() || (MD->isDefaulted() && MD->getParent()->isUnion())) {
270  if (isa<CXXDestructorDecl>(MD)) return RValue::get(nullptr);
271  if (!MD->getParent()->mayInsertExtraPadding()) {
273  // We don't like to generate the trivial copy/move assignment operator
274  // when it isn't necessary; just produce the proper effect here.
275  LValue RHS = isa<CXXOperatorCallExpr>(CE)
276  ? MakeNaturalAlignAddrLValue(
277  (*RtlArgs)[0].getRValue(*this).getScalarVal(),
278  (*(CE->arg_begin() + 1))->getType())
279  : EmitLValue(*CE->arg_begin());
280  EmitAggregateAssign(This, RHS, CE->getType());
281  return RValue::get(This.getPointer());
282  }
283  llvm_unreachable("unknown trivial member function");
284  }
285  }
286 
287  // Compute the function type we're calling.
288  const CXXMethodDecl *CalleeDecl =
289  DevirtualizedMethod ? DevirtualizedMethod : MD;
290  const CGFunctionInfo *FInfo = nullptr;
291  if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl))
292  FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration(
293  GlobalDecl(Dtor, Dtor_Complete));
294  else
295  FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl);
296 
297  llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo);
298 
299  // C++11 [class.mfct.non-static]p2:
300  // If a non-static member function of a class X is called for an object that
301  // is not of type X, or of a type derived from X, the behavior is undefined.
302  SourceLocation CallLoc;
303  ASTContext &C = getContext();
304  if (CE)
305  CallLoc = CE->getExprLoc();
306 
307  SanitizerSet SkippedChecks;
308  if (const auto *CMCE = dyn_cast<CXXMemberCallExpr>(CE)) {
309  auto *IOA = CMCE->getImplicitObjectArgument();
310  bool IsImplicitObjectCXXThis = IsWrappedCXXThis(IOA);
311  if (IsImplicitObjectCXXThis)
312  SkippedChecks.set(SanitizerKind::Alignment, true);
313  if (IsImplicitObjectCXXThis || isa<DeclRefExpr>(IOA))
314  SkippedChecks.set(SanitizerKind::Null, true);
315  }
316  EmitTypeCheck(CodeGenFunction::TCK_MemberCall, CallLoc, This.getPointer(),
317  C.getRecordType(CalleeDecl->getParent()),
318  /*Alignment=*/CharUnits::Zero(), SkippedChecks);
319 
320  // C++ [class.virtual]p12:
321  // Explicit qualification with the scope operator (5.1) suppresses the
322  // virtual call mechanism.
323  //
324  // We also don't emit a virtual call if the base expression has a record type
325  // because then we know what the type is.
326  bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod;
327 
328  if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl)) {
329  assert(CE->arg_begin() == CE->arg_end() &&
330  "Destructor shouldn't have explicit parameters");
331  assert(ReturnValue.isNull() && "Destructor shouldn't have return value");
332  if (UseVirtualCall) {
333  CGM.getCXXABI().EmitVirtualDestructorCall(
334  *this, Dtor, Dtor_Complete, This.getAddress(),
335  cast<CXXMemberCallExpr>(CE));
336  } else {
337  GlobalDecl GD(Dtor, Dtor_Complete);
338  CGCallee Callee;
339  if (getLangOpts().AppleKext && Dtor->isVirtual() && HasQualifier)
340  Callee = BuildAppleKextVirtualCall(Dtor, Qualifier, Ty);
341  else if (!DevirtualizedMethod)
342  Callee =
343  CGCallee::forDirect(CGM.getAddrOfCXXStructor(GD, FInfo, Ty), GD);
344  else {
345  Callee = CGCallee::forDirect(CGM.GetAddrOfFunction(GD, Ty), GD);
346  }
347 
348  EmitCXXDestructorCall(GD, Callee, This.getPointer(),
349  /*ImplicitParam=*/nullptr,
350  /*ImplicitParamTy=*/QualType(), nullptr);
351  }
352  return RValue::get(nullptr);
353  }
354 
355  // FIXME: Uses of 'MD' past this point need to be audited. We may need to use
356  // 'CalleeDecl' instead.
357 
358  CGCallee Callee;
359  if (UseVirtualCall) {
360  Callee = CGCallee::forVirtual(CE, MD, This.getAddress(), Ty);
361  } else {
362  if (SanOpts.has(SanitizerKind::CFINVCall) &&
363  MD->getParent()->isDynamicClass()) {
364  llvm::Value *VTable;
365  const CXXRecordDecl *RD;
366  std::tie(VTable, RD) =
367  CGM.getCXXABI().LoadVTablePtr(*this, This.getAddress(),
368  MD->getParent());
369  EmitVTablePtrCheckForCall(RD, VTable, CFITCK_NVCall, CE->getBeginLoc());
370  }
371 
372  if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier)
373  Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty);
374  else if (!DevirtualizedMethod)
375  Callee =
376  CGCallee::forDirect(CGM.GetAddrOfFunction(MD, Ty), GlobalDecl(MD));
377  else {
378  Callee =
379  CGCallee::forDirect(CGM.GetAddrOfFunction(DevirtualizedMethod, Ty),
380  GlobalDecl(DevirtualizedMethod));
381  }
382  }
383 
384  if (MD->isVirtual()) {
385  Address NewThisAddr =
386  CGM.getCXXABI().adjustThisArgumentForVirtualFunctionCall(
387  *this, CalleeDecl, This.getAddress(), UseVirtualCall);
388  This.setAddress(NewThisAddr);
389  }
390 
391  return EmitCXXMemberOrOperatorCall(
392  CalleeDecl, Callee, ReturnValue, This.getPointer(),
393  /*ImplicitParam=*/nullptr, QualType(), CE, RtlArgs);
394 }
395 
396 RValue
398  ReturnValueSlot ReturnValue) {
399  const BinaryOperator *BO =
400  cast<BinaryOperator>(E->getCallee()->IgnoreParens());
401  const Expr *BaseExpr = BO->getLHS();
402  const Expr *MemFnExpr = BO->getRHS();
403 
404  const MemberPointerType *MPT =
405  MemFnExpr->getType()->castAs<MemberPointerType>();
406 
407  const FunctionProtoType *FPT =
409  const CXXRecordDecl *RD =
410  cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl());
411 
412  // Emit the 'this' pointer.
413  Address This = Address::invalid();
414  if (BO->getOpcode() == BO_PtrMemI)
415  This = EmitPointerWithAlignment(BaseExpr);
416  else
417  This = EmitLValue(BaseExpr).getAddress();
418 
419  EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This.getPointer(),
420  QualType(MPT->getClass(), 0));
421 
422  // Get the member function pointer.
423  llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr);
424 
425  // Ask the ABI to load the callee. Note that This is modified.
426  llvm::Value *ThisPtrForCall = nullptr;
427  CGCallee Callee =
428  CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, BO, This,
429  ThisPtrForCall, MemFnPtr, MPT);
430 
431  CallArgList Args;
432 
433  QualType ThisType =
434  getContext().getPointerType(getContext().getTagDeclType(RD));
435 
436  // Push the this ptr.
437  Args.add(RValue::get(ThisPtrForCall), ThisType);
438 
439  RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, 1);
440 
441  // And the rest of the call args
442  EmitCallArgs(Args, FPT, E->arguments());
443  return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required,
444  /*PrefixSize=*/0),
445  Callee, ReturnValue, Args, nullptr, E->getExprLoc());
446 }
447 
448 RValue
450  const CXXMethodDecl *MD,
451  ReturnValueSlot ReturnValue) {
452  assert(MD->isInstance() &&
453  "Trying to emit a member call expr on a static method!");
454  return EmitCXXMemberOrOperatorMemberCallExpr(
455  E, MD, ReturnValue, /*HasQualifier=*/false, /*Qualifier=*/nullptr,
456  /*IsArrow=*/false, E->getArg(0));
457 }
458 
460  ReturnValueSlot ReturnValue) {
461  return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue);
462 }
463 
465  Address DestPtr,
466  const CXXRecordDecl *Base) {
467  if (Base->isEmpty())
468  return;
469 
470  DestPtr = CGF.Builder.CreateElementBitCast(DestPtr, CGF.Int8Ty);
471 
472  const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base);
473  CharUnits NVSize = Layout.getNonVirtualSize();
474 
475  // We cannot simply zero-initialize the entire base sub-object if vbptrs are
476  // present, they are initialized by the most derived class before calling the
477  // constructor.
479  Stores.emplace_back(CharUnits::Zero(), NVSize);
480 
481  // Each store is split by the existence of a vbptr.
482  CharUnits VBPtrWidth = CGF.getPointerSize();
483  std::vector<CharUnits> VBPtrOffsets =
484  CGF.CGM.getCXXABI().getVBPtrOffsets(Base);
485  for (CharUnits VBPtrOffset : VBPtrOffsets) {
486  // Stop before we hit any virtual base pointers located in virtual bases.
487  if (VBPtrOffset >= NVSize)
488  break;
489  std::pair<CharUnits, CharUnits> LastStore = Stores.pop_back_val();
490  CharUnits LastStoreOffset = LastStore.first;
491  CharUnits LastStoreSize = LastStore.second;
492 
493  CharUnits SplitBeforeOffset = LastStoreOffset;
494  CharUnits SplitBeforeSize = VBPtrOffset - SplitBeforeOffset;
495  assert(!SplitBeforeSize.isNegative() && "negative store size!");
496  if (!SplitBeforeSize.isZero())
497  Stores.emplace_back(SplitBeforeOffset, SplitBeforeSize);
498 
499  CharUnits SplitAfterOffset = VBPtrOffset + VBPtrWidth;
500  CharUnits SplitAfterSize = LastStoreSize - SplitAfterOffset;
501  assert(!SplitAfterSize.isNegative() && "negative store size!");
502  if (!SplitAfterSize.isZero())
503  Stores.emplace_back(SplitAfterOffset, SplitAfterSize);
504  }
505 
506  // If the type contains a pointer to data member we can't memset it to zero.
507  // Instead, create a null constant and copy it to the destination.
508  // TODO: there are other patterns besides zero that we can usefully memset,
509  // like -1, which happens to be the pattern used by member-pointers.
510  // TODO: isZeroInitializable can be over-conservative in the case where a
511  // virtual base contains a member pointer.
512  llvm::Constant *NullConstantForBase = CGF.CGM.EmitNullConstantForBase(Base);
513  if (!NullConstantForBase->isNullValue()) {
514  llvm::GlobalVariable *NullVariable = new llvm::GlobalVariable(
515  CGF.CGM.getModule(), NullConstantForBase->getType(),
516  /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage,
517  NullConstantForBase, Twine());
518 
519  CharUnits Align = std::max(Layout.getNonVirtualAlignment(),
520  DestPtr.getAlignment());
521  NullVariable->setAlignment(Align.getQuantity());
522 
523  Address SrcPtr = Address(CGF.EmitCastToVoidPtr(NullVariable), Align);
524 
525  // Get and call the appropriate llvm.memcpy overload.
526  for (std::pair<CharUnits, CharUnits> Store : Stores) {
527  CharUnits StoreOffset = Store.first;
528  CharUnits StoreSize = Store.second;
529  llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize);
530  CGF.Builder.CreateMemCpy(
531  CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset),
532  CGF.Builder.CreateConstInBoundsByteGEP(SrcPtr, StoreOffset),
533  StoreSizeVal);
534  }
535 
536  // Otherwise, just memset the whole thing to zero. This is legal
537  // because in LLVM, all default initializers (other than the ones we just
538  // handled above) are guaranteed to have a bit pattern of all zeros.
539  } else {
540  for (std::pair<CharUnits, CharUnits> Store : Stores) {
541  CharUnits StoreOffset = Store.first;
542  CharUnits StoreSize = Store.second;
543  llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize);
544  CGF.Builder.CreateMemSet(
545  CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset),
546  CGF.Builder.getInt8(0), StoreSizeVal);
547  }
548  }
549 }
550 
551 void
553  AggValueSlot Dest) {
554  assert(!Dest.isIgnored() && "Must have a destination!");
555  const CXXConstructorDecl *CD = E->getConstructor();
556 
557  // If we require zero initialization before (or instead of) calling the
558  // constructor, as can be the case with a non-user-provided default
559  // constructor, emit the zero initialization now, unless destination is
560  // already zeroed.
561  if (E->requiresZeroInitialization() && !Dest.isZeroed()) {
562  switch (E->getConstructionKind()) {
565  EmitNullInitialization(Dest.getAddress(), E->getType());
566  break;
570  CD->getParent());
571  break;
572  }
573  }
574 
575  // If this is a call to a trivial default constructor, do nothing.
576  if (CD->isTrivial() && CD->isDefaultConstructor())
577  return;
578 
579  // Elide the constructor if we're constructing from a temporary.
580  // The temporary check is required because Sema sets this on NRVO
581  // returns.
582  if (getLangOpts().ElideConstructors && E->isElidable()) {
583  assert(getContext().hasSameUnqualifiedType(E->getType(),
584  E->getArg(0)->getType()));
585  if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) {
586  EmitAggExpr(E->getArg(0), Dest);
587  return;
588  }
589  }
590 
591  if (const ArrayType *arrayType
592  = getContext().getAsArrayType(E->getType())) {
593  EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddress(), E,
594  Dest.isSanitizerChecked());
595  } else {
597  bool ForVirtualBase = false;
598  bool Delegating = false;
599 
600  switch (E->getConstructionKind()) {
602  // We should be emitting a constructor; GlobalDecl will assert this
603  Type = CurGD.getCtorType();
604  Delegating = true;
605  break;
606 
608  Type = Ctor_Complete;
609  break;
610 
612  ForVirtualBase = true;
613  LLVM_FALLTHROUGH;
614 
616  Type = Ctor_Base;
617  }
618 
619  // Call the constructor.
