clang  6.0.0svn
CGExprCXX.cpp
Go to the documentation of this file.
1 //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code dealing with code generation of C++ expressions
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGDebugInfo.h"
18 #include "CGObjCRuntime.h"
19 #include "ConstantEmitter.h"
22 #include "llvm/IR/CallSite.h"
23 #include "llvm/IR/Intrinsics.h"
24 
25 using namespace clang;
26 using namespace CodeGen;
27 
28 namespace {
29 struct MemberCallInfo {
30  RequiredArgs ReqArgs;
31  // Number of prefix arguments for the call. Ignores the `this` pointer.
32  unsigned PrefixSize;
33 };
34 }
35 
36 static MemberCallInfo
38  llvm::Value *This, llvm::Value *ImplicitParam,
39  QualType ImplicitParamTy, const CallExpr *CE,
40  CallArgList &Args, CallArgList *RtlArgs) {
41  assert(CE == nullptr || isa<CXXMemberCallExpr>(CE) ||
42  isa<CXXOperatorCallExpr>(CE));
43  assert(MD->isInstance() &&
44  "Trying to emit a member or operator call expr on a static method!");
45  ASTContext &C = CGF.getContext();
46 
47  // Push the this ptr.
48  const CXXRecordDecl *RD =
50  Args.add(RValue::get(This),
51  RD ? C.getPointerType(C.getTypeDeclType(RD)) : C.VoidPtrTy);
52 
53  // If there is an implicit parameter (e.g. VTT), emit it.
54  if (ImplicitParam) {
55  Args.add(RValue::get(ImplicitParam), ImplicitParamTy);
56  }
57 
58  const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
59  RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size(), MD);
60  unsigned PrefixSize = Args.size() - 1;
61 
62  // And the rest of the call args.
63  if (RtlArgs) {
64  // Special case: if the caller emitted the arguments right-to-left already
65  // (prior to emitting the *this argument), we're done. This happens for
66  // assignment operators.
67  Args.addFrom(*RtlArgs);
68  } else if (CE) {
69  // Special case: skip first argument of CXXOperatorCall (it is "this").
70  unsigned ArgsToSkip = isa<CXXOperatorCallExpr>(CE) ? 1 : 0;
71  CGF.EmitCallArgs(Args, FPT, drop_begin(CE->arguments(), ArgsToSkip),
72  CE->getDirectCallee());
73  } else {
74  assert(
75  FPT->getNumParams() == 0 &&
76  "No CallExpr specified for function with non-zero number of arguments");
77  }
78  return {required, PrefixSize};
79 }
80 
82  const CXXMethodDecl *MD, const CGCallee &Callee,
83  ReturnValueSlot ReturnValue,
84  llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy,
85  const CallExpr *CE, CallArgList *RtlArgs) {
86  const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
87  CallArgList Args;
88  MemberCallInfo CallInfo = commonEmitCXXMemberOrOperatorCall(
89  *this, MD, This, ImplicitParam, ImplicitParamTy, CE, Args, RtlArgs);
90  auto &FnInfo = CGM.getTypes().arrangeCXXMethodCall(
91  Args, FPT, CallInfo.ReqArgs, CallInfo.PrefixSize);
92  return EmitCall(FnInfo, Callee, ReturnValue, Args);
93 }
94 
96  const CXXDestructorDecl *DD, const CGCallee &Callee, llvm::Value *This,
97  llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *CE,
99  CallArgList Args;
100  commonEmitCXXMemberOrOperatorCall(*this, DD, This, ImplicitParam,
101  ImplicitParamTy, CE, Args, nullptr);
102  return EmitCall(CGM.getTypes().arrangeCXXStructorDeclaration(DD, Type),
103  Callee, ReturnValueSlot(), Args);
104 }
105 
107  const CXXPseudoDestructorExpr *E) {
108  QualType DestroyedType = E->getDestroyedType();
109  if (DestroyedType.hasStrongOrWeakObjCLifetime()) {
110  // Automatic Reference Counting:
111  // If the pseudo-expression names a retainable object with weak or
112  // strong lifetime, the object shall be released.
113  Expr *BaseExpr = E->getBase();
114  Address BaseValue = Address::invalid();
115  Qualifiers BaseQuals;
116 
117  // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
118  if (E->isArrow()) {
119  BaseValue = EmitPointerWithAlignment(BaseExpr);
120  const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>();
121  BaseQuals = PTy->getPointeeType().getQualifiers();
122  } else {
123  LValue BaseLV = EmitLValue(BaseExpr);
124  BaseValue = BaseLV.getAddress();
125  QualType BaseTy = BaseExpr->getType();
126  BaseQuals = BaseTy.getQualifiers();
127  }
128 
129  switch (DestroyedType.getObjCLifetime()) {
133  break;
134 
136  EmitARCRelease(Builder.CreateLoad(BaseValue,
137  DestroyedType.isVolatileQualified()),
139  break;
140 
142  EmitARCDestroyWeak(BaseValue);
143  break;
144  }
145  } else {
146  // C++ [expr.pseudo]p1:
147  // The result shall only be used as the operand for the function call
148  // operator (), and the result of such a call has type void. The only
149  // effect is the evaluation of the postfix-expression before the dot or
150  // arrow.
151  EmitIgnoredExpr(E->getBase());
152  }
153 
154  return RValue::get(nullptr);
155 }
156 
157 static CXXRecordDecl *getCXXRecord(const Expr *E) {
158  QualType T = E->getType();
159  if (const PointerType *PTy = T->getAs<PointerType>())
160  T = PTy->getPointeeType();
161  const RecordType *Ty = T->castAs<RecordType>();
162  return cast<CXXRecordDecl>(Ty->getDecl());
163 }
164 
165 // Note: This function also emit constructor calls to support a MSVC
166 // extensions allowing explicit constructor function call.
168  ReturnValueSlot ReturnValue) {
169  const Expr *callee = CE->getCallee()->IgnoreParens();
170 
171  if (isa<BinaryOperator>(callee))
172  return EmitCXXMemberPointerCallExpr(CE, ReturnValue);
173 
174  const MemberExpr *ME = cast<MemberExpr>(callee);
175  const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl());
176 
177  if (MD->isStatic()) {
178  // The method is static, emit it as we would a regular call.
179  CGCallee callee = CGCallee::forDirect(CGM.GetAddrOfFunction(MD), MD);
180  return EmitCall(getContext().getPointerType(MD->getType()), callee, CE,
181  ReturnValue);
182  }
183 
184  bool HasQualifier = ME->hasQualifier();
185  NestedNameSpecifier *Qualifier = HasQualifier ? ME->getQualifier() : nullptr;
186  bool IsArrow = ME->isArrow();
187  const Expr *Base = ME->getBase();
188 
189  return EmitCXXMemberOrOperatorMemberCallExpr(
190  CE, MD, ReturnValue, HasQualifier, Qualifier, IsArrow, Base);
191 }
192 
194  const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue,
195  bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow,
196  const Expr *Base) {
197  assert(isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE));
198 
199  // Compute the object pointer.
200  bool CanUseVirtualCall = MD->isVirtual() && !HasQualifier;
201 
202  const CXXMethodDecl *DevirtualizedMethod = nullptr;
203  if (CanUseVirtualCall &&
204  MD->getDevirtualizedMethod(Base, getLangOpts().AppleKext)) {
205  const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType();
206  DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl);
207  assert(DevirtualizedMethod);
208  const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent();
209  const Expr *Inner = Base->ignoreParenBaseCasts();
210  if (DevirtualizedMethod->getReturnType().getCanonicalType() !=
212  // If the return types are not the same, this might be a case where more
213  // code needs to run to compensate for it. For example, the derived
214  // method might return a type that inherits form from the return
215  // type of MD and has a prefix.
216  // For now we just avoid devirtualizing these covariant cases.
217  DevirtualizedMethod = nullptr;
218  else if (getCXXRecord(Inner) == DevirtualizedClass)
219  // If the class of the Inner expression is where the dynamic method
220  // is defined, build the this pointer from it.
221  Base = Inner;
222  else if (getCXXRecord(Base) != DevirtualizedClass) {
223  // If the method is defined in a class that is not the best dynamic
224  // one or the one of the full expression, we would have to build
225  // a derived-to-base cast to compute the correct this pointer, but
226  // we don't have support for that yet, so do a virtual call.