620  EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating, Dest, E);
621  }
622 }
623 
625  const Expr *Exp) {
626  if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp))
627  Exp = E->getSubExpr();
628  assert(isa<CXXConstructExpr>(Exp) &&
629  "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr");
630  const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp);
631  const CXXConstructorDecl *CD = E->getConstructor();
632  RunCleanupsScope Scope(*this);
633 
634  // If we require zero initialization before (or instead of) calling the
635  // constructor, as can be the case with a non-user-provided default
636  // constructor, emit the zero initialization now.
637  // FIXME. Do I still need this for a copy ctor synthesis?
639  EmitNullInitialization(Dest, E->getType());
640 
641  assert(!getContext().getAsConstantArrayType(E->getType())
642  && "EmitSynthesizedCXXCopyCtor - Copied-in Array");
643  EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, E);
644 }
645 
647  const CXXNewExpr *E) {
648  if (!E->isArray())
649  return CharUnits::Zero();
650 
651  // No cookie is required if the operator new[] being used is the
652  // reserved placement operator new[].
654  return CharUnits::Zero();
655 
656  return CGF.CGM.getCXXABI().GetArrayCookieSize(E);
657 }
658 
660  const CXXNewExpr *e,
661  unsigned minElements,
662  llvm::Value *&numElements,
663  llvm::Value *&sizeWithoutCookie) {
665 
666  if (!e->isArray()) {
667  CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
668  sizeWithoutCookie
669  = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity());
670  return sizeWithoutCookie;
671  }
672 
673  // The width of size_t.
674  unsigned sizeWidth = CGF.SizeTy->getBitWidth();
675 
676  // Figure out the cookie size.
677  llvm::APInt cookieSize(sizeWidth,
678  CalculateCookiePadding(CGF, e).getQuantity());
679 
680  // Emit the array size expression.
681  // We multiply the size of all dimensions for NumElements.
682  // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6.
683  numElements =
685  if (!numElements)
686  numElements = CGF.EmitScalarExpr(*e->getArraySize());
687  assert(isa<llvm::IntegerType>(numElements->getType()));
688 
689  // The number of elements can be have an arbitrary integer type;
690  // essentially, we need to multiply it by a constant factor, add a
691  // cookie size, and verify that the result is representable as a
692  // size_t. That's just a gloss, though, and it's wrong in one
693  // important way: if the count is negative, it's an error even if
694  // the cookie size would bring the total size >= 0.
695  bool isSigned
696  = (*e->getArraySize())->getType()->isSignedIntegerOrEnumerationType();
697  llvm::IntegerType *numElementsType
698  = cast<llvm::IntegerType>(numElements->getType());
699  unsigned numElementsWidth = numElementsType->getBitWidth();
700 
701  // Compute the constant factor.
702  llvm::APInt arraySizeMultiplier(sizeWidth, 1);
703  while (const ConstantArrayType *CAT
704  = CGF.getContext().getAsConstantArrayType(type)) {
705  type = CAT->getElementType();
706  arraySizeMultiplier *= CAT->getSize();
707  }
708 
709  CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
710  llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity());
711  typeSizeMultiplier *= arraySizeMultiplier;
712 
713  // This will be a size_t.
714  llvm::Value *size;
715 
716  // If someone is doing 'new int[42]' there is no need to do a dynamic check.
717  // Don't bloat the -O0 code.
718  if (llvm::ConstantInt *numElementsC =
719  dyn_cast<llvm::ConstantInt>(numElements)) {
720  const llvm::APInt &count = numElementsC->getValue();
721 
722  bool hasAnyOverflow = false;
723 
724  // If 'count' was a negative number, it's an overflow.
725  if (isSigned && count.isNegative())
726  hasAnyOverflow = true;
727 
728  // We want to do all this arithmetic in size_t. If numElements is
729  // wider than that, check whether it's already too big, and if so,
730  // overflow.
731  else if (numElementsWidth > sizeWidth &&
732  numElementsWidth - sizeWidth > count.countLeadingZeros())
733  hasAnyOverflow = true;
734 
735  // Okay, compute a count at the right width.
736  llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth);
737 
738  // If there is a brace-initializer, we cannot allocate fewer elements than
739  // there are initializers. If we do, that's treated like an overflow.
740  if (adjustedCount.ult(minElements))
741  hasAnyOverflow = true;
742 
743  // Scale numElements by that. This might overflow, but we don't
744  // care because it only overflows if allocationSize does, too, and
745  // if that overflows then we shouldn't use this.
746  numElements = llvm::ConstantInt::get(CGF.SizeTy,
747  adjustedCount * arraySizeMultiplier);
748 
749  // Compute the size before cookie, and track whether it overflowed.
750  bool overflow;
751  llvm::APInt allocationSize
752  = adjustedCount.umul_ov(typeSizeMultiplier, overflow);
753  hasAnyOverflow |= overflow;
754 
755  // Add in the cookie, and check whether it's overflowed.
756  if (cookieSize != 0) {
757  // Save the current size without a cookie. This shouldn't be
758  // used if there was overflow.
759  sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
760 
761  allocationSize = allocationSize.uadd_ov(cookieSize, overflow);
762  hasAnyOverflow |= overflow;
763  }
764 
765  // On overflow, produce a -1 so operator new will fail.
766  if (hasAnyOverflow) {
767  size = llvm::Constant::getAllOnesValue(CGF.SizeTy);
768  } else {
769  size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
770  }
771 
772  // Otherwise, we might need to use the overflow intrinsics.
773  } else {
774  // There are up to five conditions we need to test for:
775  // 1) if isSigned, we need to check whether numElements is negative;
776  // 2) if numElementsWidth > sizeWidth, we need to check whether
777  // numElements is larger than something representable in size_t;
778  // 3) if minElements > 0, we need to check whether numElements is smaller
779  // than that.
780  // 4) we need to compute
781  // sizeWithoutCookie := numElements * typeSizeMultiplier
782  // and check whether it overflows; and
783  // 5) if we need a cookie, we need to compute
784  // size := sizeWithoutCookie + cookieSize
785  // and check whether it overflows.
786 
787  llvm::Value *hasOverflow = nullptr;
788 
789  // If numElementsWidth > sizeWidth, then one way or another, we're
790  // going to have to do a comparison for (2), and this happens to
791  // take care of (1), too.
792  if (numElementsWidth > sizeWidth) {
793  llvm::APInt threshold(numElementsWidth, 1);
794  threshold <<= sizeWidth;
795 
796  llvm::Value *thresholdV
797  = llvm::ConstantInt::get(numElementsType, threshold);
798 
799  hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV);
800  numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy);
801 
802  // Otherwise, if we're signed, we want to sext up to size_t.
803  } else if (isSigned) {
804  if (numElementsWidth < sizeWidth)
805  numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy);
806 
807  // If there's a non-1 type size multiplier, then we can do the
808  // signedness check at the same time as we do the multiply
809  // because a negative number times anything will cause an
810  // unsigned overflow. Otherwise, we have to do it here. But at least
811  // in this case, we can subsume the >= minElements check.
812  if (typeSizeMultiplier == 1)
813  hasOverflow = CGF.Builder.CreateICmpSLT(numElements,
814  llvm::ConstantInt::get(CGF.SizeTy, minElements));
815 
816  // Otherwise, zext up to size_t if necessary.
817  } else if (numElementsWidth < sizeWidth) {
818  numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy);
819  }
820 
821  assert(numElements->getType() == CGF.SizeTy);
822 
823  if (minElements) {
824  // Don't allow allocation of fewer elements than we have initializers.
825  if (!hasOverflow) {
826  hasOverflow = CGF.Builder.CreateICmpULT(numElements,
827  llvm::ConstantInt::get(CGF.SizeTy, minElements));
828  } else if (numElementsWidth > sizeWidth) {
829  // The other existing overflow subsumes this check.
830  // We do an unsigned comparison, since any signed value < -1 is
831  // taken care of either above or below.
832  hasOverflow = CGF.Builder.CreateOr(hasOverflow,
833  CGF.Builder.CreateICmpULT(numElements,
834  llvm::ConstantInt::get(CGF.SizeTy, minElements)));
835  }
836  }
837 
838  size = numElements;
839 
840  // Multiply by the type size if necessary. This multiplier
841  // includes all the factors for nested arrays.
842  //
843  // This step also causes numElements to be scaled up by the
844  // nested-array factor if necessary. Overflow on this computation
845  // can be ignored because the result shouldn't be used if
846  // allocation fails.
847  if (typeSizeMultiplier != 1) {
848  llvm::Function *umul_with_overflow
849  = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy);
850 
851  llvm::Value *tsmV =
852  llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier);
853  llvm::Value *result =
854  CGF.Builder.CreateCall(umul_with_overflow, {size, tsmV});
855 
856  llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
857  if (hasOverflow)
858  hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
859  else
860  hasOverflow = overflowed;
861 
862  size = CGF.Builder.CreateExtractValue(result, 0);
863 
864  // Also scale up numElements by the array size multiplier.
865  if (arraySizeMultiplier != 1) {
866  // If the base element type size is 1, then we can re-use the
867  // multiply we just did.
868  if (typeSize.isOne()) {
869  assert(arraySizeMultiplier == typeSizeMultiplier);
870  numElements = size;
871 
872  // Otherwise we need a separate multiply.
873  } else {
874  llvm::Value *asmV =
875  llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier);
876  numElements = CGF.Builder.CreateMul(numElements, asmV);
877  }
878  }
879  } else {
880  // numElements doesn't need to be scaled.
881  assert(arraySizeMultiplier == 1);
882  }
883 
884  // Add in the cookie size if necessary.
885  if (cookieSize != 0) {
886  sizeWithoutCookie = size;
887 
888  llvm::Function *uadd_with_overflow
889  = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy);
890 
891  llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize);
892  llvm::Value *result =
893  CGF.Builder.CreateCall(uadd_with_overflow, {size, cookieSizeV});
894 
895  llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
896  if (hasOverflow)
897  hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
898  else
899  hasOverflow = overflowed;
900 
901  size = CGF.Builder.CreateExtractValue(result, 0);
902  }
903 
904  // If we had any possibility of dynamic overflow, make a select to
905  // overwrite 'size' with an all-ones value, which should cause
906  // operator new to throw.
907  if (hasOverflow)
908  size = CGF.Builder.CreateSelect(hasOverflow,
909  llvm::Constant::getAllOnesValue(CGF.SizeTy),
910  size);
911  }
912 
913  if (cookieSize == 0)
914  sizeWithoutCookie = size;
915  else
916  assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?");
917 
918  return size;
919 }
920 
921 static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init,
922  QualType AllocType, Address NewPtr,
923  AggValueSlot::Overlap_t MayOverlap) {
924  // FIXME: Refactor with EmitExprAsInit.
925  switch (CGF.getEvaluationKind(AllocType)) {
926  case TEK_Scalar:
927  CGF.EmitScalarInit(Init, nullptr,
928  CGF.MakeAddrLValue(NewPtr, AllocType), false);
929  return;
930  case TEK_Complex:
931  CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType),
932  /*isInit*/ true);
933  return;
934  case TEK_Aggregate: {
935  AggValueSlot Slot
936  = AggValueSlot::forAddr(NewPtr, AllocType.getQualifiers(),
940  MayOverlap, AggValueSlot::IsNotZeroed,
942  CGF.EmitAggExpr(Init, Slot);
943  return;
944  }
945  }
946  llvm_unreachable("bad evaluation kind");
947 }
948 
950  const CXXNewExpr *E, QualType ElementType, llvm::Type *ElementTy,
951  Address BeginPtr, llvm::Value *NumElements,
952  llvm::Value *AllocSizeWithoutCookie) {
953  // If we have a type with trivial initialization and no initializer,
954  // there's nothing to do.
955  if (!E->hasInitializer())
956  return;
957 
958  Address CurPtr = BeginPtr;
959 
960  unsigned InitListElements = 0;
961 
962  const Expr *Init = E->getInitializer();
963  Address EndOfInit = Address::invalid();
964  QualType::DestructionKind DtorKind = ElementType.isDestructedType();
966  llvm::Instruction *CleanupDominator = nullptr;
967 
968  CharUnits ElementSize = getContext().getTypeSizeInChars(ElementType);
969  CharUnits ElementAlign =
970  BeginPtr.getAlignment().alignmentOfArrayElement(ElementSize);
971 
972  // Attempt to perform zero-initialization using memset.
973  auto TryMemsetInitialization = [&]() -> bool {
974  // FIXME: If the type is a pointer-to-data-member under the Itanium ABI,
975  // we can initialize with a memset to -1.
976  if (!CGM.getTypes().isZeroInitializable(ElementType))
977  return false;
978 
979  // Optimization: since zero initialization will just set the memory
980  // to all zeroes, generate a single memset to do it in one shot.
981 
982  // Subtract out the size of any elements we've already initialized.
983  auto *RemainingSize = AllocSizeWithoutCookie;
984  if (InitListElements) {
985  // We know this can't overflow; we check this when doing the allocation.
986  auto *InitializedSize = llvm::ConstantInt::get(
987  RemainingSize->getType(),
988  getContext().getTypeSizeInChars(ElementType).getQuantity() *
989  InitListElements);
990  RemainingSize = Builder.CreateSub(RemainingSize, InitializedSize);
991  }
992 
993  // Create the memset.
994  Builder.CreateMemSet(CurPtr, Builder.getInt8(0), RemainingSize, false);
995  return true;
996  };
997 
998  // If the initializer is an initializer list, first do the explicit elements.
999  if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
1000  // Initializing from a (braced) string literal is a special case; the init
1001  // list element does not initialize a (single) array element.
1002  if (ILE->isStringLiteralInit()) {
1003  // Initialize the initial portion of length equal to that of the string
1004  // literal. The allocation must be for at least this much; we emitted a
1005  // check for that earlier.
1006  AggValueSlot Slot =
1007  AggValueSlot::forAddr(CurPtr, ElementType.getQualifiers(),
1014  EmitAggExpr(ILE->getInit(0), Slot);
1015 
1016  // Move past these elements.
1017  InitListElements =
1018  cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe())
1019  ->getSize().getZExtValue();
1020  CurPtr =
1021  Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(),
1022  Builder.getSize(InitListElements),
1023  "string.init.end"),
1024  CurPtr.getAlignment().alignmentAtOffset(InitListElements *
1025  ElementSize));
1026 
1027  // Zero out the rest, if any remain.
1028  llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
1029  if (!ConstNum || !ConstNum->equalsInt(InitListElements)) {
1030  bool OK = TryMemsetInitialization();
1031  (void)OK;
1032  assert(OK && "couldn't memset character type?");
1033  }
1034  return;
1035  }
1036 
1037  InitListElements = ILE->getNumInits();
1038 
1039  // If this is a multi-dimensional array new, we will initialize multiple
1040  // elements with each init list element.
1041  QualType AllocType = E->getAllocatedType();
1042  if (const ConstantArrayType *CAT = dyn_cast_or_null<ConstantArrayType>(
1043  AllocType->getAsArrayTypeUnsafe())) {
1044  ElementTy = ConvertTypeForMem(AllocType);
1045  CurPtr = Builder.CreateElementBitCast(CurPtr, ElementTy);
1046  InitListElements *= getContext().getConstantArrayElementCount(CAT);
1047  }
1048 
1049  // Enter a partial-destruction Cleanup if necessary.
1050  if (needsEHCleanup(DtorKind)) {
1051  // In principle we could tell the Cleanup where we are more
1052  // directly, but the control flow can get so varied here that it
1053  // would actually be quite complex. Therefore we go through an
1054  // alloca.
1055  EndOfInit = CreateTempAlloca(BeginPtr.getType(), getPointerAlign(),
1056  "array.init.end");
1057  CleanupDominator = Builder.CreateStore(BeginPtr.getPointer(), EndOfInit);
1058  pushIrregularPartialArrayCleanup(BeginPtr.getPointer(), EndOfInit,
1059  ElementType, ElementAlign,
1060  getDestroyer(DtorKind));
1061  Cleanup = EHStack.stable_begin();
1062  }
1063 
1064  CharUnits StartAlign = CurPtr.getAlignment();
1065  for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) {
1066  // Tell the cleanup that it needs to destroy up to this
1067  // element. TODO: some of these stores can be trivially
1068  // observed to be unnecessary.
1069  if (EndOfInit.isValid()) {
1070  auto FinishedPtr =
1071  Builder.CreateBitCast(CurPtr.getPointer(), BeginPtr.getType());
1072  Builder.CreateStore(FinishedPtr, EndOfInit);
1073  }
1074  // FIXME: If the last initializer is an incomplete initializer list for
1075  // an array, and we have an array filler, we can fold together the two
1076  // initialization loops.
1077  StoreAnyExprIntoOneUnit(*this, ILE->getInit(i),
1078  ILE->getInit(i)->getType(), CurPtr,
1080  CurPtr = Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(),
1081  Builder.getSize(1),
1082  "array.exp.next"),
1083  StartAlign.alignmentAtOffset((i + 1) * ElementSize));
1084  }
1085 
1086  // The remaining elements are filled with the array filler expression.
1087  Init = ILE->getArrayFiller();
1088 
1089  // Extract the initializer for the individual array elements by pulling
1090  // out the array filler from all the nested initializer lists. This avoids
1091  // generating a nested loop for the initialization.
1092  while (Init && Init->getType()->isConstantArrayType()) {
1093  auto *SubILE = dyn_cast<InitListExpr>(Init);
1094  if (!SubILE)
1095  break;
1096  assert(SubILE->getNumInits() == 0 && "explicit inits in array filler?");
1097  Init = SubILE->getArrayFiller();
1098  }
1099 
1100  // Switch back to initializing one base element at a time.
1101  CurPtr = Builder.CreateBitCast(CurPtr, BeginPtr.getType());
1102  }
1103 
1104  // If all elements have already been initialized, skip any further
1105  // initialization.
1106  llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
1107  if (ConstNum && ConstNum->getZExtValue() <= InitListElements) {
1108  // If there was a Cleanup, deactivate it.
1109  if (CleanupDominator)
1110  DeactivateCleanupBlock(Cleanup, CleanupDominator);
1111  return;
1112  }
1113 
1114  assert(Init && "have trailing elements to initialize but no initializer");
1115 
1116  // If this is a constructor call, try to optimize it out, and failing that
1117  // emit a single loop to initialize all remaining elements.
1118  if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
1119  CXXConstructorDecl *Ctor = CCE->getConstructor();
1120  if (Ctor->isTrivial()) {
1121  // If new expression did not specify value-initialization, then there
1122  // is no initialization.
1123  if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty())
1124  return;
1125 
1126  if (TryMemsetInitialization())
1127  return;
1128  }
1129 
1130  // Store the new Cleanup position for irregular Cleanups.
1131  //
1132  // FIXME: Share this cleanup with the constructor call emission rather than
1133  // having it create a cleanup of its own.
1134  if (EndOfInit.isValid())
1135  Builder.CreateStore(CurPtr.getPointer(), EndOfInit);
1136 
1137  // Emit a constructor call loop to initialize the remaining elements.
1138  if (InitListElements)
1139  NumElements = Builder.CreateSub(
1140  NumElements,
1141  llvm::ConstantInt::get(NumElements->getType(), InitListElements));
1142  EmitCXXAggrConstructorCall(Ctor, NumElements, CurPtr, CCE,
1143  /*NewPointerIsChecked*/true,
1144  CCE->requiresZeroInitialization());
1145  return;
1146  }
1147 
1148  // If this is value-initialization, we can usually use memset.
1149  ImplicitValueInitExpr IVIE(ElementType);
1150  if (isa<ImplicitValueInitExpr>(Init)) {
1151  if (TryMemsetInitialization())
1152  return;
1153 
1154  // Switch to an ImplicitValueInitExpr for the element type. This handles
1155  // only one case: multidimensional array new of pointers to members. In
1156  // all other cases, we already have an initializer for the array element.
1157  Init = &IVIE;
1158  }
1159 
1160  // At this point we should have found an initializer for the individual
1161  // elements of the array.
1162  assert(getContext().hasSameUnqualifiedType(ElementType, Init->getType()) &&
1163  "got wrong type of element to initialize");
1164 
1165  // If we have an empty initializer list, we can usually use memset.
1166  if (auto *ILE = dyn_cast<InitListExpr>(Init))
1167  if (ILE->getNumInits() == 0 && TryMemsetInitialization())
1168  return;
1169 
1170  // If we have a struct whose every field is value-initialized, we can
1171  // usually use memset.
1172  if (auto *ILE = dyn_cast<InitListExpr>(Init)) {
1173  if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
1174  if (RType->getDecl()->isStruct()) {
1175  unsigned NumElements = 0;
1176  if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RType->getDecl()))
1177  NumElements = CXXRD->getNumBases();
1178  for (auto *Field : RType->getDecl()->fields())
1179  if (!Field->isUnnamedBitfield())
1180  ++NumElements;
1181  // FIXME: Recurse into nested InitListExprs.
1182  if (ILE->getNumInits() == NumElements)
1183  for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
1184  if (!isa<ImplicitValueInitExpr>(ILE->getInit(i)))
1185  --NumElements;
1186  if (ILE->getNumInits() == NumElements && TryMemsetInitialization())
1187  return;
1188  }
1189  }
1190  }
1191 
1192  // Create the loop blocks.
1193  llvm::BasicBlock *EntryBB = Builder.GetInsertBlock();
1194  llvm::BasicBlock *LoopBB = createBasicBlock("new.loop");
1195  llvm::BasicBlock *ContBB = createBasicBlock("new.loop.end");
1196 
1197  // Find the end of the array, hoisted out of the loop.
1198  llvm::Value *EndPtr =
1199  Builder.CreateInBoundsGEP(BeginPtr.getPointer(), NumElements, "array.end");
1200 
1201  // If the number of elements isn't constant, we have to now check if there is
1202  // anything left to initialize.
1203  if (!ConstNum) {
1204  llvm::Value *IsEmpty =
1205  Builder.CreateICmpEQ(CurPtr.getPointer(), EndPtr, "array.isempty");
1206  Builder.CreateCondBr(IsEmpty, ContBB, LoopBB);
1207  }
1208 
1209  // Enter the loop.
1210  EmitBlock(LoopBB);
1211 
1212  // Set up the current-element phi.
1213  llvm::PHINode *CurPtrPhi =
1214  Builder.CreatePHI(CurPtr.getType(), 2, "array.cur");
1215  CurPtrPhi->addIncoming(CurPtr.getPointer(), EntryBB);
1216 
1217  CurPtr = Address(CurPtrPhi, ElementAlign);
1218 
1219  // Store the new Cleanup position for irregular Cleanups.
1220  if (EndOfInit.isValid())
1221  Builder.CreateStore(CurPtr.getPointer(), EndOfInit);
1222 
1223  // Enter a partial-destruction Cleanup if necessary.
1224  if (!CleanupDominator && needsEHCleanup(DtorKind)) {
1225  pushRegularPartialArrayCleanup(BeginPtr.getPointer(), CurPtr.getPointer(),
1226  ElementType, ElementAlign,
1227  getDestroyer(DtorKind));
1228  Cleanup = EHStack.stable_begin();
1229  CleanupDominator = Builder.CreateUnreachable();
1230  }
1231 
1232  // Emit the initializer into this element.
1233  StoreAnyExprIntoOneUnit(*this, Init, Init->getType(), CurPtr,
1235 
1236  // Leave the Cleanup if we entered one.
1237  if (CleanupDominator) {
1238  DeactivateCleanupBlock(Cleanup, CleanupDominator);
1239  CleanupDominator->eraseFromParent();
1240  }
1241 
1242  // Advance to the next element by adjusting the pointer type as necessary.
1243  llvm::Value *NextPtr =
1244  Builder.CreateConstInBoundsGEP1_32(ElementTy, CurPtr.getPointer(), 1,
1245  "array.next");
1246 
1247  // Check whether we've gotten to the end of the array and, if so,
1248  // exit the loop.
1249  llvm::Value *IsEnd = Builder.CreateICmpEQ(NextPtr, EndPtr, "array.atend");
1250  Builder.CreateCondBr(IsEnd, ContBB, LoopBB);
1251  CurPtrPhi->addIncoming(NextPtr, Builder.GetInsertBlock());
1252 
1253  EmitBlock(ContBB);
1254 }
1255 
1256 static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E,
1257  QualType ElementType, llvm::Type *ElementTy,
1258  Address NewPtr, llvm::Value *NumElements,
1259  llvm::Value *AllocSizeWithoutCookie) {
1260  ApplyDebugLocation DL(CGF, E);
1261  if (E->isArray())
1262  CGF.EmitNewArrayInitializer(E, ElementType, ElementTy, NewPtr, NumElements,
1263  AllocSizeWithoutCookie);
1264  else if (const Expr *Init = E->getInitializer())
1265  StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr,
1267 }
1268 
1269 /// Emit a call to an operator new or operator delete function, as implicitly
1270 /// created by new-expressions and delete-expressions.
1272  const FunctionDecl *CalleeDecl,
1273  const FunctionProtoType *CalleeType,
1274  const CallArgList &Args) {
1275  llvm::CallBase *CallOrInvoke;
1276  llvm::Constant *CalleePtr = CGF.CGM.GetAddrOfFunction(CalleeDecl);
1277  CGCallee Callee = CGCallee::forDirect(CalleePtr, GlobalDecl(CalleeDecl));
1278  RValue RV =
1280  Args, CalleeType, /*chainCall=*/false),
1281  Callee, ReturnValueSlot(), Args, &CallOrInvoke);
1282 
1283  /// C++1y [expr.new]p10:
1284  /// [In a new-expression,] an implementation is allowed to omit a call
1285  /// to a replaceable global allocation function.
1286  ///
1287  /// We model such elidable calls with the 'builtin' attribute.
1288  llvm::Function *Fn = dyn_cast<llvm::Function>(CalleePtr);
1289  if (CalleeDecl->isReplaceableGlobalAllocationFunction() &&
1290  Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) {
1291  CallOrInvoke->addAttribute(llvm::AttributeList::FunctionIndex,
1292  llvm::Attribute::Builtin);
1293  }
1294 
1295  return RV;
1296 }
1297 
1299  const CallExpr *TheCall,
1300  bool IsDelete) {
1301  CallArgList Args;
1302  EmitCallArgs(Args, Type->getParamTypes(), TheCall->arguments());
1303  // Find the allocation or deallocation function that we're calling.
1304  ASTContext &Ctx = getContext();
1305  DeclarationName Name = Ctx.DeclarationNames
1306  .getCXXOperatorName(IsDelete ? OO_Delete : OO_New);
1307 
1308  for (auto *Decl : Ctx.getTranslationUnitDecl()->lookup(Name))
1309  if (auto *FD = dyn_cast<FunctionDecl>(Decl))
1310  if (Ctx.hasSameType(FD->getType(), QualType(Type, 0)))
1311  return EmitNewDeleteCall(*this, FD, Type, Args);
1312  llvm_unreachable("predeclared global operator new/delete is missing");
1313 }
1314 
1315 namespace {
1316 /// The parameters to pass to a usual operator delete.
1317 struct UsualDeleteParams {
1318  bool DestroyingDelete = false;
1319  bool Size = false;
1320  bool Alignment = false;
1321 };
1322 }
1323 
1324 static UsualDeleteParams getUsualDeleteParams(const FunctionDecl *FD) {
1325  UsualDeleteParams Params;
1326 
1327  const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>();
1328  auto AI = FPT->param_type_begin(), AE = FPT->param_type_end();
1329 
1330  // The first argument is always a void*.
1331  ++AI;
1332 
1333  // The next parameter may be a std::destroying_delete_t.
1334  if (FD->isDestroyingOperatorDelete()) {
1335  Params.DestroyingDelete = true;
1336  assert(AI != AE);
1337  ++AI;
1338  }
1339 
1340  // Figure out what other parameters we should be implicitly passing.