227  DevirtualizedMethod = nullptr;
228  }
229  }
230 
231  // C++17 demands that we evaluate the RHS of a (possibly-compound) assignment
232  // operator before the LHS.
233  CallArgList RtlArgStorage;
234  CallArgList *RtlArgs = nullptr;
235  if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(CE)) {
236  if (OCE->isAssignmentOp()) {
237  RtlArgs = &RtlArgStorage;
238  EmitCallArgs(*RtlArgs, MD->getType()->castAs<FunctionProtoType>(),
239  drop_begin(CE->arguments(), 1), CE->getDirectCallee(),
240  /*ParamsToSkip*/0, EvaluationOrder::ForceRightToLeft);
241  }
242  }
243 
244  Address This = Address::invalid();
245  if (IsArrow)
246  This = EmitPointerWithAlignment(Base);
247  else
248  This = EmitLValue(Base).getAddress();
249 
250 
251  if (MD->isTrivial() || (MD->isDefaulted() && MD->getParent()->isUnion())) {
252  if (isa<CXXDestructorDecl>(MD)) return RValue::get(nullptr);
253  if (isa<CXXConstructorDecl>(MD) &&
254  cast<CXXConstructorDecl>(MD)->isDefaultConstructor())
255  return RValue::get(nullptr);
256 
257  if (!MD->getParent()->mayInsertExtraPadding()) {
259  // We don't like to generate the trivial copy/move assignment operator
260  // when it isn't necessary; just produce the proper effect here.
261  LValue RHS = isa<CXXOperatorCallExpr>(CE)
262  ? MakeNaturalAlignAddrLValue(
263  (*RtlArgs)[0].RV.getScalarVal(),
264  (*(CE->arg_begin() + 1))->getType())
265  : EmitLValue(*CE->arg_begin());
266  EmitAggregateAssign(This, RHS.getAddress(), CE->getType());
267  return RValue::get(This.getPointer());
268  }
269 
270  if (isa<CXXConstructorDecl>(MD) &&
271  cast<CXXConstructorDecl>(MD)->isCopyOrMoveConstructor()) {
272  // Trivial move and copy ctor are the same.
273  assert(CE->getNumArgs() == 1 && "unexpected argcount for trivial ctor");
274  Address RHS = EmitLValue(*CE->arg_begin()).getAddress();
275  EmitAggregateCopy(This, RHS, (*CE->arg_begin())->getType());
276  return RValue::get(This.getPointer());
277  }
278  llvm_unreachable("unknown trivial member function");
279  }
280  }
281 
282  // Compute the function type we're calling.
283  const CXXMethodDecl *CalleeDecl =
284  DevirtualizedMethod ? DevirtualizedMethod : MD;
285  const CGFunctionInfo *FInfo = nullptr;
286  if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl))
287  FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration(
288  Dtor, StructorType::Complete);
289  else if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(CalleeDecl))
290  FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration(
291  Ctor, StructorType::Complete);
292  else
293  FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl);
294 
295  llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo);
296 
297  // C++11 [class.mfct.non-static]p2:
298  // If a non-static member function of a class X is called for an object that
299  // is not of type X, or of a type derived from X, the behavior is undefined.
300  SourceLocation CallLoc;
301  ASTContext &C = getContext();
302  if (CE)
303  CallLoc = CE->getExprLoc();
304 
305  SanitizerSet SkippedChecks;
306  if (const auto *CMCE = dyn_cast<CXXMemberCallExpr>(CE)) {
307  auto *IOA = CMCE->getImplicitObjectArgument();
308  bool IsImplicitObjectCXXThis = IsWrappedCXXThis(IOA);
309  if (IsImplicitObjectCXXThis)
310  SkippedChecks.set(SanitizerKind::Alignment, true);
311  if (IsImplicitObjectCXXThis || isa<DeclRefExpr>(IOA))
312  SkippedChecks.set(SanitizerKind::Null, true);
313  }
314  EmitTypeCheck(
315  isa<CXXConstructorDecl>(CalleeDecl) ? CodeGenFunction::TCK_ConstructorCall
317  CallLoc, This.getPointer(), C.getRecordType(CalleeDecl->getParent()),
318  /*Alignment=*/CharUnits::Zero(), SkippedChecks);
319 
320  // FIXME: Uses of 'MD' past this point need to be audited. We may need to use
321  // 'CalleeDecl' instead.
322 
323  // C++ [class.virtual]p12:
324  // Explicit qualification with the scope operator (5.1) suppresses the
325  // virtual call mechanism.
326  //
327  // We also don't emit a virtual call if the base expression has a record type
328  // because then we know what the type is.
329  bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod;
330 
331  if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(MD)) {
332  assert(CE->arg_begin() == CE->arg_end() &&
333  "Destructor shouldn't have explicit parameters");
334  assert(ReturnValue.isNull() && "Destructor shouldn't have return value");
335  if (UseVirtualCall) {
336  CGM.getCXXABI().EmitVirtualDestructorCall(
337  *this, Dtor, Dtor_Complete, This, cast<CXXMemberCallExpr>(CE));
338  } else {
339  CGCallee Callee;
340  if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier)
341  Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty);
342  else if (!DevirtualizedMethod)
343  Callee = CGCallee::forDirect(
344  CGM.getAddrOfCXXStructor(Dtor, StructorType::Complete, FInfo, Ty),
345  Dtor);
346  else {
347  const CXXDestructorDecl *DDtor =
348  cast<CXXDestructorDecl>(DevirtualizedMethod);
349  Callee = CGCallee::forDirect(
350  CGM.GetAddrOfFunction(GlobalDecl(DDtor, Dtor_Complete), Ty),
351  DDtor);
352  }
353  EmitCXXMemberOrOperatorCall(
354  CalleeDecl, Callee, ReturnValue, This.getPointer(),
355  /*ImplicitParam=*/nullptr, QualType(), CE, nullptr);
356  }
357  return RValue::get(nullptr);
358  }
359 
360  CGCallee Callee;
361  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
362  Callee = CGCallee::forDirect(
363  CGM.GetAddrOfFunction(GlobalDecl(Ctor, Ctor_Complete), Ty),
364  Ctor);
365  } else if (UseVirtualCall) {
366  Callee = CGM.getCXXABI().getVirtualFunctionPointer(*this, MD, This, Ty,
367  CE->getLocStart());
368  } else {
369  if (SanOpts.has(SanitizerKind::CFINVCall) &&
370  MD->getParent()->isDynamicClass()) {
371  llvm::Value *VTable = GetVTablePtr(This, Int8PtrTy, MD->getParent());
372  EmitVTablePtrCheckForCall(MD->getParent(), VTable, CFITCK_NVCall,
373  CE->getLocStart());
374  }
375 
376  if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier)
377  Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty);
378  else if (!DevirtualizedMethod)
379  Callee = CGCallee::forDirect(CGM.GetAddrOfFunction(MD, Ty), MD);
380  else {
381  Callee = CGCallee::forDirect(
382  CGM.GetAddrOfFunction(DevirtualizedMethod, Ty),
383  DevirtualizedMethod);
384  }
385  }
386 
387  if (MD->isVirtual()) {
388  This = CGM.getCXXABI().adjustThisArgumentForVirtualFunctionCall(
389  *this, CalleeDecl, This, UseVirtualCall);
390  }
391 
392  return EmitCXXMemberOrOperatorCall(
393  CalleeDecl, Callee, ReturnValue, This.getPointer(),
394  /*ImplicitParam=*/nullptr, QualType(), CE, RtlArgs);
395 }
396 
397 RValue
399  ReturnValueSlot ReturnValue) {
400  const BinaryOperator *BO =
401  cast<BinaryOperator>(E->getCallee()->IgnoreParens());
402  const Expr *BaseExpr = BO->getLHS();
403  const Expr *MemFnExpr = BO->getRHS();
404 
405  const MemberPointerType *MPT =
406  MemFnExpr->getType()->castAs<MemberPointerType>();
407 
408  const FunctionProtoType *FPT =
410  const CXXRecordDecl *RD =
411  cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl());
412 
413  // Emit the 'this' pointer.