1341  if (AI != AE && (*AI)->isIntegerType()) {
1342  Params.Size = true;
1343  ++AI;
1344  }
1345 
1346  if (AI != AE && (*AI)->isAlignValT()) {
1347  Params.Alignment = true;
1348  ++AI;
1349  }
1350 
1351  assert(AI == AE && "unexpected usual deallocation function parameter");
1352  return Params;
1353 }
1354 
1355 namespace {
1356  /// A cleanup to call the given 'operator delete' function upon abnormal
1357  /// exit from a new expression. Templated on a traits type that deals with
1358  /// ensuring that the arguments dominate the cleanup if necessary.
1359  template<typename Traits>
1360  class CallDeleteDuringNew final : public EHScopeStack::Cleanup {
1361  /// Type used to hold llvm::Value*s.
1362  typedef typename Traits::ValueTy ValueTy;
1363  /// Type used to hold RValues.
1364  typedef typename Traits::RValueTy RValueTy;
1365  struct PlacementArg {
1366  RValueTy ArgValue;
1367  QualType ArgType;
1368  };
1369 
1370  unsigned NumPlacementArgs : 31;
1371  unsigned PassAlignmentToPlacementDelete : 1;
1372  const FunctionDecl *OperatorDelete;
1373  ValueTy Ptr;
1374  ValueTy AllocSize;
1375  CharUnits AllocAlign;
1376 
1377  PlacementArg *getPlacementArgs() {
1378  return reinterpret_cast<PlacementArg *>(this + 1);
1379  }
1380 
1381  public:
1382  static size_t getExtraSize(size_t NumPlacementArgs) {
1383  return NumPlacementArgs * sizeof(PlacementArg);
1384  }
1385 
1386  CallDeleteDuringNew(size_t NumPlacementArgs,
1387  const FunctionDecl *OperatorDelete, ValueTy Ptr,
1388  ValueTy AllocSize, bool PassAlignmentToPlacementDelete,
1389  CharUnits AllocAlign)
1390  : NumPlacementArgs(NumPlacementArgs),
1391  PassAlignmentToPlacementDelete(PassAlignmentToPlacementDelete),
1392  OperatorDelete(OperatorDelete), Ptr(Ptr), AllocSize(AllocSize),
1393  AllocAlign(AllocAlign) {}
1394 
1395  void setPlacementArg(unsigned I, RValueTy Arg, QualType Type) {
1396  assert(I < NumPlacementArgs && "index out of range");
1397  getPlacementArgs()[I] = {Arg, Type};
1398  }
1399 
1400  void Emit(CodeGenFunction &CGF, Flags flags) override {
1401  const FunctionProtoType *FPT =
1402  OperatorDelete->getType()->getAs<FunctionProtoType>();
1403  CallArgList DeleteArgs;
1404 
1405  // The first argument is always a void* (or C* for a destroying operator
1406  // delete for class type C).
1407  DeleteArgs.add(Traits::get(CGF, Ptr), FPT->getParamType(0));
1408 
1409  // Figure out what other parameters we should be implicitly passing.
1410  UsualDeleteParams Params;
1411  if (NumPlacementArgs) {
1412  // A placement deallocation function is implicitly passed an alignment
1413  // if the placement allocation function was, but is never passed a size.
1414  Params.Alignment = PassAlignmentToPlacementDelete;
1415  } else {
1416  // For a non-placement new-expression, 'operator delete' can take a
1417  // size and/or an alignment if it has the right parameters.
1418  Params = getUsualDeleteParams(OperatorDelete);
1419  }
1420 
1421  assert(!Params.DestroyingDelete &&
1422  "should not call destroying delete in a new-expression");
1423 
1424  // The second argument can be a std::size_t (for non-placement delete).
1425  if (Params.Size)
1426  DeleteArgs.add(Traits::get(CGF, AllocSize),
1427  CGF.getContext().getSizeType());
1428 
1429  // The next (second or third) argument can be a std::align_val_t, which
1430  // is an enum whose underlying type is std::size_t.
1431  // FIXME: Use the right type as the parameter type. Note that in a call
1432  // to operator delete(size_t, ...), we may not have it available.
1433  if (Params.Alignment)
1434  DeleteArgs.add(RValue::get(llvm::ConstantInt::get(
1435  CGF.SizeTy, AllocAlign.getQuantity())),
1436  CGF.getContext().getSizeType());
1437 
1438  // Pass the rest of the arguments, which must match exactly.
1439  for (unsigned I = 0; I != NumPlacementArgs; ++I) {
1440  auto Arg = getPlacementArgs()[I];
1441  DeleteArgs.add(Traits::get(CGF, Arg.ArgValue), Arg.ArgType);
1442  }
1443 
1444  // Call 'operator delete'.
1445  EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs);
1446  }
1447  };
1448 }
1449 
1450 /// Enter a cleanup to call 'operator delete' if the initializer in a
1451 /// new-expression throws.
1453  const CXXNewExpr *E,
1454  Address NewPtr,
1455  llvm::Value *AllocSize,
1456  CharUnits AllocAlign,
1457  const CallArgList &NewArgs) {
1458  unsigned NumNonPlacementArgs = E->passAlignment() ? 2 : 1;
1459 
1460  // If we're not inside a conditional branch, then the cleanup will
1461  // dominate and we can do the easier (and more efficient) thing.
1462  if (!CGF.isInConditionalBranch()) {
1463  struct DirectCleanupTraits {
1464  typedef llvm::Value *ValueTy;
1465  typedef RValue RValueTy;
1466  static RValue get(CodeGenFunction &, ValueTy V) { return RValue::get(V); }
1467  static RValue get(CodeGenFunction &, RValueTy V) { return V; }
1468  };
1469 
1470  typedef CallDeleteDuringNew<DirectCleanupTraits> DirectCleanup;
1471 
1472  DirectCleanup *Cleanup = CGF.EHStack
1473  .pushCleanupWithExtra<DirectCleanup>(EHCleanup,
1474  E->getNumPlacementArgs(),
1475  E->getOperatorDelete(),
1476  NewPtr.getPointer(),
1477  AllocSize,
1478  E->passAlignment(),
1479  AllocAlign);
1480  for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) {
1481  auto &Arg = NewArgs[I + NumNonPlacementArgs];
1482  Cleanup->setPlacementArg(I, Arg.getRValue(CGF), Arg.Ty);
1483  }
1484 
1485  return;
1486  }
1487 
1488  // Otherwise, we need to save all this stuff.
1491  DominatingValue<RValue>::saved_type SavedAllocSize =
1492  DominatingValue<RValue>::save(CGF, RValue::get(AllocSize));
1493 
1494  struct ConditionalCleanupTraits {
1495  typedef DominatingValue<RValue>::saved_type ValueTy;
1496  typedef DominatingValue<RValue>::saved_type RValueTy;
1497  static RValue get(CodeGenFunction &CGF, ValueTy V) {
1498  return V.restore(CGF);
1499  }
1500  };
1501  typedef CallDeleteDuringNew<ConditionalCleanupTraits> ConditionalCleanup;
1502 
1503  ConditionalCleanup *Cleanup = CGF.EHStack
1504  .pushCleanupWithExtra<ConditionalCleanup>(EHCleanup,
1505  E->getNumPlacementArgs(),
1506  E->getOperatorDelete(),
1507  SavedNewPtr,
1508  SavedAllocSize,
1509  E->passAlignment(),
1510  AllocAlign);
1511  for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) {
1512  auto &Arg = NewArgs[I + NumNonPlacementArgs];
1513  Cleanup->setPlacementArg(
1514  I, DominatingValue<RValue>::save(CGF, Arg.getRValue(CGF)), Arg.Ty);
1515  }
1516 
1517  CGF.initFullExprCleanup();
1518 }
1519 
1521  // The element type being allocated.
1522  QualType allocType = getContext().getBaseElementType(E->getAllocatedType());
1523 
1524  // 1. Build a call to the allocation function.
1525  FunctionDecl *allocator = E->getOperatorNew();
1526 
1527  // If there is a brace-initializer, cannot allocate fewer elements than inits.
1528  unsigned minElements = 0;
1529  if (E->isArray() && E->hasInitializer()) {
1530  const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer());
1531  if (ILE && ILE->isStringLiteralInit())
1532  minElements =
1533  cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe())
1534  ->getSize().getZExtValue();
1535  else if (ILE)
1536  minElements = ILE->getNumInits();
1537  }
1538 
1539  llvm::Value *numElements = nullptr;
1540  llvm::Value *allocSizeWithoutCookie = nullptr;
1541  llvm::Value *allocSize =
1542  EmitCXXNewAllocSize(*this, E, minElements, numElements,
1543  allocSizeWithoutCookie);
1544  CharUnits allocAlign = getContext().getTypeAlignInChars(allocType);
1545 
1546  // Emit the allocation call. If the allocator is a global placement
1547  // operator, just "inline" it directly.
1548  Address allocation = Address::invalid();
1549  CallArgList allocatorArgs;
1550  if (allocator->isReservedGlobalPlacementOperator()) {
1551  assert(E->getNumPlacementArgs() == 1);
1552  const Expr *arg = *E->placement_arguments().begin();
1553 
1554  LValueBaseInfo BaseInfo;
1555  allocation = EmitPointerWithAlignment(arg, &BaseInfo);
1556 
1557  // The pointer expression will, in many cases, be an opaque void*.
1558  // In these cases, discard the computed alignment and use the
1559  // formal alignment of the allocated type.
1560  if (BaseInfo.getAlignmentSource() != AlignmentSource::Decl)
1561  allocation = Address(allocation.getPointer(), allocAlign);
1562 
1563  // Set up allocatorArgs for the call to operator delete if it's not
1564  // the reserved global operator.
1565  if (E->getOperatorDelete() &&
1567  allocatorArgs.add(RValue::get(allocSize), getContext().getSizeType());
1568  allocatorArgs.add(RValue::get(allocation.getPointer()), arg->getType());
1569  }
1570 
1571  } else {
1572  const FunctionProtoType *allocatorType =
1573  allocator->getType()->castAs<FunctionProtoType>();
1574  unsigned ParamsToSkip = 0;
1575 
1576  // The allocation size is the first argument.
1577  QualType sizeType = getContext().getSizeType();
1578  allocatorArgs.add(RValue::get(allocSize), sizeType);
1579  ++ParamsToSkip;
1580 
1581  if (allocSize != allocSizeWithoutCookie) {
1582  CharUnits cookieAlign = getSizeAlign(); // FIXME: Ask the ABI.
1583  allocAlign = std::max(allocAlign, cookieAlign);
1584  }
1585 
1586  // The allocation alignment may be passed as the second argument.
1587  if (E->passAlignment()) {
1588  QualType AlignValT = sizeType;
1589  if (allocatorType->getNumParams() > 1) {
1590  AlignValT = allocatorType->getParamType(1);
1591  assert(getContext().hasSameUnqualifiedType(
1592  AlignValT->castAs<EnumType>()->getDecl()->getIntegerType(),
1593  sizeType) &&
1594  "wrong type for alignment parameter");
1595  ++ParamsToSkip;
1596  } else {
1597  // Corner case, passing alignment to 'operator new(size_t, ...)'.
1598  assert(allocator->isVariadic() && "can't pass alignment to allocator");
1599  }
1600  allocatorArgs.add(
1601  RValue::get(llvm::ConstantInt::get(SizeTy, allocAlign.getQuantity())),
1602  AlignValT);
1603  }
1604 
1605  // FIXME: Why do we not pass a CalleeDecl here?
1606  EmitCallArgs(allocatorArgs, allocatorType, E->placement_arguments(),
1607  /*AC*/AbstractCallee(), /*ParamsToSkip*/ParamsToSkip);
1608 
1609  RValue RV =
1610  EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs);
1611 
1612  // If this was a call to a global replaceable allocation function that does
1613  // not take an alignment argument, the allocator is known to produce
1614  // storage that's suitably aligned for any object that fits, up to a known
1615  // threshold. Otherwise assume it's suitably aligned for the allocated type.
1616  CharUnits allocationAlign = allocAlign;
1617  if (!E->passAlignment() &&
1619  unsigned AllocatorAlign = llvm::PowerOf2Floor(std::min<uint64_t>(
1620  Target.getNewAlign(), getContext().getTypeSize(allocType)));
1621  allocationAlign = std::max(
1622  allocationAlign, getContext().toCharUnitsFromBits(AllocatorAlign));
1623  }
1624 
1625  allocation = Address(RV.getScalarVal(), allocationAlign);
1626  }
1627 
1628  // Emit a null check on the allocation result if the allocation
1629  // function is allowed to return null (because it has a non-throwing
1630  // exception spec or is the reserved placement new) and we have an
1631  // interesting initializer will be running sanitizers on the initialization.
1632  bool nullCheck = E->shouldNullCheckAllocation() &&
1633  (!allocType.isPODType(getContext()) || E->hasInitializer() ||
1634  sanitizePerformTypeCheck());
1635 
1636  llvm::BasicBlock *nullCheckBB = nullptr;
1637  llvm::BasicBlock *contBB = nullptr;
1638 
1639  // The null-check means that the initializer is conditionally
1640  // evaluated.
1641  ConditionalEvaluation conditional(*this);
1642 
1643  if (nullCheck) {
1644  conditional.begin(*this);
1645 
1646  nullCheckBB = Builder.GetInsertBlock();
1647  llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull");
1648  contBB = createBasicBlock("new.cont");
1649 
1650  llvm::Value *isNull =
1651  Builder.CreateIsNull(allocation.getPointer(), "new.isnull");
1652  Builder.CreateCondBr(isNull, contBB, notNullBB);
1653  EmitBlock(notNullBB);
1654  }
1655 
1656  // If there's an operator delete, enter a cleanup to call it if an
1657  // exception is thrown.