414  Address This = Address::invalid();
415  if (BO->getOpcode() == BO_PtrMemI)
416  This = EmitPointerWithAlignment(BaseExpr);
417  else
418  This = EmitLValue(BaseExpr).getAddress();
419 
420  EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This.getPointer(),
421  QualType(MPT->getClass(), 0));
422 
423  // Get the member function pointer.
424  llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr);
425 
426  // Ask the ABI to load the callee. Note that This is modified.
427  llvm::Value *ThisPtrForCall = nullptr;
428  CGCallee Callee =
429  CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, BO, This,
430  ThisPtrForCall, MemFnPtr, MPT);
431 
432  CallArgList Args;
433 
434  QualType ThisType =
435  getContext().getPointerType(getContext().getTagDeclType(RD));
436 
437  // Push the this ptr.
438  Args.add(RValue::get(ThisPtrForCall), ThisType);
439 
440  RequiredArgs required =
441  RequiredArgs::forPrototypePlus(FPT, 1, /*FD=*/nullptr);
442 
443  // And the rest of the call args
444  EmitCallArgs(Args, FPT, E->arguments());
445  return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required,
446  /*PrefixSize=*/0),
447  Callee, ReturnValue, Args);
448 }
449 
450 RValue
452  const CXXMethodDecl *MD,
453  ReturnValueSlot ReturnValue) {
454  assert(MD->isInstance() &&
455  "Trying to emit a member call expr on a static method!");
456  return EmitCXXMemberOrOperatorMemberCallExpr(
457  E, MD, ReturnValue, /*HasQualifier=*/false, /*Qualifier=*/nullptr,
458  /*IsArrow=*/false, E->getArg(0));
459 }
460 
462  ReturnValueSlot ReturnValue) {
463  return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue);
464 }
465 
467  Address DestPtr,
468  const CXXRecordDecl *Base) {
469  if (Base->isEmpty())
470  return;
471 
472  DestPtr = CGF.Builder.CreateElementBitCast(DestPtr, CGF.Int8Ty);
473 
474  const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base);
475  CharUnits NVSize = Layout.getNonVirtualSize();
476 
477  // We cannot simply zero-initialize the entire base sub-object if vbptrs are
478  // present, they are initialized by the most derived class before calling the
479  // constructor.
481  Stores.emplace_back(CharUnits::Zero(), NVSize);
482 
483  // Each store is split by the existence of a vbptr.
484  CharUnits VBPtrWidth = CGF.getPointerSize();
485  std::vector<CharUnits> VBPtrOffsets =
486  CGF.CGM.getCXXABI().getVBPtrOffsets(Base);
487  for (CharUnits VBPtrOffset : VBPtrOffsets) {
488  // Stop before we hit any virtual base pointers located in virtual bases.
489  if (VBPtrOffset >= NVSize)
490  break;
491  std::pair<CharUnits, CharUnits> LastStore = Stores.pop_back_val();
492  CharUnits LastStoreOffset = LastStore.first;
493  CharUnits LastStoreSize = LastStore.second;
494 
495  CharUnits SplitBeforeOffset = LastStoreOffset;
496  CharUnits SplitBeforeSize = VBPtrOffset - SplitBeforeOffset;
497  assert(!SplitBeforeSize.isNegative() && "negative store size!");
498  if (!SplitBeforeSize.isZero())
499  Stores.emplace_back(SplitBeforeOffset, SplitBeforeSize);
500 
501  CharUnits SplitAfterOffset = VBPtrOffset + VBPtrWidth;
502  CharUnits SplitAfterSize = LastStoreSize - SplitAfterOffset;
503  assert(!SplitAfterSize.isNegative() && "negative store size!");
504  if (!SplitAfterSize.isZero())
505  Stores.emplace_back(SplitAfterOffset, SplitAfterSize);
506  }
507 
508  // If the type contains a pointer to data member we can't memset it to zero.
509  // Instead, create a null constant and copy it to the destination.
510  // TODO: there are other patterns besides zero that we can usefully memset,
511  // like -1, which happens to be the pattern used by member-pointers.
512  // TODO: isZeroInitializable can be over-conservative in the case where a
513  // virtual base contains a member pointer.
514  llvm::Constant *NullConstantForBase = CGF.CGM.EmitNullConstantForBase(Base);
515  if (!NullConstantForBase->isNullValue()) {
516  llvm::GlobalVariable *NullVariable = new llvm::GlobalVariable(
517  CGF.CGM.getModule(), NullConstantForBase->getType(),
518  /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage,
519  NullConstantForBase, Twine());
520 
521  CharUnits Align = std::max(Layout.getNonVirtualAlignment(),
522  DestPtr.getAlignment());
523  NullVariable->setAlignment(Align.getQuantity());
524 
525  Address SrcPtr = Address(CGF.EmitCastToVoidPtr(NullVariable), Align);
526 
527  // Get and call the appropriate llvm.memcpy overload.
528  for (std::pair<CharUnits, CharUnits> Store : Stores) {
529  CharUnits StoreOffset = Store.first;
530  CharUnits StoreSize = Store.second;
531  llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize);
532  CGF.Builder.CreateMemCpy(
533  CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset),
534  CGF.Builder.CreateConstInBoundsByteGEP(SrcPtr, StoreOffset),
535  StoreSizeVal);
536  }
537 
538  // Otherwise, just memset the whole thing to zero. This is legal
539  // because in LLVM, all default initializers (other than the ones we just
540  // handled above) are guaranteed to have a bit pattern of all zeros.
541  } else {
542  for (std::pair<CharUnits, CharUnits> Store : Stores) {
543  CharUnits StoreOffset = Store.first;
544  CharUnits StoreSize = Store.second;
545  llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize);
546  CGF.Builder.CreateMemSet(
547  CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset),
548  CGF.Builder.getInt8(0), StoreSizeVal);
549  }
550  }
551 }
552 
553 void
555  AggValueSlot Dest) {
556  assert(!Dest.isIgnored() && "Must have a destination!");
557  const CXXConstructorDecl *CD = E->getConstructor();
558 
559  // If we require zero initialization before (or instead of) calling the
560  // constructor, as can be the case with a non-user-provided default
561  // constructor, emit the zero initialization now, unless destination is
562  // already zeroed.
563  if (E->requiresZeroInitialization() && !Dest.isZeroed()) {
564  switch (E->getConstructionKind()) {
567  EmitNullInitialization(Dest.getAddress(), E->getType());
568  break;
572  CD->getParent());
573  break;
574  }
575  }
576 
577  // If this is a call to a trivial default constructor, do nothing.
578  if (CD->isTrivial() && CD->isDefaultConstructor())
579  return;
580 
581  // Elide the constructor if we're constructing from a temporary.
582  // The temporary check is required because Sema sets this on NRVO
583  // returns.
584  if (getLangOpts().ElideConstructors && E->isElidable()) {
585  assert(getContext().hasSameUnqualifiedType(E->getType(),
586  E->getArg(0)->getType()));
587  if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) {
588  EmitAggExpr(E->getArg(0), Dest);
589  return;
590  }
591  }
592 
593  if (const ArrayType *arrayType
594  = getContext().getAsArrayType(E->getType())) {
595  EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddress(), E);
596  } else {
598  bool ForVirtualBase = false;
599  bool Delegating = false;
600 
601  switch (E->getConstructionKind()) {
603  // We should be emitting a constructor; GlobalDecl will assert this
604  Type = CurGD.getCtorType();
605  Delegating = true;
606  break;
607 
609  Type = Ctor_Complete;
610  break;
611 
613  ForVirtualBase = true;
614  // fall-through
615 
617  Type = Ctor_Base;
618  }
619 
620  // Call the constructor.
621  EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating,
622  Dest.getAddress(), E);
623  }
624 }
625 
627  const Expr *Exp) {
628  if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp))
629  Exp = E->getSubExpr();
630  assert(isa<CXXConstructExpr>(Exp) &&
631  "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr");
632  const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp);
633  const CXXConstructorDecl *CD = E->getConstructor();
634  RunCleanupsScope Scope(*this);
635 
636  // If we require zero initialization before (or instead of) calling the
637  // constructor, as can be the case with a non-user-provided default
638  // constructor, emit the zero initialization now.