1658  EHScopeStack::stable_iterator operatorDeleteCleanup;
1659  llvm::Instruction *cleanupDominator = nullptr;
1660  if (E->getOperatorDelete() &&
1662  EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocAlign,
1663  allocatorArgs);
1664  operatorDeleteCleanup = EHStack.stable_begin();
1665  cleanupDominator = Builder.CreateUnreachable();
1666  }
1667 
1668  assert((allocSize == allocSizeWithoutCookie) ==
1669  CalculateCookiePadding(*this, E).isZero());
1670  if (allocSize != allocSizeWithoutCookie) {
1671  assert(E->isArray());
1672  allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation,
1673  numElements,
1674  E, allocType);
1675  }
1676 
1677  llvm::Type *elementTy = ConvertTypeForMem(allocType);
1678  Address result = Builder.CreateElementBitCast(allocation, elementTy);
1679 
1680  // Passing pointer through launder.invariant.group to avoid propagation of
1681  // vptrs information which may be included in previous type.
1682  // To not break LTO with different optimizations levels, we do it regardless
1683  // of optimization level.
1684  if (CGM.getCodeGenOpts().StrictVTablePointers &&
1685  allocator->isReservedGlobalPlacementOperator())
1686  result = Address(Builder.CreateLaunderInvariantGroup(result.getPointer()),
1687  result.getAlignment());
1688 
1689  // Emit sanitizer checks for pointer value now, so that in the case of an
1690  // array it was checked only once and not at each constructor call. We may
1691  // have already checked that the pointer is non-null.
1692  // FIXME: If we have an array cookie and a potentially-throwing allocator,
1693  // we'll null check the wrong pointer here.
1694  SanitizerSet SkippedChecks;
1695  SkippedChecks.set(SanitizerKind::Null, nullCheck);
1698  result.getPointer(), allocType, result.getAlignment(),
1699  SkippedChecks, numElements);
1700 
1701  EmitNewInitializer(*this, E, allocType, elementTy, result, numElements,
1702  allocSizeWithoutCookie);
1703  if (E->isArray()) {
1704  // NewPtr is a pointer to the base element type. If we're
1705  // allocating an array of arrays, we'll need to cast back to the
1706  // array pointer type.
1707  llvm::Type *resultType = ConvertTypeForMem(E->getType());
1708  if (result.getType() != resultType)
1709  result = Builder.CreateBitCast(result, resultType);
1710  }
1711 
1712  // Deactivate the 'operator delete' cleanup if we finished
1713  // initialization.
1714  if (operatorDeleteCleanup.isValid()) {
1715  DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator);
1716  cleanupDominator->eraseFromParent();
1717  }
1718 
1719  llvm::Value *resultPtr = result.getPointer();
1720  if (nullCheck) {
1721  conditional.end(*this);
1722 
1723  llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
1724  EmitBlock(contBB);
1725 
1726  llvm::PHINode *PHI = Builder.CreatePHI(resultPtr->getType(), 2);
1727  PHI->addIncoming(resultPtr, notNullBB);
1728  PHI->addIncoming(llvm::Constant::getNullValue(resultPtr->getType()),
1729  nullCheckBB);
1730 
1731  resultPtr = PHI;
1732  }
1733 
1734  return resultPtr;
1735 }
1736 
1738  llvm::Value *Ptr, QualType DeleteTy,
1739  llvm::Value *NumElements,
1740  CharUnits CookieSize) {
1741  assert((!NumElements && CookieSize.isZero()) ||
1742  DeleteFD->getOverloadedOperator() == OO_Array_Delete);
1743 
1744  const FunctionProtoType *DeleteFTy =
1745  DeleteFD->getType()->getAs<FunctionProtoType>();
1746 
1747  CallArgList DeleteArgs;
1748 
1749  auto Params = getUsualDeleteParams(DeleteFD);
1750  auto ParamTypeIt = DeleteFTy->param_type_begin();
1751 
1752  // Pass the pointer itself.
1753  QualType ArgTy = *ParamTypeIt++;
1754  llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy));
1755  DeleteArgs.add(RValue::get(DeletePtr), ArgTy);
1756 
1757  // Pass the std::destroying_delete tag if present.
1758  if (Params.DestroyingDelete) {
1759  QualType DDTag = *ParamTypeIt++;
1760  // Just pass an 'undef'. We expect the tag type to be an empty struct.
1761  auto *V = llvm::UndefValue::get(getTypes().ConvertType(DDTag));
1762  DeleteArgs.add(RValue::get(V), DDTag);
1763  }
1764 
1765  // Pass the size if the delete function has a size_t parameter.
1766  if (Params.Size) {
1767  QualType SizeType = *ParamTypeIt++;
1768  CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy);
1769  llvm::Value *Size = llvm::ConstantInt::get(ConvertType(SizeType),
1770  DeleteTypeSize.getQuantity());
1771 
1772  // For array new, multiply by the number of elements.
1773  if (NumElements)
1774  Size = Builder.CreateMul(Size, NumElements);
1775 
1776  // If there is a cookie, add the cookie size.
1777  if (!CookieSize.isZero())
1778  Size = Builder.CreateAdd(
1779  Size, llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity()));
1780 
1781  DeleteArgs.add(RValue::get(Size), SizeType);
1782  }
1783 
1784  // Pass the alignment if the delete function has an align_val_t parameter.
1785  if (Params.Alignment) {
1786  QualType AlignValType = *ParamTypeIt++;
1787  CharUnits DeleteTypeAlign = getContext().toCharUnitsFromBits(
1788  getContext().getTypeAlignIfKnown(DeleteTy));
1789  llvm::Value *Align = llvm::ConstantInt::get(ConvertType(AlignValType),
1790  DeleteTypeAlign.getQuantity());
1791  DeleteArgs.add(RValue::get(Align), AlignValType);
1792  }
1793 
1794  assert(ParamTypeIt == DeleteFTy->param_type_end() &&
1795  "unknown parameter to usual delete function");
1796 
1797  // Emit the call to delete.
1798  EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs);
1799 }
1800 
1801 namespace {
1802  /// Calls the given 'operator delete' on a single object.
1803  struct CallObjectDelete final : EHScopeStack::Cleanup {
1804  llvm::Value *Ptr;
1805  const FunctionDecl *OperatorDelete;
1806  QualType ElementType;
1807 
1808  CallObjectDelete(llvm::Value *Ptr,
1809  const FunctionDecl *OperatorDelete,
1810  QualType ElementType)
1811  : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {}
1812 
1813  void Emit(CodeGenFunction &CGF, Flags flags) override {
1814  CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType);
1815  }
1816  };
1817 }
1818 
1819 void
1821  llvm::Value *CompletePtr,
1822  QualType ElementType) {
1823  EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, CompletePtr,
1824  OperatorDelete, ElementType);
1825 }
1826 
1827 /// Emit the code for deleting a single object with a destroying operator
1828 /// delete. If the element type has a non-virtual destructor, Ptr has already
1829 /// been converted to the type of the parameter of 'operator delete'. Otherwise
1830 /// Ptr points to an object of the static type.
1832  const CXXDeleteExpr *DE, Address Ptr,
1833  QualType ElementType) {
1834  auto *Dtor = ElementType->getAsCXXRecordDecl()->getDestructor();
1835  if (Dtor && Dtor->isVirtual())
1836  CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType,
1837  Dtor);
1838  else
1839  CGF.EmitDeleteCall(DE->getOperatorDelete(), Ptr.getPointer(), ElementType);
1840 }
1841 
1842 /// Emit the code for deleting a single object.
1844  const CXXDeleteExpr *DE,
1845  Address Ptr,
1846  QualType ElementType) {
1847  // C++11 [expr.delete]p3:
1848  // If the static type of the object to be deleted is different from its
1849  // dynamic type, the static type shall be a base class of the dynamic type
1850  // of the object to be deleted and the static type shall have a virtual
1851  // destructor or the behavior is undefined.
1853  DE->getExprLoc(), Ptr.getPointer(),
1854  ElementType);
1855 
1856  const FunctionDecl *OperatorDelete = DE->getOperatorDelete();
1857  assert(!OperatorDelete->isDestroyingOperatorDelete());
1858 
1859  // Find the destructor for the type, if applicable. If the
1860  // destructor is virtual, we'll just emit the vcall and return.
1861  const CXXDestructorDecl *Dtor = nullptr;
1862  if (const RecordType *RT = ElementType->getAs<RecordType>()) {
1863  CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1864  if (RD->hasDefinition() && !RD->hasTrivialDestructor()) {
1865  Dtor = RD->getDestructor();
1866 
1867  if (Dtor->isVirtual()) {
1868  CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType,
1869  Dtor);
1870  return;
1871  }
1872  }
1873  }
1874 
1875  // Make sure that we call delete even if the dtor throws.
1876  // This doesn't have to a conditional cleanup because we're going
1877  // to pop it off in a second.
1878  CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup,
1879  Ptr.getPointer(),
1880  OperatorDelete, ElementType);
1881 
1882  if (Dtor)
1884  /*ForVirtualBase=*/false,
1885  /*Delegating=*/false,
1886  Ptr);
1887  else if (auto Lifetime = ElementType.getObjCLifetime()) {
1888  switch (Lifetime) {
1889  case Qualifiers::OCL_None:
1892  break;
1893 
1896  break;
1897 
1898  case Qualifiers::OCL_Weak:
1899  CGF.EmitARCDestroyWeak(Ptr);
1900  break;
1901  }
1902  }
1903 
1904  CGF.PopCleanupBlock();
1905 }
1906 
1907 namespace {
1908  /// Calls the given 'operator delete' on an array of objects.
1909  struct CallArrayDelete final : EHScopeStack::Cleanup {
1910  llvm::Value *Ptr;
1911  const FunctionDecl *OperatorDelete;
1912  llvm::Value *NumElements;
1913  QualType ElementType;
1914  CharUnits CookieSize;
1915 
1916  CallArrayDelete(llvm::Value *Ptr,
1917  const FunctionDecl *OperatorDelete,
1918  llvm::Value *NumElements,
1919  QualType ElementType,
1920  CharUnits CookieSize)
1921  : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements),
1922  ElementType(ElementType), CookieSize(CookieSize) {}
1923 
1924  void Emit(CodeGenFunction &CGF, Flags flags) override {
1925  CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType, NumElements,
1926  CookieSize);
1927  }
1928  };
1929 }
1930 
1931 /// Emit the code for deleting an array of objects.
1933  const CXXDeleteExpr *E,
1934  Address deletedPtr,
1935  QualType elementType) {
1936  llvm::Value *numElements = nullptr;
1937  llvm::Value *allocatedPtr = nullptr;
1938  CharUnits cookieSize;
1939  CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType,
1940  numElements, allocatedPtr, cookieSize);
1941 
1942  assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer");
1943 
1944  // Make sure that we call delete even if one of the dtors throws.
1945  const FunctionDecl *operatorDelete = E->getOperatorDelete();
1946  CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup,
1947  allocatedPtr, operatorDelete,
1948  numElements, elementType,
1949  cookieSize);
1950 
1951  // Destroy the elements.
1952  if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) {
1953  assert(numElements && "no element count for a type with a destructor!");
1954 
1955  CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
1956  CharUnits elementAlign =
1957  deletedPtr.getAlignment().alignmentOfArrayElement(elementSize);
1958 
1959  llvm::Value *arrayBegin = deletedPtr.getPointer();
1960  llvm::Value *arrayEnd =
1961  CGF.Builder.CreateInBoundsGEP(arrayBegin, numElements, "delete.end");
1962 
1963  // Note that it is legal to allocate a zero-length array, and we
1964  // can never fold the check away because the length should always
1965  // come from a cookie.
1966  CGF.emitArrayDestroy(arrayBegin, arrayEnd, elementType, elementAlign,
1967  CGF.getDestroyer(dtorKind),
1968  /*checkZeroLength*/ true,
1969  CGF.needsEHCleanup(dtorKind));
1970  }
1971 
1972  // Pop the cleanup block.
1973  CGF.PopCleanupBlock();
1974 }
1975 
1977  const Expr *Arg = E->getArgument();
1978  Address Ptr = EmitPointerWithAlignment(Arg);
1979 
1980  // Null check the pointer.
1981  llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull");
1982  llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end");
1983 
1984  llvm::Value *IsNull = Builder.CreateIsNull(Ptr.getPointer(), "isnull");
1985 
1986  Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull);
1987  EmitBlock(DeleteNotNull);
1988 
1989  QualType DeleteTy = E->getDestroyedType();
1990 
1991  // A destroying operator delete overrides the entire operation of the
1992  // delete expression.
1994  EmitDestroyingObjectDelete(*this, E, Ptr, DeleteTy);
1995  EmitBlock(DeleteEnd);
1996  return;
1997  }
1998 
1999  // We might be deleting a pointer to array. If so, GEP down to the
2000  // first non-array element.
2001  // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*)
2002  if (DeleteTy->isConstantArrayType()) {
2003  llvm::Value *Zero = Builder.getInt32(0);
2005 
2006  GEP.push_back(Zero); // point at the outermost array
2007 
2008  // For each layer of array type we're pointing at:
2009  while (const ConstantArrayType *Arr
2010  = getContext().getAsConstantArrayType(DeleteTy)) {
2011  // 1. Unpeel the array type.
2012  DeleteTy = Arr->getElementType();
2013 
2014  // 2. GEP to the first element of the array.
2015  GEP.push_back(Zero);
2016  }
2017 
2018  Ptr = Address(Builder.CreateInBoundsGEP(Ptr.getPointer(), GEP, "del.first"),
2019  Ptr.getAlignment());
2020  }
2021 
2022  assert(ConvertTypeForMem(DeleteTy) == Ptr.getElementType());
2023 
2024  if (E->isArrayForm()) {
2025  EmitArrayDelete(*this, E, Ptr, DeleteTy);
2026  } else {
2027  EmitObjectDelete(*this, E, Ptr, DeleteTy);
2028  }
2029 
2030  EmitBlock(DeleteEnd);
2031 }
2032 
2033 static bool isGLValueFromPointerDeref(const Expr *E) {
2034  E = E->IgnoreParens();
2035 
2036  if (const auto *CE = dyn_cast<CastExpr>(E)) {
2037  if (!CE->getSubExpr()->isGLValue())
2038  return false;
2039  return isGLValueFromPointerDeref(CE->getSubExpr());
2040  }
2041 
2042  if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E))
2043  return isGLValueFromPointerDeref(OVE->getSourceExpr());
2044 
2045  if (const auto *BO = dyn_cast<BinaryOperator>(E))
2046  if (BO->getOpcode() == BO_Comma)
2047  return isGLValueFromPointerDeref(BO->getRHS());
2048 
2049  if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(E))
2050  return isGLValueFromPointerDeref(ACO->getTrueExpr()) ||
2051  isGLValueFromPointerDeref(ACO->getFalseExpr());
2052 
2053  // C++11 [expr.sub]p1:
2054  // The expression E1[E2] is identical (by definition) to *((E1)+(E2))
2055  if (isa<ArraySubscriptExpr>(E))
2056  return true;
2057 
2058  if (const auto *UO = dyn_cast<UnaryOperator>(E))
2059  if (UO->getOpcode() == UO_Deref)
2060  return true;
2061 
2062  return false;
2063 }
2064 
2066  llvm::Type *StdTypeInfoPtrTy) {
2067  // Get the vtable pointer.