639  // FIXME. Do I still need this for a copy ctor synthesis?
641  EmitNullInitialization(Dest, E->getType());
642 
643  assert(!getContext().getAsConstantArrayType(E->getType())
644  && "EmitSynthesizedCXXCopyCtor - Copied-in Array");
645  EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, E);
646 }
647 
649  const CXXNewExpr *E) {
650  if (!E->isArray())
651  return CharUnits::Zero();
652 
653  // No cookie is required if the operator new[] being used is the
654  // reserved placement operator new[].
656  return CharUnits::Zero();
657 
658  return CGF.CGM.getCXXABI().GetArrayCookieSize(E);
659 }
660 
662  const CXXNewExpr *e,
663  unsigned minElements,
664  llvm::Value *&numElements,
665  llvm::Value *&sizeWithoutCookie) {
667 
668  if (!e->isArray()) {
669  CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
670  sizeWithoutCookie
671  = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity());
672  return sizeWithoutCookie;
673  }
674 
675  // The width of size_t.
676  unsigned sizeWidth = CGF.SizeTy->getBitWidth();
677 
678  // Figure out the cookie size.
679  llvm::APInt cookieSize(sizeWidth,
680  CalculateCookiePadding(CGF, e).getQuantity());
681 
682  // Emit the array size expression.
683  // We multiply the size of all dimensions for NumElements.
684  // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6.
685  numElements =
687  if (!numElements)
688  numElements = CGF.EmitScalarExpr(e->getArraySize());
689  assert(isa<llvm::IntegerType>(numElements->getType()));
690 
691  // The number of elements can be have an arbitrary integer type;
692  // essentially, we need to multiply it by a constant factor, add a
693  // cookie size, and verify that the result is representable as a
694  // size_t. That's just a gloss, though, and it's wrong in one
695  // important way: if the count is negative, it's an error even if
696  // the cookie size would bring the total size >= 0.
697  bool isSigned
699  llvm::IntegerType *numElementsType
700  = cast<llvm::IntegerType>(numElements->getType());
701  unsigned numElementsWidth = numElementsType->getBitWidth();
702 
703  // Compute the constant factor.
704  llvm::APInt arraySizeMultiplier(sizeWidth, 1);
705  while (const ConstantArrayType *CAT
706  = CGF.getContext().getAsConstantArrayType(type)) {
707  type = CAT->getElementType();
708  arraySizeMultiplier *= CAT->getSize();
709  }
710 
711  CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
712  llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity());
713  typeSizeMultiplier *= arraySizeMultiplier;
714 
715  // This will be a size_t.
716  llvm::Value *size;
717 
718  // If someone is doing 'new int[42]' there is no need to do a dynamic check.
719  // Don't bloat the -O0 code.
720  if (llvm::ConstantInt *numElementsC =
721  dyn_cast<llvm::ConstantInt>(numElements)) {
722  const llvm::APInt &count = numElementsC->getValue();
723 
724  bool hasAnyOverflow = false;
725 
726  // If 'count' was a negative number, it's an overflow.
727  if (isSigned && count.isNegative())
728  hasAnyOverflow = true;
729 
730  // We want to do all this arithmetic in size_t. If numElements is
731  // wider than that, check whether it's already too big, and if so,
732  // overflow.
733  else if (numElementsWidth > sizeWidth &&
734  numElementsWidth - sizeWidth > count.countLeadingZeros())
735  hasAnyOverflow = true;
736 
737  // Okay, compute a count at the right width.
738  llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth);
739 
740  // If there is a brace-initializer, we cannot allocate fewer elements than
741  // there are initializers. If we do, that's treated like an overflow.
742  if (adjustedCount.ult(minElements))
743  hasAnyOverflow = true;
744 
745  // Scale numElements by that. This might overflow, but we don't
746  // care because it only overflows if allocationSize does, too, and
747  // if that overflows then we shouldn't use this.
748  numElements = llvm::ConstantInt::get(CGF.SizeTy,
749  adjustedCount * arraySizeMultiplier);
750 
751  // Compute the size before cookie, and track whether it overflowed.
752  bool overflow;
753  llvm::APInt allocationSize
754  = adjustedCount.umul_ov(typeSizeMultiplier, overflow);
755  hasAnyOverflow |= overflow;
756 
757  // Add in the cookie, and check whether it's overflowed.
758  if (cookieSize != 0) {
759  // Save the current size without a cookie. This shouldn't be
760  // used if there was overflow.
761  sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
762 
763  allocationSize = allocationSize.uadd_ov(cookieSize, overflow);
764  hasAnyOverflow |= overflow;
765  }
766 
767  // On overflow, produce a -1 so operator new will fail.
768  if (hasAnyOverflow) {
769  size = llvm::Constant::getAllOnesValue(CGF.SizeTy);
770  } else {
771  size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
772  }
773 
774  // Otherwise, we might need to use the overflow intrinsics.
775  } else {
776  // There are up to five conditions we need to test for:
777  // 1) if isSigned, we need to check whether numElements is negative;
778  // 2) if numElementsWidth > sizeWidth, we need to check whether
779  // numElements is larger than something representable in size_t;
780  // 3) if minElements > 0, we need to check whether numElements is smaller
781  // than that.
782  // 4) we need to compute
783  // sizeWithoutCookie := numElements * typeSizeMultiplier
784  // and check whether it overflows; and
785  // 5) if we need a cookie, we need to compute
786  // size := sizeWithoutCookie + cookieSize
787  // and check whether it overflows.
788 
789  llvm::Value *hasOverflow = nullptr;
790 
791  // If numElementsWidth > sizeWidth, then one way or another, we're
792  // going to have to do a comparison for (2), and this happens to
793  // take care of (1), too.
794  if (numElementsWidth > sizeWidth) {
795  llvm::APInt threshold(numElementsWidth, 1);
796  threshold <<= sizeWidth;
797 
798  llvm::Value *thresholdV
799  = llvm::ConstantInt::get(numElementsType, threshold);
800 
801  hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV);
802  numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy);
803 
804  // Otherwise, if we're signed, we want to sext up to size_t.
805  } else if (isSigned) {
806  if (numElementsWidth < sizeWidth)
807  numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy);
808 
809  // If there's a non-1 type size multiplier, then we can do the
810  // signedness check at the same time as we do the multiply
811  // because a negative number times anything will cause an
812  // unsigned overflow. Otherwise, we have to do it here. But at least
813  // in this case, we can subsume the >= minElements check.
814  if (typeSizeMultiplier == 1)
815  hasOverflow = CGF.Builder.CreateICmpSLT(numElements,
816  llvm::ConstantInt::get(CGF.SizeTy, minElements));
817 
818  // Otherwise, zext up to size_t if necessary.
819  } else if (numElementsWidth < sizeWidth) {
820  numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy);
821  }
822 
823  assert(numElements->getType() == CGF.SizeTy);
824 
825  if (minElements) {
826  // Don't allow allocation of fewer elements than we have initializers.
827  if (!hasOverflow) {
828  hasOverflow = CGF.Builder.CreateICmpULT(numElements,
829  llvm::ConstantInt::get(CGF.SizeTy, minElements));
830  } else if (numElementsWidth > sizeWidth) {
831  // The other existing overflow subsumes this check.
832  // We do an unsigned comparison, since any signed value < -1 is
833  // taken care of either above or below.
834  hasOverflow = CGF.Builder.CreateOr(hasOverflow,
835  CGF.Builder.CreateICmpULT(numElements,
836  llvm::ConstantInt::get(CGF.SizeTy, minElements)));
837  }
838  }
839 
840  size = numElements;
841 
842  // Multiply by the type size if necessary. This multiplier
843  // includes all the factors for nested arrays.
844  //
845  // This step also causes numElements to be scaled up by the
846  // nested-array factor if necessary. Overflow on this computation
847  // can be ignored because the result shouldn't be used if
848  // allocation fails.
849  if (typeSizeMultiplier != 1) {
850  llvm::Value *umul_with_overflow
851  = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy);
852 
853  llvm::Value *tsmV =
854  llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier);
855  llvm::Value *result =
856  CGF.Builder.CreateCall(umul_with_overflow, {size, tsmV});
857 
858  llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
859  if (hasOverflow)
860  hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
861  else
862  hasOverflow = overflowed;
863 
864  size = CGF.Builder.CreateExtractValue(result, 0);
865 
866  // Also scale up numElements by the array size multiplier.
867  if (arraySizeMultiplier != 1) {
868  // If the base element type size is 1, then we can re-use the
869  // multiply we just did.
870  if (typeSize.isOne()) {
871  assert(arraySizeMultiplier == typeSizeMultiplier);
872  numElements = size;
873 
874  // Otherwise we need a separate multiply.
875  } else {
876  llvm::Value *asmV =
877  llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier);
878  numElements = CGF.Builder.CreateMul(numElements, asmV);
879  }
880  }
881  } else {
882  // numElements doesn't need to be scaled.
883  assert(arraySizeMultiplier == 1);
884  }
885 
886  // Add in the cookie size if necessary.
887  if (cookieSize != 0) {
888  sizeWithoutCookie = size;
889 
890  llvm::Value *uadd_with_overflow
891  = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy);
892 
893  llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize);
894  llvm::Value *result =
895  CGF.Builder.CreateCall(uadd_with_overflow, {size, cookieSizeV});
896 
897  llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
898  if (hasOverflow)
899  hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
900  else
901  hasOverflow = overflowed;
902 
903  size = CGF.Builder.CreateExtractValue(result, 0);
904  }
905 
906  // If we had any possibility of dynamic overflow, make a select to
907  // overwrite 'size' with an all-ones value, which should cause
908  // operator new to throw.
909  if (hasOverflow)
910  size = CGF.Builder.CreateSelect(hasOverflow,
911  llvm::Constant::getAllOnesValue(CGF.SizeTy),
912  size);
913  }
914 
915  if (cookieSize == 0)
916  sizeWithoutCookie = size;
917  else
918  assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?");
919 
920  return size;
921 }
922 
923 static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init,
924  QualType AllocType, Address NewPtr) {
925  // FIXME: Refactor with EmitExprAsInit.
926  switch (CGF.getEvaluationKind(AllocType)) {
927  case TEK_Scalar:
928  CGF.EmitScalarInit(Init, nullptr,
929  CGF.MakeAddrLValue(NewPtr, AllocType), false);
930  return;
931  case TEK_Complex:
932  CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType),
933  /*isInit*/ true);
934  return;
935  case TEK_Aggregate: {
936  AggValueSlot Slot
937  = AggValueSlot::forAddr(NewPtr, AllocType.getQualifiers(),
941  CGF.EmitAggExpr(Init, Slot);
942  return;
943  }
944  }
945  llvm_unreachable("bad evaluation kind");
946 }
947 
949  const CXXNewExpr *E, QualType ElementType, llvm::Type *ElementTy,
950  Address BeginPtr, llvm::Value *NumElements,
951  llvm::Value *AllocSizeWithoutCookie) {
952  // If we have a type with trivial initialization and no initializer,
953  // there's nothing to do.
954  if (!E->hasInitializer())
955  return;
956 
957  Address CurPtr = BeginPtr;
958 
959  unsigned InitListElements = 0;
960 
961  const Expr *Init = E->getInitializer();
962  Address EndOfInit = Address::invalid();
963  QualType::DestructionKind DtorKind = ElementType.isDestructedType();
965  llvm::Instruction *CleanupDominator = nullptr;
966 
967  CharUnits ElementSize = getContext().getTypeSizeInChars(ElementType);
968  CharUnits ElementAlign =
969  BeginPtr.getAlignment().alignmentOfArrayElement(ElementSize);
970 
971  // Attempt to perform zero-initialization using memset.
972  auto TryMemsetInitialization = [&]() -> bool {
973  // FIXME: If the type is a pointer-to-data-member under the Itanium ABI,
974  // we can initialize with a memset to -1.
975  if (!CGM.getTypes().isZeroInitializable(ElementType))
976  return false;
977 
978  // Optimization: since zero initialization will just set the memory
979  // to all zeroes, generate a single memset to do it in one shot.
980 
981  // Subtract out the size of any elements we've already initialized.
982  auto *RemainingSize = AllocSizeWithoutCookie;
983  if (InitListElements) {
984  // We know this can't overflow; we check this when doing the allocation.
985  auto *InitializedSize = llvm::ConstantInt::get(
986  RemainingSize->getType(),
987  getContext().getTypeSizeInChars(ElementType).getQuantity() *
988  InitListElements);
989  RemainingSize = Builder.CreateSub(RemainingSize, InitializedSize);
990  }
991 
992  // Create the memset.
993  Builder.CreateMemSet(CurPtr, Builder.getInt8(0), RemainingSize, false);
994  return true;
995  };
996 
997  // If the initializer is an initializer list, first do the explicit elements.
998  if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
999  // Initializing from a (braced) string literal is a special case; the init
1000  // list element does not initialize a (single) array element.
1001  if (ILE->isStringLiteralInit()) {
1002  // Initialize the initial portion of length equal to that of the string
1003  // literal. The allocation must be for at least this much; we emitted a
1004  // check for that earlier.
1005  AggValueSlot Slot =
1006  AggValueSlot::forAddr(CurPtr, ElementType.getQualifiers(),
1010  EmitAggExpr(ILE->getInit(0), Slot);
1011 
1012  // Move past these elements.
1013  InitListElements =
1014  cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe())
1015  ->getSize().getZExtValue();
1016  CurPtr =
1017  Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(),
1018  Builder.getSize(InitListElements),
1019  "string.init.end"),
1020  CurPtr.getAlignment().alignmentAtOffset(InitListElements *
1021  ElementSize));
1022 
1023  // Zero out the rest, if any remain.
1024  llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
1025  if (!ConstNum || !ConstNum->equalsInt(InitListElements)) {
1026  bool OK = TryMemsetInitialization();
1027  (void)OK;
1028  assert(OK && "couldn't memset character type?");
1029  }
1030  return;
1031  }
1032 
1033  InitListElements = ILE->getNumInits();
1034 
1035  // If this is a multi-dimensional array new, we will initialize multiple
1036  // elements with each init list element.
1037  QualType AllocType = E->getAllocatedType();
1038  if (const ConstantArrayType *CAT = dyn_cast_or_null<ConstantArrayType>(
1039  AllocType->getAsArrayTypeUnsafe())) {
1040  ElementTy = ConvertTypeForMem(AllocType);
1041  CurPtr = Builder.CreateElementBitCast(CurPtr, ElementTy);
1042  InitListElements *= getContext().getConstantArrayElementCount(CAT);
1043  }
1044 
1045  // Enter a partial-destruction Cleanup if necessary.
1046  if (needsEHCleanup(DtorKind)) {
1047  // In principle we could tell the Cleanup where we are more
1048  // directly, but the control flow can get so varied here that it
1049  // would actually be quite complex. Therefore we go through an
1050  // alloca.
1051  EndOfInit = CreateTempAlloca(BeginPtr.getType(), getPointerAlign(),
1052  "array.init.end");
1053  CleanupDominator = Builder.CreateStore(BeginPtr.getPointer(), EndOfInit);
1054  pushIrregularPartialArrayCleanup(BeginPtr.getPointer(), EndOfInit,
1055  ElementType, ElementAlign,
1056  getDestroyer(DtorKind));
1057  Cleanup = EHStack.stable_begin();
1058  }
1059 
1060  CharUnits StartAlign = CurPtr.getAlignment();
1061  for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) {
1062  // Tell the cleanup that it needs to destroy up to this
1063  // element. TODO: some of these stores can be trivially
1064  // observed to be unnecessary.
1065  if (EndOfInit.isValid()) {
1066  auto FinishedPtr =
1067  Builder.CreateBitCast(CurPtr.getPointer(), BeginPtr.getType());
1068  Builder.CreateStore(FinishedPtr, EndOfInit);
1069  }
1070  // FIXME: If the last initializer is an incomplete initializer list for
1071  // an array, and we have an array filler, we can fold together the two
1072  // initialization loops.