2068  Address ThisPtr = CGF.EmitLValue(E).getAddress();
2069 
2070  QualType SrcRecordTy = E->getType();
2071 
2072  // C++ [class.cdtor]p4:
2073  // If the operand of typeid refers to the object under construction or
2074  // destruction and the static type of the operand is neither the constructor
2075  // or destructor’s class nor one of its bases, the behavior is undefined.
2077  ThisPtr.getPointer(), SrcRecordTy);
2078 
2079  // C++ [expr.typeid]p2:
2080  // If the glvalue expression is obtained by applying the unary * operator to
2081  // a pointer and the pointer is a null pointer value, the typeid expression
2082  // throws the std::bad_typeid exception.
2083  //
2084  // However, this paragraph's intent is not clear. We choose a very generous
2085  // interpretation which implores us to consider comma operators, conditional
2086  // operators, parentheses and other such constructs.
2088  isGLValueFromPointerDeref(E), SrcRecordTy)) {
2089  llvm::BasicBlock *BadTypeidBlock =
2090  CGF.createBasicBlock("typeid.bad_typeid");
2091  llvm::BasicBlock *EndBlock = CGF.createBasicBlock("typeid.end");
2092 
2093  llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr.getPointer());
2094  CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock);
2095 
2096  CGF.EmitBlock(BadTypeidBlock);
2097  CGF.CGM.getCXXABI().EmitBadTypeidCall(CGF);
2098  CGF.EmitBlock(EndBlock);
2099  }
2100 
2101  return CGF.CGM.getCXXABI().EmitTypeid(CGF, SrcRecordTy, ThisPtr,
2102  StdTypeInfoPtrTy);
2103 }
2104 
2106  llvm::Type *StdTypeInfoPtrTy =
2107  ConvertType(E->getType())->getPointerTo();
2108 
2109  if (E->isTypeOperand()) {
2110  llvm::Constant *TypeInfo =
2111  CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand(getContext()));
2112  return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy);
2113  }
2114 
2115  // C++ [expr.typeid]p2:
2116  // When typeid is applied to a glvalue expression whose type is a
2117  // polymorphic class type, the result refers to a std::type_info object
2118  // representing the type of the most derived object (that is, the dynamic
2119  // type) to which the glvalue refers.
2120  if (E->isPotentiallyEvaluated())
2121  return EmitTypeidFromVTable(*this, E->getExprOperand(),
2122  StdTypeInfoPtrTy);
2123 
2124  QualType OperandTy = E->getExprOperand()->getType();
2125  return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy),
2126  StdTypeInfoPtrTy);
2127 }
2128 
2130  QualType DestTy) {
2131  llvm::Type *DestLTy = CGF.ConvertType(DestTy);
2132  if (DestTy->isPointerType())
2133  return llvm::Constant::getNullValue(DestLTy);
2134 
2135  /// C++ [expr.dynamic.cast]p9:
2136  /// A failed cast to reference type throws std::bad_cast
2137  if (!CGF.CGM.getCXXABI().EmitBadCastCall(CGF))
2138  return nullptr;
2139 
2140  CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end"));
2141  return llvm::UndefValue::get(DestLTy);
2142 }
2143 
2145  const CXXDynamicCastExpr *DCE) {
2146  CGM.EmitExplicitCastExprType(DCE, this);
2147  QualType DestTy = DCE->getTypeAsWritten();
2148 
2149  QualType SrcTy = DCE->getSubExpr()->getType();
2150 
2151  // C++ [expr.dynamic.cast]p7:
2152  // If T is "pointer to cv void," then the result is a pointer to the most
2153  // derived object pointed to by v.
2154  const PointerType *DestPTy = DestTy->getAs<PointerType>();
2155 
2156  bool isDynamicCastToVoid;
2157  QualType SrcRecordTy;
2158  QualType DestRecordTy;
2159  if (DestPTy) {
2160  isDynamicCastToVoid = DestPTy->getPointeeType()->isVoidType();
2161  SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType();
2162  DestRecordTy = DestPTy->getPointeeType();
2163  } else {
2164  isDynamicCastToVoid = false;
2165  SrcRecordTy = SrcTy;
2166  DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType();
2167  }
2168 
2169  // C++ [class.cdtor]p5:
2170  // If the operand of the dynamic_cast refers to the object under
2171  // construction or destruction and the static type of the operand is not a
2172  // pointer to or object of the constructor or destructor’s own class or one
2173  // of its bases, the dynamic_cast results in undefined behavior.
2174  EmitTypeCheck(TCK_DynamicOperation, DCE->getExprLoc(), ThisAddr.getPointer(),
2175  SrcRecordTy);
2176 
2177  if (DCE->isAlwaysNull())
2178  if (llvm::Value *T = EmitDynamicCastToNull(*this, DestTy))
2179  return T;
2180 
2181  assert(SrcRecordTy->isRecordType() && "source type must be a record type!");
2182 
2183  // C++ [expr.dynamic.cast]p4:
2184  // If the value of v is a null pointer value in the pointer case, the result
2185  // is the null pointer value of type T.
2186  bool ShouldNullCheckSrcValue =
2187  CGM.getCXXABI().shouldDynamicCastCallBeNullChecked(SrcTy->isPointerType(),
2188  SrcRecordTy);
2189 
2190  llvm::BasicBlock *CastNull = nullptr;
2191  llvm::BasicBlock *CastNotNull = nullptr;
2192  llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end");
2193 
2194  if (ShouldNullCheckSrcValue) {
2195  CastNull = createBasicBlock("dynamic_cast.null");
2196  CastNotNull = createBasicBlock("dynamic_cast.notnull");
2197 
2198  llvm::Value *IsNull = Builder.CreateIsNull(ThisAddr.getPointer());
2199  Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
2200  EmitBlock(CastNotNull);
2201  }
2202 
2203  llvm::Value *Value;
2204  if (isDynamicCastToVoid) {
2205  Value = CGM.getCXXABI().EmitDynamicCastToVoid(*this, ThisAddr, SrcRecordTy,
2206  DestTy);
2207  } else {
2208  assert(DestRecordTy->isRecordType() &&
2209  "destination type must be a record type!");
2210  Value = CGM.getCXXABI().EmitDynamicCastCall(*this, ThisAddr, SrcRecordTy,
2211  DestTy, DestRecordTy, CastEnd);
2212  CastNotNull = Builder.GetInsertBlock();
2213  }
2214 
2215  if (ShouldNullCheckSrcValue) {
2216  EmitBranch(CastEnd);
2217 
2218  EmitBlock(CastNull);
2219  EmitBranch(CastEnd);
2220  }
2221 
2222  EmitBlock(CastEnd);
2223 
2224  if (ShouldNullCheckSrcValue) {
2225  llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
2226  PHI->addIncoming(Value, CastNotNull);
2227  PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull);
2228 
2229  Value = PHI;
2230  }
2231 
2232  return Value;
2233 }
A call to an overloaded operator written using operator syntax.
Definition: ExprCXX.h:77
ReturnValueSlot - Contains the address where the return value of a function can be stored...
Definition: CGCall.h:363
virtual void EmitBadTypeidCall(CodeGenFunction &CGF)=0
CanQualType DeriveThisType(const CXXRecordDecl *RD, const CXXMethodDecl *MD)
Derives the &#39;this&#39; type for codegen purposes, i.e.
Definition: CGCall.cpp:73
Represents a function declaration or definition.
Definition: Decl.h:1743
bool isReservedGlobalPlacementOperator() const
Determines whether this operator new or delete is one of the reserved global placement operators: voi...
Definition: Decl.cpp:2851
Address getAddress() const
Definition: CGValue.h:582
Complete object ctor.
Definition: ABI.h:25
PointerType - C99 6.7.5.1 - Pointer Declarators.
Definition: Type.h:2549
QualType getPointeeType() const
Definition: Type.h:2562
llvm::iterator_range< arg_iterator > placement_arguments()
Definition: ExprCXX.h:2218
Destroyer * getDestroyer(QualType::DestructionKind destructionKind)
Definition: CGDecl.cpp:1999
A (possibly-)qualified type.
Definition: Type.h:639
static RValue EmitNewDeleteCall(CodeGenFunction &CGF, const FunctionDecl *CalleeDecl, const FunctionProtoType *CalleeType, const CallArgList &Args)
Emit a call to an operator new or operator delete function, as implicitly created by new-expressions ...
Definition: CGExprCXX.cpp:1271
bool isPODType(const ASTContext &Context) const
Determine whether this is a Plain Old Data (POD) type (C++ 3.9p10).
Definition: Type.cpp:2132
static CGCallee BuildAppleKextVirtualCall(CodeGenFunction &CGF, GlobalDecl GD, llvm::Type *Ty, const CXXRecordDecl *RD)
Definition: CGCXX.cpp:246
ValueDecl * getMemberDecl() const
Retrieve the member declaration to which this expression refers.
Definition: Expr.h:2823
Expr * getArg(unsigned Arg)
getArg - Return the specified argument.
Definition: Expr.h:2598
void EmitARCDestroyWeak(Address addr)
void @objc_destroyWeak(i8** addr) Essentially objc_storeWeak(addr, nil).
Definition: CGObjC.cpp:2414
const ASTRecordLayout & getASTRecordLayout(const RecordDecl *D) const
Get or compute information about the layout of the specified record (struct/union/class) D...
void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType, llvm::Type *ElementTy, Address NewPtr, llvm::Value *NumElements, llvm::Value *AllocSizeWithoutCookie)
Definition: CGExprCXX.cpp:949
QualType getPointeeType() const
If this is a pointer, ObjC object pointer, or block pointer, this returns the respective pointee...
Definition: Type.cpp:505
virtual bool shouldTypeidBeNullChecked(bool IsDeref, QualType SrcRecordTy)=0
Checking the &#39;this&#39; pointer for a constructor call.
bool isRecordType() const
Definition: Type.h:6418
Expr * getBase() const
Definition: Expr.h:2817
Decl - This represents one declaration (or definition), e.g.
Definition: DeclBase.h:88
bool isVirtual() const
Definition: DeclCXX.h:2153
FunctionDecl * getOperatorNew() const
Definition: ExprCXX.h:2131
Opcode getOpcode() const
Definition: Expr.h:3367
bool hasQualifier() const
Determines whether this member expression actually had a C++ nested-name-specifier prior to the name ...
Definition: Expr.h:2837
The base class of the type hierarchy.
Definition: Type.h:1414
bool requiresZeroInitialization() const
Whether this construction first requires zero-initialization before the initializer is called...
Definition: ExprCXX.h:1449
void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit)
EmitComplexExprIntoLValue - Emit the given expression of complex type and place its result into the s...
Represents an array type, per C99 6.7.5.2 - Array Declarators.
Definition: Type.h:2824
Represents a call to a C++ constructor.
Definition: ExprCXX.h:1338
RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E, ReturnValueSlot ReturnValue)
Definition: CGExprCXX.cpp:164
bool isZero() const
isZero - Test whether the quantity equals zero.
Definition: CharUnits.h:115
The l-value was an access to a declared entity or something equivalently strong, like the address of ...
llvm::IntegerType * Int8Ty
i8, i16, i32, and i64
Represents a C++ constructor within a class.
Definition: DeclCXX.h:2562
Expr * ignoreParenBaseCasts() LLVM_READONLY
Skip past any parentheses and derived-to-base casts until reaching a fixed point. ...
Definition: Expr.cpp:2831
static llvm::Value * EmitCXXNewAllocSize(CodeGenFunction &CGF, const CXXNewExpr *e, unsigned minElements, llvm::Value *&numElements, llvm::Value *&sizeWithoutCookie)
Definition: CGExprCXX.cpp:659
static saved_type save(CodeGenFunction &CGF, type value)
Definition: EHScopeStack.h:59
QualType getReturnType() const
Definition: Decl.h:2316
unsigned getNumParams() const
Definition: Type.h:3900
const T * getAs() const
Member-template getAs<specific type>&#39;.
Definition: Type.h:6805
const void * Store
Store - This opaque type encapsulates an immutable mapping from locations to values.
Definition: StoreRef.h:27
IsZeroed_t isZeroed() const
Definition: CGValue.h:615
Address CreateConstInBoundsByteGEP(Address Addr, CharUnits Offset, const llvm::Twine &Name="")
Given a pointer to i8, adjust it by a given constant offset.
Definition: CGBuilder.h:244
llvm::Value * getPointer() const
Definition: Address.h:37
unsigned getNumPlacementArgs() const
Definition: ExprCXX.h:2149
static MemberCallInfo commonEmitCXXMemberOrOperatorCall(CodeGenFunction &CGF, const CXXMethodDecl *MD, llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *CE, CallArgList &Args, CallArgList *RtlArgs)
Definition: CGExprCXX.cpp:35
RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, ReturnValueSlot ReturnValue)
Definition: CGExprCXX.cpp:459
bool hasDefinition() const
Definition: DeclCXX.h:775
Expr * getExprOperand() const
Definition: ExprCXX.h:737
Represents an expression – generally a full-expression – that introduces cleanups to be run at the ...