1073  StoreAnyExprIntoOneUnit(*this, ILE->getInit(i),
1074  ILE->getInit(i)->getType(), CurPtr);
1075  CurPtr = Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(),
1076  Builder.getSize(1),
1077  "array.exp.next"),
1078  StartAlign.alignmentAtOffset((i + 1) * ElementSize));
1079  }
1080 
1081  // The remaining elements are filled with the array filler expression.
1082  Init = ILE->getArrayFiller();
1083 
1084  // Extract the initializer for the individual array elements by pulling
1085  // out the array filler from all the nested initializer lists. This avoids
1086  // generating a nested loop for the initialization.
1087  while (Init && Init->getType()->isConstantArrayType()) {
1088  auto *SubILE = dyn_cast<InitListExpr>(Init);
1089  if (!SubILE)
1090  break;
1091  assert(SubILE->getNumInits() == 0 && "explicit inits in array filler?");
1092  Init = SubILE->getArrayFiller();
1093  }
1094 
1095  // Switch back to initializing one base element at a time.
1096  CurPtr = Builder.CreateBitCast(CurPtr, BeginPtr.getType());
1097  }
1098 
1099  // If all elements have already been initialized, skip any further
1100  // initialization.
1101  llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
1102  if (ConstNum && ConstNum->getZExtValue() <= InitListElements) {
1103  // If there was a Cleanup, deactivate it.
1104  if (CleanupDominator)
1105  DeactivateCleanupBlock(Cleanup, CleanupDominator);
1106  return;
1107  }
1108 
1109  assert(Init && "have trailing elements to initialize but no initializer");
1110 
1111  // If this is a constructor call, try to optimize it out, and failing that
1112  // emit a single loop to initialize all remaining elements.
1113  if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
1114  CXXConstructorDecl *Ctor = CCE->getConstructor();
1115  if (Ctor->isTrivial()) {
1116  // If new expression did not specify value-initialization, then there
1117  // is no initialization.
1118  if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty())
1119  return;
1120 
1121  if (TryMemsetInitialization())
1122  return;
1123  }
1124 
1125  // Store the new Cleanup position for irregular Cleanups.
1126  //
1127  // FIXME: Share this cleanup with the constructor call emission rather than
1128  // having it create a cleanup of its own.
1129  if (EndOfInit.isValid())
1130  Builder.CreateStore(CurPtr.getPointer(), EndOfInit);
1131 
1132  // Emit a constructor call loop to initialize the remaining elements.
1133  if (InitListElements)
1134  NumElements = Builder.CreateSub(
1135  NumElements,
1136  llvm::ConstantInt::get(NumElements->getType(), InitListElements));
1137  EmitCXXAggrConstructorCall(Ctor, NumElements, CurPtr, CCE,
1138  CCE->requiresZeroInitialization());
1139  return;
1140  }
1141 
1142  // If this is value-initialization, we can usually use memset.
1143  ImplicitValueInitExpr IVIE(ElementType);
1144  if (isa<ImplicitValueInitExpr>(Init)) {
1145  if (TryMemsetInitialization())
1146  return;
1147 
1148  // Switch to an ImplicitValueInitExpr for the element type. This handles
1149  // only one case: multidimensional array new of pointers to members. In
1150  // all other cases, we already have an initializer for the array element.
1151  Init = &IVIE;
1152  }
1153 
1154  // At this point we should have found an initializer for the individual
1155  // elements of the array.
1156  assert(getContext().hasSameUnqualifiedType(ElementType, Init->getType()) &&
1157  "got wrong type of element to initialize");
1158 
1159  // If we have an empty initializer list, we can usually use memset.
1160  if (auto *ILE = dyn_cast<InitListExpr>(Init))
1161  if (ILE->getNumInits() == 0 && TryMemsetInitialization())
1162  return;
1163 
1164  // If we have a struct whose every field is value-initialized, we can
1165  // usually use memset.
1166  if (auto *ILE = dyn_cast<InitListExpr>(Init)) {
1167  if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
1168  if (RType->getDecl()->isStruct()) {
1169  unsigned NumElements = 0;
1170  if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RType->getDecl()))
1171  NumElements = CXXRD->getNumBases();
1172  for (auto *Field : RType->getDecl()->fields())
1173  if (!Field->isUnnamedBitfield())
1174  ++NumElements;
1175  // FIXME: Recurse into nested InitListExprs.
1176  if (ILE->getNumInits() == NumElements)
1177  for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
1178  if (!isa<ImplicitValueInitExpr>(ILE->getInit(i)))
1179  --NumElements;
1180  if (ILE->getNumInits() == NumElements && TryMemsetInitialization())
1181  return;
1182  }
1183  }
1184  }
1185 
1186  // Create the loop blocks.
1187  llvm::BasicBlock *EntryBB = Builder.GetInsertBlock();
1188  llvm::BasicBlock *LoopBB = createBasicBlock("new.loop");
1189  llvm::BasicBlock *ContBB = createBasicBlock("new.loop.end");
1190 
1191  // Find the end of the array, hoisted out of the loop.
1192  llvm::Value *EndPtr =
1193  Builder.CreateInBoundsGEP(BeginPtr.getPointer(), NumElements, "array.end");
1194 
1195  // If the number of elements isn't constant, we have to now check if there is
1196  // anything left to initialize.
1197  if (!ConstNum) {
1198  llvm::Value *IsEmpty =
1199  Builder.CreateICmpEQ(CurPtr.getPointer(), EndPtr, "array.isempty");
1200  Builder.CreateCondBr(IsEmpty, ContBB, LoopBB);
1201  }
1202 
1203  // Enter the loop.
1204  EmitBlock(LoopBB);
1205 
1206  // Set up the current-element phi.
1207  llvm::PHINode *CurPtrPhi =
1208  Builder.CreatePHI(CurPtr.getType(), 2, "array.cur");
1209  CurPtrPhi->addIncoming(CurPtr.getPointer(), EntryBB);
1210 
1211  CurPtr = Address(CurPtrPhi, ElementAlign);
1212 
1213  // Store the new Cleanup position for irregular Cleanups.
1214  if (EndOfInit.isValid())
1215  Builder.CreateStore(CurPtr.getPointer(), EndOfInit);
1216 
1217  // Enter a partial-destruction Cleanup if necessary.
1218  if (!CleanupDominator && needsEHCleanup(DtorKind)) {
1219  pushRegularPartialArrayCleanup(BeginPtr.getPointer(), CurPtr.getPointer(),
1220  ElementType, ElementAlign,
1221  getDestroyer(DtorKind));
1222  Cleanup = EHStack.stable_begin();
1223  CleanupDominator = Builder.CreateUnreachable();
1224  }
1225 
1226  // Emit the initializer into this element.
1227  StoreAnyExprIntoOneUnit(*this, Init, Init->getType(), CurPtr);
1228 
1229  // Leave the Cleanup if we entered one.
1230  if (CleanupDominator) {
1231  DeactivateCleanupBlock(Cleanup, CleanupDominator);
1232  CleanupDominator->eraseFromParent();
1233  }
1234 
1235  // Advance to the next element by adjusting the pointer type as necessary.
1236  llvm::Value *NextPtr =
1237  Builder.CreateConstInBoundsGEP1_32(ElementTy, CurPtr.getPointer(), 1,
1238  "array.next");
1239 
1240  // Check whether we've gotten to the end of the array and, if so,
1241  // exit the loop.
1242  llvm::Value *IsEnd = Builder.CreateICmpEQ(NextPtr, EndPtr, "array.atend");
1243  Builder.CreateCondBr(IsEnd, ContBB, LoopBB);
1244  CurPtrPhi->addIncoming(NextPtr, Builder.GetInsertBlock());
1245 
1246  EmitBlock(ContBB);
1247 }
1248 
1249 static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E,
1250  QualType ElementType, llvm::Type *ElementTy,
1251  Address NewPtr, llvm::Value *NumElements,
1252  llvm::Value *AllocSizeWithoutCookie) {
1253  ApplyDebugLocation DL(CGF, E);
1254  if (E->isArray())
1255  CGF.EmitNewArrayInitializer(E, ElementType, ElementTy, NewPtr, NumElements,
1256  AllocSizeWithoutCookie);
1257  else if (const Expr *Init = E->getInitializer())
1258  StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr);
1259 }
1260 
1261 /// Emit a call to an operator new or operator delete function, as implicitly
1262 /// created by new-expressions and delete-expressions.