Definition: ExprCXX.h:3219
RValue EmitCXXMemberOrOperatorCall(const CXXMethodDecl *Method, const CGCallee &Callee, ReturnValueSlot ReturnValue, llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *E, CallArgList *RtlArgs)
Definition: CGExprCXX.cpp:77
The collection of all-type qualifiers we support.
Definition: Type.h:137
void add(RValue rvalue, QualType type)
Definition: CGCall.h:287
bool mayInsertExtraPadding(bool EmitRemark=false) const
Whether we are allowed to insert extra padding between fields.
Definition: Decl.cpp:4290
bool isMoveAssignmentOperator() const
Determine whether this is a move assignment operator.
Definition: DeclCXX.cpp:2193
bool isEmpty() const
Determine whether this is an empty class in the sense of (C++11 [meta.unary.prop]).
Definition: DeclCXX.h:1329
An object to manage conditionally-evaluated expressions.
llvm::Value * EmitCXXNewExpr(const CXXNewExpr *E)
Definition: CGExprCXX.cpp:1520
Address getAddress() const
Definition: CGValue.h:326
CodeGenFunction - This class organizes the per-function state that is used while generating LLVM code...
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition: ASTContext.h:154
ArrayRef< QualType > getParamTypes() const
Definition: Type.h:3907
llvm::Value * EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE)
Definition: CGExprCXX.cpp:2144
static llvm::Value * EmitTypeidFromVTable(CodeGenFunction &CGF, const Expr *E, llvm::Type *StdTypeInfoPtrTy)
Definition: CGExprCXX.cpp:2065
Denotes a cleanup that should run when a scope is exited using exceptional control flow (a throw stat...
Definition: EHScopeStack.h:80
QualType getDestroyedType() const
Retrieve the type being destroyed.
Definition: ExprCXX.cpp:292
static AggValueSlot forAddr(Address addr, Qualifiers quals, IsDestructed_t isDestructed, NeedsGCBarriers_t needsGC, IsAliased_t isAliased, Overlap_t mayOverlap, IsZeroed_t isZeroed=IsNotZeroed, IsSanitizerChecked_t isChecked=IsNotSanitizerChecked)
forAddr - Make a slot for an aggregate value.
Definition: CGValue.h:513
static CharUnits Zero()
Zero - Construct a CharUnits quantity of zero.
Definition: CharUnits.h:52
A metaprogramming class for ensuring that a value will dominate an arbitrary position in a function...
Definition: EHScopeStack.h:65
Expr * getSubExpr()
Definition: Expr.h:3100
bool isReplaceableGlobalAllocationFunction(bool *IsAligned=nullptr) const
Determines whether this function is one of the replaceable global allocation functions: void *operato...
Definition: Decl.cpp:2874
Describes an C or C++ initializer list.
Definition: Expr.h:4298
A C++ typeid expression (C++ [expr.typeid]), which gets the type_info that corresponds to the supplie...
Definition: ExprCXX.h:680
Optional< Expr * > getArraySize()
Definition: ExprCXX.h:2138
FunctionDecl * getOperatorDelete() const
Definition: ExprCXX.h:2312
Base object ctor.
Definition: ABI.h:26
bool isElidable() const
Whether this construction is elidable.
Definition: ExprCXX.h:1416
Address CreateElementBitCast(Address Addr, llvm::Type *Ty, const llvm::Twine &Name="")
Cast the element type of the given address to a different type, preserving information like the align...
Definition: CGBuilder.h:156
CharUnits - This is an opaque type for sizes expressed in character units.
Definition: CharUnits.h:37
void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise)
Destroy a __strong variable.
Definition: CGObjC.cpp:2240
const ArrayType * getAsArrayTypeUnsafe() const
A variant of getAs<> for array types which silently discards qualifiers from the outermost type...
Definition: Type.h:6856
bool isOne() const
isOne - Test whether the quantity equals one.
Definition: CharUnits.h:118
Expr * getInitializer()
The initializer of this new-expression.
Definition: ExprCXX.h:2188
CharUnits getAlignment() const
Return the alignment of this pointer.
Definition: Address.h:66
A builtin binary operation expression such as "x + y" or "x <= y".
Definition: Expr.h:3332
bool isVolatileQualified() const
Determine whether this type is volatile-qualified.
Definition: Type.h:6191
Checking the operand of a dynamic_cast or a typeid expression.
bool needsEHCleanup(QualType::DestructionKind kind)
Determines whether an EH cleanup is required to destroy a type with the given destruction kind...
llvm::CallInst * CreateMemCpy(Address Dest, Address Src, llvm::Value *Size, bool IsVolatile=false)
Definition: CGBuilder.h:274
const Type * getClass() const
Definition: Type.h:2802
bool isArrow() const
Definition: Expr.h:2924
Scope - A scope is a transient data structure that is used while parsing the program.
Definition: Scope.h:40
void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr, QualType DeleteTy, llvm::Value *NumElements=nullptr, CharUnits CookieSize=CharUnits())
Definition: CGExprCXX.cpp:1737
param_type_iterator param_type_begin() const
Definition: Type.h:4046
llvm::BasicBlock * createBasicBlock(const Twine &name="", llvm::Function *parent=nullptr, llvm::BasicBlock *before=nullptr)
createBasicBlock - Create an LLVM basic block.
static void EmitNullBaseClassInitialization(CodeGenFunction &CGF, Address DestPtr, const CXXRecordDecl *Base)
Definition: CGExprCXX.cpp:464
bool hasTrivialDestructor() const
Determine whether this class has a trivial destructor (C++ [class.dtor]p3)
Definition: DeclCXX.h:1488
bool isInstance() const
Definition: DeclCXX.h:2136
CXXDestructorDecl * getDestructor() const
Returns the destructor decl for this class.
Definition: DeclCXX.cpp:1724
CXXMethodDecl * getCorrespondingMethodInClass(const CXXRecordDecl *RD, bool MayBeBase=false)
Find the method in RD that corresponds to this one.
Definition: DeclCXX.cpp:1980
bool isNegative() const
isNegative - Test whether the quantity is less than zero.
Definition: CharUnits.h:124
This object can be modified without requiring retains or releases.
Definition: Type.h:158
arg_iterator arg_end()
Definition: Expr.h:2643
Checking the &#39;this&#39; pointer for a call to a non-static member function.
TypeSourceInfo * getAllocatedTypeSourceInfo() const
Definition: ExprCXX.h:2110
lookup_result lookup(DeclarationName Name) const
lookup - Find the declarations (if any) with the given Name in this context.
Definition: DeclBase.cpp:1598
bool isArrayForm() const
Definition: ExprCXX.h:2299
QualType getTypeAsWritten() const
getTypeAsWritten - Returns the type that this expression is casting to, as written in the source code...
Definition: Expr.h:3258
bool isValid() const
Definition: Address.h:35
void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest)
Definition: CGExprCXX.cpp:552
Represents a C++ pseudo-destructor (C++ [expr.pseudo]).
Definition: ExprCXX.h:2392
void addFrom(const CallArgList &other)
Add all the arguments from another CallArgList to this one.
Definition: CGCall.h:296
CXXRecordDecl * getAsCXXRecordDecl() const
Retrieves the CXXRecordDecl that this type refers to, either because the type is a RecordType or beca...
Definition: Type.cpp:1636
Represents a prototype with parameter type info, e.g.
Definition: Type.h:3699
bool isDynamicClass() const
Definition: DeclCXX.h:788
virtual CharUnits GetArrayCookieSize(const CXXNewExpr *expr)
Returns the extra size required in order to store the array cookie for the given new-expression.
Definition: CGCXXABI.cpp:161
OverloadedOperatorKind getOverloadedOperator() const
getOverloadedOperator - Which C++ overloaded operator this function represents, if any...
Definition: Decl.cpp:3362
CXXConstructorDecl * getConstructor() const
Get the constructor that this expression will (ultimately) call.
Definition: ExprCXX.h:1410
NestedNameSpecifier * getQualifier() const
If the member name was qualified, retrieves the nested-name-specifier that precedes the member name...
Definition: Expr.h:2851
RValue - This trivial value class is used to represent the result of an expression that is evaluated...
Definition: CGValue.h:38
QuantityType getQuantity() const
getQuantity - Get the raw integer representation of this quantity.
Definition: CharUnits.h:178
ASTRecordLayout - This class contains layout information for one RecordDecl, which is a struct/union/...
Definition: RecordLayout.h:38
static TypeEvaluationKind getEvaluationKind(QualType T)
getEvaluationKind - Return the TypeEvaluationKind of QualType T.
SourceLocation getBeginLoc() const
Get the begin source location.
Definition: TypeLoc.cpp:189
This represents one expression.
Definition: Expr.h:108
bool isVariadic() const
Whether this function is variadic.
Definition: Decl.cpp:2745
bool isDefaulted() const
Whether this function is defaulted per C++0x.
Definition: Decl.h:2048
static Address invalid()
Definition: Address.h:34
static void EnterNewDeleteCleanup(CodeGenFunction &CGF, const CXXNewExpr *E, Address NewPtr, llvm::Value *AllocSize, CharUnits AllocAlign, const CallArgList &NewArgs)
Enter a cleanup to call &#39;operator delete&#39; if the initializer in a new-expression throws.
Definition: CGExprCXX.cpp:1452
virtual void ReadArrayCookie(CodeGenFunction &CGF, Address Ptr, const CXXDeleteExpr *expr, QualType ElementType, llvm::Value *&NumElements, llvm::Value *&AllocPtr, CharUnits &CookieSize)
Reads the array cookie associated with the given pointer, if it has one.
Definition: CGCXXABI.cpp:201
Enters a new scope for capturing cleanups, all of which will be executed once the scope is exited...
RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E)
Definition: CGExprCXX.cpp:103
void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete, llvm::Value *CompletePtr, QualType ElementType)
Definition: CGExprCXX.cpp:1820
void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo, llvm::iterator_range< CallExpr::const_arg_iterator > ArgRange, AbstractCallee AC=AbstractCallee(), unsigned ParamsToSkip=0, EvaluationOrder Order=EvaluationOrder::Default)
EmitCallArgs - Emit call arguments for a function.
const T * castAs() const
Member-template castAs<specific type>.
Definition: Type.h:6870
static CGCallee forDirect(llvm::Constant *functionPtr, const CGCalleeInfo &abstractInfo=CGCalleeInfo())
Definition: CGCall.h:133
SourceLocation getExprLoc() const LLVM_READONLY
Definition: ExprCXX.h:204
#define V(N, I)
Definition: ASTContext.h:2906
Represents a C++ destructor within a class.
Definition: DeclCXX.h:2826
Expr * getCallee()
Definition: Expr.h:2559
bool isSanitizerChecked() const
Definition: CGValue.h:602
unsigned getNumInits() const
Definition: Expr.h:4328
bool isArrow() const
Determine whether this pseudo-destructor expression was written using an &#39;->&#39; (otherwise, it used a &#39;.
Definition: ExprCXX.h:2455
llvm::PointerType * getType() const
Return the type of the pointer value.
Definition: Address.h:43
virtual bool EmitBadCastCall(CodeGenFunction &CGF)=0
FunctionDecl * getDirectCallee()
If the callee is a FunctionDecl, return it. Otherwise return null.
Definition: Expr.h:2577
const AstTypeMatcher< ArrayType > arrayType
Matches all kinds of arrays.
A class for recording the number of arguments that a function signature requires. ...
bool isTemporaryObject(ASTContext &Ctx, const CXXRecordDecl *TempTy) const
Determine whether the result of this expression is a temporary object of the given class type...
Definition: Expr.cpp:2881
QualType getType() const
Definition: Expr.h:137
RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue, bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow, const Expr *Base)
Definition: CGExprCXX.cpp:191
void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V, QualType Type, CharUnits Alignment=CharUnits::Zero(), SanitizerSet SkippedChecks=SanitizerSet(), llvm::Value *ArraySize=nullptr)
Emit a check that V is the address of storage of the appropriate size and alignment for an object of ...
Definition: CGExpr.cpp:652
CharUnits alignmentOfArrayElement(CharUnits elementSize) const
Given that this is the alignment of the first element of an array, return the minimum alignment of an...
Definition: CharUnits.h:196
bool hasInitializer() const
Whether this new-expression has any initializer at all.
Definition: ExprCXX.h:2175
QualType getRecordType(const RecordDecl *Decl) const
static void EmitObjectDelete(CodeGenFunction &CGF, const CXXDeleteExpr *DE, Address Ptr, QualType ElementType)
Emit the code for deleting a single object.
Definition: CGExprCXX.cpp:1843
llvm::CallInst * CreateMemSet(Address Dest, llvm::Value *Value, llvm::Value *Size, bool IsVolatile=false)
Definition: CGBuilder.h:296
llvm::Value * EmitCastToVoidPtr(llvm::Value *value)
Emit a cast to void* in the appropriate address space.
Definition: CGExpr.cpp:49
QualType getTypeOperand(ASTContext &Context) const
Retrieves the type operand of this typeid() expression after various required adjustments (removing r...
Definition: ExprCXX.cpp:76
void emitArrayDestroy(llvm::Value *begin, llvm::Value *end, QualType elementType, CharUnits elementAlign, Destroyer *destroyer, bool checkZeroLength, bool useEHCleanup)
emitArrayDestroy - Destroys all the elements of the given array, beginning from last to first...
Definition: CGDecl.cpp:2113
bool isTrivial() const
Whether this function is "trivial" in some specialized C++ senses.
Definition: Decl.h:2040
QualType getDestroyedType() const
Retrieve the type being destroyed.
Definition: ExprCXX.cpp:224
GlobalDecl - represents a global declaration.
Definition: GlobalDecl.h:40
The l-value was considered opaque, so the alignment was determined from a type.
RecordDecl * getDecl() const
Definition: Type.h:4427
Expr * getArgument()
Definition: ExprCXX.h:2314
bool isAlignValT() const
Definition: Type.cpp:2524
There is no lifetime qualification on this type.
Definition: Type.h:154
A C++ dynamic_cast expression (C++ [expr.dynamic.cast]).
Definition: ExprCXX.h:361
void set(SanitizerMask K, bool Value)
Enable or disable a certain (single) sanitizer.
Definition: Sanitizers.h:161
Assigning into this object requires the old value to be released and the new value to be retained...
Definition: Type.h:165
QualType getCanonicalType() const
Definition: Type.h:6160
void initFullExprCleanup()
Set up the last cleanup that was pushed as a conditional full-expression cleanup. ...
llvm::Value * EmitCXXTypeidExpr(const CXXTypeidExpr *E)
Definition: CGExprCXX.cpp:2105
Encodes a location in the source.
A helper class that allows the use of isa/cast/dyncast to detect TagType objects of enums...
Definition: Type.h:4443
virtual llvm::Value * EmitTypeid(CodeGenFunction &CGF, QualType SrcRecordTy, Address ThisPtr, llvm::Type *StdTypeInfoPtrTy)=0
A saved depth on the scope stack.
Definition: EHScopeStack.h:106
RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, ReturnValueSlot ReturnValue, const CallArgList &Args, llvm::CallBase **callOrInvoke, SourceLocation Loc)
EmitCall - Generate a call of the given function, expecting the given result type, and using the given argument list which specifies both the LLVM arguments and the types they were derived from.
Definition: CGCall.cpp:3776
bool shouldNullCheckAllocation() const
True if the allocation result needs to be null-checked.
Definition: ExprCXX.cpp:215
static CXXRecordDecl * getCXXRecord(const Expr *E)
Definition: CGExprCXX.cpp:154
Represents a new-expression for memory allocation and constructor calls, e.g: "new CXXNewExpr(foo)"...
Definition: ExprCXX.h:2012
Represents a call to a member function that may be written either with member call syntax (e...
Definition: ExprCXX.h:170
const Decl * getDecl() const
Definition: GlobalDecl.h:76
An aggregate value slot.
Definition: CGValue.h:436
A scoped helper to set the current debug location to the specified location or preferred location of ...
Definition: CGDebugInfo.h:697
static void EmitArrayDelete(CodeGenFunction &CGF, const CXXDeleteExpr *E, Address deletedPtr, QualType elementType)
Emit the code for deleting an array of objects.
Definition: CGExprCXX.cpp:1932
Represents a static or instance method of a struct/union/class.
Definition: DeclCXX.h:2108
const ConstantArrayType * getAsConstantArrayType(QualType T) const
Definition: ASTContext.h:2438
Represents a C++ nested name specifier, such as "\::std::vector<int>::".
llvm::Constant * EmitNullConstantForBase(const CXXRecordDecl *Record)
Return a null constant appropriate for zero-initializing a base class with the given type...
QualType getAllocatedType() const
Definition: ExprCXX.h:2105
bool isArray() const
Definition: ExprCXX.h:2136
arg_range arguments()
Definition: Expr.h:2635
virtual void emitVirtualObjectDelete(CodeGenFunction &CGF, const CXXDeleteExpr *DE, Address Ptr, QualType ElementType, const CXXDestructorDecl *Dtor)=0
An aligned address.
Definition: Address.h:24
DestructionKind isDestructedType() const
Returns a nonzero value if objects of this type require non-trivial work to clean up after...
Definition: Type.h:1159
All available information about a concrete callee.
Definition: CGCall.h:66
const CXXRecordDecl * getBestDynamicClassType() const
For an expression of class type or pointer to class type, return the most derived class decl the expr...
Definition: Expr.cpp:62
Complete object dtor.
Definition: ABI.h:35
EnumDecl * getDecl() const
Definition: Type.h:4450
RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, ReturnValueSlot ReturnValue)
Definition: CGExprCXX.cpp:397
Assigning into this object requires a lifetime extension.
Definition: Type.h:171
static void EmitDestroyingObjectDelete(CodeGenFunction &CGF, const CXXDeleteExpr *DE, Address Ptr, QualType ElementType)
Emit the code for deleting a single object with a destroying operator delete.
Definition: CGExprCXX.cpp:1831
bool passAlignment() const
Indicates whether the required alignment should be implicitly passed to the allocation function...
Definition: ExprCXX.h:2206
FunctionDecl * getOperatorDelete() const
Definition: ExprCXX.h:2133
CXXCtorType
C++ constructor types.
Definition: ABI.h:24
SourceLocation getExprLoc() const LLVM_READONLY
getExprLoc - Return the preferred location for the arrow when diagnosing a problem with a generic exp...
Definition: Expr.cpp:215
Expr * getLHS() const
Definition: Expr.h:3372
llvm::Value * EmitScalarExpr(const Expr *E, bool IgnoreResultAssign=false)
EmitScalarExpr - Emit the computation of the specified expression of LLVM scalar type, returning the result.
static CharUnits CalculateCookiePadding(CodeGenFunction &CGF, const CXXNewExpr *E)
Definition: CGExprCXX.cpp:646
CharUnits getNonVirtualAlignment() const
getNonVirtualSize - Get the non-virtual alignment (in chars) of an object, which is the alignment of ...
Definition: RecordLayout.h:210
CGFunctionInfo - Class to encapsulate the information about a function definition.
CharUnits alignmentAtOffset(CharUnits offset) const
Given that this is a non-zero alignment value, what is the alignment at the given offset...
Definition: CharUnits.h:189
bool isTypeOperand() const
Definition: ExprCXX.h:720
Dataflow Directional Tag Classes.
void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type, bool ForVirtualBase, bool Delegating, Address This)
Definition: CGClass.cpp:2402
Represents a delete expression for memory deallocation and destructor calls, e.g. ...
Definition: ExprCXX.h:2272
bool isInConditionalBranch() const
isInConditionalBranch - Return true if we&#39;re currently emitting one branch or the other of a conditio...
The name of a declaration.
const CXXRecordDecl * getParent() const
Returns the parent of this method declaration, which is the class in which this method is defined...
Definition: DeclCXX.h:2233
llvm::Function * getIntrinsic(unsigned IID, ArrayRef< llvm::Type *> Tys=None)
A pointer to member type per C++ 8.3.3 - Pointers to members.
Definition: Type.h:2768
bool isCopyAssignmentOperator() const
Determine whether this is a copy-assignment operator, regardless of whether it was declared implicitl...
Definition: DeclCXX.cpp:2172
bool isDestroyingOperatorDelete() const
Determine whether this is a destroying operator delete.
Definition: Decl.cpp:2940
llvm::Module & getModule() const
LValue MakeAddrLValue(Address Addr, QualType T, AlignmentSource Source=AlignmentSource::Type)
void EmitAggExpr(const Expr *E, AggValueSlot AS)
EmitAggExpr - Emit the computation of the specified expression of aggregate type. ...
Definition: CGExprAgg.cpp:1825
bool isStringLiteralInit() const
Definition: Expr.cpp:2134
static llvm::Value * EmitDynamicCastToNull(CodeGenFunction &CGF, QualType DestTy)
Definition: CGExprCXX.cpp:2129
AlignmentSource getAlignmentSource() const
Definition: CGValue.h:155
static RequiredArgs forPrototypePlus(const FunctionProtoType *prototype, unsigned additional)
Compute the arguments required by the given formal prototype, given that there may be some additional...
A helper class that allows the use of isa/cast/dyncast to detect TagType objects of structs/unions/cl...
Definition: Type.h:4417
CXXMethodDecl * getDevirtualizedMethod(const Expr *Base, bool IsAppleKext)
If it&#39;s possible to devirtualize a call to this method, return the called function.
Definition: DeclCXX.cpp:2016
CodeGenTypes & getTypes() const
bool isIntegerType() const
isIntegerType() does not include complex integers (a GCC extension).
Definition: Type.h:6631
arg_iterator arg_begin()
Definition: Expr.h:2640
llvm::Type * getElementType() const
Return the type of the values stored in this address.
Definition: Address.h:51
Represents a call to a CUDA kernel function.
Definition: ExprCXX.h:218
void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue, bool capturedByInit)
Definition: CGDecl.cpp:744
Expr * getArg(unsigned Arg)
Return the specified argument.
Definition: ExprCXX.h:1489
Base for LValueReferenceType and RValueReferenceType.
Definition: Type.h:2685
void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp)
Definition: CGExprCXX.cpp:624
llvm::Constant * GetAddrOfFunction(GlobalDecl GD, llvm::Type *Ty=nullptr, bool ForVTable=false, bool DontDefer=false, ForDefinition_t IsForDefinition=NotForDefinition)
Return the address of the given function.
void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false)
EmitBlock - Emit the given block.
Definition: CGStmt.cpp:450
bool isConstantArrayType() const
Definition: Type.h:6398
static bool isGLValueFromPointerDeref(const Expr *E)
Definition: CGExprCXX.cpp:2033
llvm::ConstantInt * getSize(CharUnits numChars)
Emit the given number of characters as a value of type size_t.
TypeLoc getTypeLoc() const
Return the TypeLoc wrapper for the type source info.
Definition: TypeLoc.h:240
Reading or writing from this object requires a barrier call.
Definition: Type.h:168
QualType getParamType(unsigned i) const
Definition: Type.h:3902
MemberExpr - [C99 6.5.2.3] Structure and Union Members.
Definition: Expr.h:2732
Represents a C++ struct/union/class.
Definition: DeclCXX.h:299
virtual const CXXRecordDecl * getThisArgumentTypeForMethod(const CXXMethodDecl *MD)
Get the type of the implicit "this" parameter used by a method.
Definition: CGCXXABI.h:333
bool isVoidType() const
Definition: Type.h:6597
bool hasStrongOrWeakObjCLifetime() const
Definition: Type.h:1067
static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E, QualType ElementType, llvm::Type *ElementTy, Address NewPtr, llvm::Value *NumElements, llvm::Value *AllocSizeWithoutCookie)
Definition: CGExprCXX.cpp:1256
llvm::Type * ConvertType(QualType T)
Qualifiers getQualifiers() const
Retrieve the set of qualifiers applied to this type.
Definition: Type.h:6148
RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type, const CallExpr *TheCallExpr, bool IsDelete)
Definition: CGExprCXX.cpp:1298
void EmitCXXDeleteExpr(const CXXDeleteExpr *E)
Definition: CGExprCXX.cpp:1976
LValue EmitLValue(const Expr *E)
EmitLValue - Emit code to compute a designator that specifies the location of the expression...
Definition: CGExpr.cpp:1243
CharUnits getNonVirtualSize() const
getNonVirtualSize - Get the non-virtual size (in chars) of an object, which is the size of the object...
Definition: RecordLayout.h:202
T * pushCleanupWithExtra(CleanupKind Kind, size_t N, As... A)
Push a cleanup with non-constant storage requirements on the stack.
Definition: EHScopeStack.h:304
static CGCallee forVirtual(const CallExpr *CE, GlobalDecl MD, Address Addr, llvm::FunctionType *FTy)
Definition: CGCall.h:144
static UsualDeleteParams getUsualDeleteParams(const FunctionDecl *FD)
Definition: CGExprCXX.cpp:1324
CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
Definition: Expr.h:2441
QualType getIntegerType() const
Return the integer type this enum decl corresponds to.
Definition: Decl.h:3485
llvm::Constant * tryEmitAbstract(const Expr *E, QualType T)
Try to emit the result of the given expression as an abstract constant.
CGCXXABI & getCXXABI() const
__DEVICE__ int max(int __a, int __b)
bool isAlwaysNull() const
isAlwaysNull - Return whether the result of the dynamic_cast is proven to always be null...
Definition: ExprCXX.cpp:748
static RValue get(llvm::Value *V)
Definition: CGValue.h:85
bool isUnion() const
Definition: Decl.h:3257
Expr * getRHS() const
Definition: Expr.h:3374
bool isPointerType() const
Definition: Type.h:6345
static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init, QualType AllocType, Address NewPtr, AggValueSlot::Overlap_t MayOverlap)
Definition: CGExprCXX.cpp:921
const CGFunctionInfo & arrangeFreeFunctionCall(const CallArgList &Args, const FunctionType *Ty, bool ChainCall)
Figure out the rules for calling a function with the given formal type using the given arguments...
Definition: CGCall.cpp:610
CharUnits getTypeSizeInChars(QualType T) const
Return the size of the specified (complete) type T, in characters.
virtual std::vector< CharUnits > getVBPtrOffsets(const CXXRecordDecl *RD)
Gets the offsets of all the virtual base pointers in a given class.
Definition: CGCXXABI.cpp:312
QualType getType() const
Definition: Decl.h:647
LValue - This represents an lvalue references.
Definition: CGValue.h:166
An abstract representation of regular/ObjC call/message targets.
Information for lazily generating a cleanup.
Definition: EHScopeStack.h:146
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Expr.cpp:1430
bool isPotentiallyEvaluated() const
Determine whether this typeid has a type operand which is potentially evaluated, per C++11 [expr...
Definition: ExprCXX.cpp:61
RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue)
Definition: CGExprCXX.cpp:449
TranslationUnitDecl * getTranslationUnitDecl()
Definition: DeclBase.cpp:361
CallArgList - Type for representing both the value and type of arguments in a call.
Definition: CGCall.h:262
void PopCleanupBlock(bool FallThroughIsBranchThrough=false)
PopCleanupBlock - Will pop the cleanup entry on the stack and process all branch fixups.
Definition: CGCleanup.cpp:644
Represents the canonical version of C arrays with a specified constant size.
Definition: Type.h:2884
Represents an implicitly-generated value initialization of an object of a given type.
Definition: Expr.h:5006
QualType getPointeeType() const
Definition: Type.h:2788
Expr * IgnoreParens() LLVM_READONLY
Skip past any parentheses which might surround this expression until reaching a fixed point...
Definition: Expr.cpp:2805
ConstructionKind getConstructionKind() const
Determine whether this constructor is actually constructing a base class (rather than a complete obje...
Definition: ExprCXX.h:1458
CanQualType getSizeType() const
Return the unique type for "size_t" (C99 7.17), defined in <stddef.h>.
Qualifiers::ObjCLifetime getObjCLifetime() const
Returns lifetime attribute of this type.
Definition: Type.h:1059
param_type_iterator param_type_end() const
Definition: Type.h:4050