1264  const FunctionDecl *CalleeDecl,
1265  const FunctionProtoType *CalleeType,
1266  const CallArgList &Args) {
1267  llvm::Instruction *CallOrInvoke;
1268  llvm::Constant *CalleePtr = CGF.CGM.GetAddrOfFunction(CalleeDecl);
1269  CGCallee Callee = CGCallee::forDirect(CalleePtr, CalleeDecl);
1270  RValue RV =
1272  Args, CalleeType, /*chainCall=*/false),
1273  Callee, ReturnValueSlot(), Args, &CallOrInvoke);
1274 
1275  /// C++1y [expr.new]p10:
1276  /// [In a new-expression,] an implementation is allowed to omit a call
1277  /// to a replaceable global allocation function.
1278  ///
1279  /// We model such elidable calls with the 'builtin' attribute.
1280  llvm::Function *Fn = dyn_cast<llvm::Function>(CalleePtr);
1281  if (CalleeDecl->isReplaceableGlobalAllocationFunction() &&
1282  Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) {
1283  // FIXME: Add addAttribute to CallSite.
1284  if (llvm::CallInst *CI = dyn_cast<llvm::CallInst>(CallOrInvoke))
1285  CI->addAttribute(llvm::AttributeList::FunctionIndex,
1286  llvm::Attribute::Builtin);
1287  else if (llvm::InvokeInst *II = dyn_cast<llvm::InvokeInst>(CallOrInvoke))
1288  II->addAttribute(llvm::AttributeList::FunctionIndex,
1289  llvm::Attribute::Builtin);
1290  else
1291  llvm_unreachable("unexpected kind of call instruction");
1292  }
1293 
1294  return RV;
1295 }
1296 
1298  const Expr *Arg,
1299  bool IsDelete) {
1300  CallArgList Args;
1301  const Stmt *ArgS = Arg;
1302  EmitCallArgs(Args, *Type->param_type_begin(), llvm::makeArrayRef(ArgS));
1303  // Find the allocation or deallocation function that we're calling.
1304  ASTContext &Ctx = getContext();
1305  DeclarationName Name = Ctx.DeclarationNames
1306  .getCXXOperatorName(IsDelete ? OO_Delete : OO_New);
1307  for (auto *Decl : Ctx.getTranslationUnitDecl()->lookup(Name))
1308  if (auto *FD = dyn_cast<FunctionDecl>(Decl))
1309  if (Ctx.hasSameType(FD->getType(), QualType(Type, 0)))
1310  return EmitNewDeleteCall(*this, cast<FunctionDecl>(Decl), Type, Args);
1311  llvm_unreachable("predeclared global operator new/delete is missing");
1312 }
1313 
1314 namespace {
1315 /// The parameters to pass to a usual operator delete.
1316 struct UsualDeleteParams {
1317  bool DestroyingDelete = false;
1318  bool Size = false;
1319  bool Alignment = false;
1320 };
1321 }
1322 
1323 static UsualDeleteParams getUsualDeleteParams(const FunctionDecl *FD) {
1324  UsualDeleteParams Params;
1325 
1326  const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>();
1327  auto AI = FPT->param_type_begin(), AE = FPT->param_type_end();
1328 
1329  // The first argument is always a void*.
1330  ++AI;
1331 
1332  // The next parameter may be a std::destroying_delete_t.
1333  if (FD->isDestroyingOperatorDelete()) {
1334  Params.DestroyingDelete = true;
1335  assert(AI != AE);
1336  ++AI;
1337  }
1338 
1339  // Figure out what other parameters we should be implicitly passing.
1340  if (AI != AE && (*AI)->isIntegerType()) {
1341  Params.Size = true;
1342  ++AI;
1343  }
1344 
1345  if (AI != AE && (*AI)->isAlignValT()) {
1346  Params.Alignment = true;
1347  ++AI;
1348  }
1349 
1350  assert(AI == AE && "unexpected usual deallocation function parameter");
1351  return Params;
1352 }
1353 
1354 namespace {
1355  /// A cleanup to call the given 'operator delete' function upon abnormal
1356  /// exit from a new expression. Templated on a traits type that deals with
1357  /// ensuring that the arguments dominate the cleanup if necessary.
1358  template<typename Traits>
1359  class CallDeleteDuringNew final : public EHScopeStack::Cleanup {
1360  /// Type used to hold llvm::Value*s.
1361  typedef typename Traits::ValueTy ValueTy;
1362  /// Type used to hold RValues.
1363  typedef typename Traits::RValueTy RValueTy;
1364  struct PlacementArg {
1365  RValueTy ArgValue;
1366  QualType ArgType;
1367  };
1368 
1369  unsigned NumPlacementArgs : 31;
1370  unsigned PassAlignmentToPlacementDelete : 1;
1371  const FunctionDecl *OperatorDelete;
1372  ValueTy Ptr;
1373  ValueTy AllocSize;
1374  CharUnits AllocAlign;
1375 
1376  PlacementArg *getPlacementArgs() {
1377  return reinterpret_cast<PlacementArg *>(this + 1);
1378  }
1379 
1380  public:
1381  static size_t getExtraSize(size_t NumPlacementArgs) {
1382  return NumPlacementArgs * sizeof(PlacementArg);
1383  }
1384 
1385  CallDeleteDuringNew(size_t NumPlacementArgs,
1386  const FunctionDecl *OperatorDelete, ValueTy Ptr,
1387  ValueTy AllocSize, bool PassAlignmentToPlacementDelete,
1388  CharUnits AllocAlign)
1389  : NumPlacementArgs(NumPlacementArgs),
1390  PassAlignmentToPlacementDelete(PassAlignmentToPlacementDelete),
1391  OperatorDelete(OperatorDelete), Ptr(Ptr), AllocSize(AllocSize),
1392  AllocAlign(AllocAlign) {}
1393 
1394  void setPlacementArg(unsigned I, RValueTy Arg, QualType Type) {
1395  assert(I < NumPlacementArgs && "index out of range");
1396  getPlacementArgs()[I] = {Arg, Type};
1397  }
1398 
1399  void Emit(CodeGenFunction &CGF, Flags flags) override {
1400  const FunctionProtoType *FPT =
1401  OperatorDelete->getType()->getAs<FunctionProtoType>();
1402  CallArgList DeleteArgs;
1403 
1404  // The first argument is always a void* (or C* for a destroying operator
1405  // delete for class type C).
1406  DeleteArgs.add(Traits::get(CGF, Ptr), FPT->getParamType(0));
1407 
1408  // Figure out what other parameters we should be implicitly passing.
1409  UsualDeleteParams Params;
1410  if (NumPlacementArgs) {
1411  // A placement deallocation function is implicitly passed an alignment
1412  // if the placement allocation function was, but is never passed a size.
1413  Params.Alignment = PassAlignmentToPlacementDelete;
1414  } else {
1415  // For a non-placement new-expression, 'operator delete' can take a
1416  // size and/or an alignment if it has the right parameters.
1417  Params = getUsualDeleteParams(OperatorDelete);
1418  }
1419 
1420  assert(!Params.DestroyingDelete &&
1421  "should not call destroying delete in a new-expression");
1422 
1423  // The second argument can be a std::size_t (for non-placement delete).
1424  if (Params.Size)
1425  DeleteArgs.add(Traits::get(CGF, AllocSize),
1426  CGF.getContext().getSizeType());
1427 
1428  // The next (second or third) argument can be a std::align_val_t, which
1429  // is an enum whose underlying type is std::size_t.
1430  // FIXME: Use the right type as the parameter type. Note that in a call
1431  // to operator delete(size_t, ...), we may not have it available.
1432  if (Params.Alignment)
1433  DeleteArgs.add(RValue::get(llvm::ConstantInt::get(
1434  CGF.SizeTy, AllocAlign.getQuantity())),
1435  CGF.getContext().getSizeType());
1436 
1437  // Pass the rest of the arguments, which must match exactly.
1438  for (unsigned I = 0; I != NumPlacementArgs; ++I) {
1439  auto Arg = getPlacementArgs()[I];
1440  DeleteArgs.add(Traits::get(CGF, Arg.ArgValue), Arg.ArgType);
1441  }
1442 
1443  // Call 'operator delete'.
1444  EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs);
1445  }
1446  };
1447 }
1448 
1449 /// Enter a cleanup to call 'operator delete' if the initializer in a
1450 /// new-expression throws.
1452  const CXXNewExpr *E,
1453  Address NewPtr,
1454  llvm::Value *AllocSize,
1455  CharUnits AllocAlign,
1456  const CallArgList &NewArgs) {
1457  unsigned NumNonPlacementArgs = E->passAlignment() ? 2 : 1;
1458 
1459  // If we're not inside a conditional branch, then the cleanup will
1460  // dominate and we can do the easier (and more efficient) thing.
1461  if (!CGF.isInConditionalBranch()) {
1462  struct DirectCleanupTraits {
1463  typedef llvm::Value *ValueTy;
1464  typedef RValue RValueTy;
1465  static RValue get(CodeGenFunction &, ValueTy V) { return RValue::get(V); }
1466  static RValue get(CodeGenFunction &, RValueTy V) { return V; }
1467  };
1468 
1469  typedef CallDeleteDuringNew<DirectCleanupTraits> DirectCleanup;
1470 
1471  DirectCleanup *Cleanup = CGF.EHStack
1472  .pushCleanupWithExtra<DirectCleanup>(EHCleanup,
1473  E->getNumPlacementArgs(),
1474  E->getOperatorDelete(),
1475  NewPtr.getPointer(),
1476  AllocSize,
1477  E->passAlignment(),
1478  AllocAlign);
1479  for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) {
1480  auto &Arg = NewArgs[I + NumNonPlacementArgs];
1481  Cleanup->setPlacementArg(I, Arg.RV, Arg.Ty);
1482  }
1483 
1484  return;
1485  }
1486 
1487  // Otherwise, we need to save all this stuff.
1490  DominatingValue<RValue>::saved_type SavedAllocSize =
1491  DominatingValue<RValue>::save(CGF, RValue::get(AllocSize));
1492 
1493  struct ConditionalCleanupTraits {
1494  typedef DominatingValue<RValue>::saved_type ValueTy;
1495  typedef DominatingValue<RValue>::saved_type RValueTy;
1496  static RValue get(CodeGenFunction &CGF, ValueTy V) {
1497  return V.restore(CGF);
1498  }
1499  };
1500  typedef CallDeleteDuringNew<ConditionalCleanupTraits> ConditionalCleanup;
1501 
1502  ConditionalCleanup *Cleanup = CGF.EHStack
1503  .pushCleanupWithExtra<ConditionalCleanup>(EHCleanup,
1504  E->getNumPlacementArgs(),
1505  E->getOperatorDelete(),
1506  SavedNewPtr,
1507  SavedAllocSize,
1508  E->passAlignment(),
1509  AllocAlign);
1510  for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) {
1511  auto &Arg = NewArgs[I + NumNonPlacementArgs];
1512  Cleanup->setPlacementArg(I, DominatingValue<RValue>::save(CGF, Arg.RV),
1513  Arg.Ty);
1514  }
1515 
1516  CGF.initFullExprCleanup();
1517 }
1518 
1520  // The element type being allocated.
1521  QualType allocType = getContext().getBaseElementType(E->getAllocatedType());
1522 
1523  // 1. Build a call to the allocation function.
1524  FunctionDecl *allocator = E->getOperatorNew();
1525 
1526  // If there is a brace-initializer, cannot allocate fewer elements than inits.
1527  unsigned minElements = 0;
1528  if (E->isArray() && E->hasInitializer()) {
1529  const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer());
1530  if (ILE && ILE->isStringLiteralInit())
1531  minElements =
1532  cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe())
1533  ->getSize().getZExtValue();
1534  else if (ILE)
1535  minElements = ILE->getNumInits();
1536  }
1537 
1538  llvm::Value *numElements = nullptr;
1539  llvm::Value *allocSizeWithoutCookie = nullptr;
1540  llvm::Value *allocSize =
1541  EmitCXXNewAllocSize(*this, E, minElements, numElements,
1542  allocSizeWithoutCookie);
1543  CharUnits allocAlign = getContext().getTypeAlignInChars(allocType);
1544 
1545  // Emit the allocation call. If the allocator is a global placement
1546  // operator, just "inline" it directly.
1547  Address allocation = Address::invalid();
1548  CallArgList allocatorArgs;
1549  if (allocator->isReservedGlobalPlacementOperator()) {
1550  assert(E->getNumPlacementArgs() == 1);
1551  const Expr *arg = *E->placement_arguments().begin();
1552 
1553  LValueBaseInfo BaseInfo;
1554  allocation = EmitPointerWithAlignment(arg, &BaseInfo);
1555 
1556  // The pointer expression will, in many cases, be an opaque void*.
1557  // In these cases, discard the computed alignment and use the
1558  // formal alignment of the allocated type.
1559  if (BaseInfo.getAlignmentSource() != AlignmentSource::Decl)
1560  allocation = Address(allocation.getPointer(), allocAlign);
1561 
1562  // Set up allocatorArgs for the call to operator delete if it's not
1563  // the reserved global operator.
1564  if (E->getOperatorDelete() &&
1566  allocatorArgs.add(RValue::get(allocSize), getContext().getSizeType());
1567  allocatorArgs.add(RValue::get(allocation.getPointer()), arg->getType());
1568  }
1569 
1570  } else {
1571  const FunctionProtoType *allocatorType =
1572  allocator->getType()->castAs<FunctionProtoType>();
1573  unsigned ParamsToSkip = 0;
1574 
1575  // The allocation size is the first argument.
1576  QualType sizeType = getContext().getSizeType();
1577  allocatorArgs.add(RValue::get(allocSize), sizeType);
1578  ++ParamsToSkip;
1579 
1580  if (allocSize != allocSizeWithoutCookie) {
1581  CharUnits cookieAlign = getSizeAlign(); // FIXME: Ask the ABI.
1582  allocAlign = std::max(allocAlign, cookieAlign);
1583  }
1584 
1585  // The allocation alignment may be passed as the second argument.
1586  if (E->passAlignment()) {
1587  QualType AlignValT = sizeType;
1588  if (allocatorType->getNumParams() > 1) {
1589  AlignValT = allocatorType->getParamType(1);
1590  assert(getContext().hasSameUnqualifiedType(
1591  AlignValT->castAs<EnumType>()->getDecl()->getIntegerType(),
1592  sizeType) &&
1593  "wrong type for alignment parameter");
1594  ++ParamsToSkip;
1595  } else {
1596  // Corner case, passing alignment to 'operator new(size_t, ...)'.
1597  assert(allocator->isVariadic() && "can't pass alignment to allocator");
1598  }
1599  allocatorArgs.add(
1600  RValue::get(llvm::ConstantInt::get(SizeTy, allocAlign.getQuantity())),
1601  AlignValT);
1602  }
1603 
1604  // FIXME: Why do we not pass a CalleeDecl here?
1605  EmitCallArgs(allocatorArgs, allocatorType, E->placement_arguments(),
1606  /*AC*/AbstractCallee(), /*ParamsToSkip*/ParamsToSkip);
1607 
1608  RValue RV =
1609  EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs);
1610 
1611  // If this was a call to a global replaceable allocation function that does
1612  // not take an alignment argument, the allocator is known to produce
1613  // storage that's suitably aligned for any object that fits, up to a known
1614  // threshold. Otherwise assume it's suitably aligned for the allocated type.
1615  CharUnits allocationAlign = allocAlign;
1616  if (!E->passAlignment() &&
1618  unsigned AllocatorAlign = llvm::PowerOf2Floor(std::min<uint64_t>(
1619  Target.getNewAlign(), getContext().getTypeSize(allocType)));
1620  allocationAlign = std::max(
1621  allocationAlign, getContext().toCharUnitsFromBits(AllocatorAlign));
1622  }
1623 
1624  allocation = Address(RV.getScalarVal(), allocationAlign);
1625  }
1626 
1627  // Emit a null check on the allocation result if the allocation
1628  // function is allowed to return null (because it has a non-throwing
1629  // exception spec or is the reserved placement new) and we have an
1630  // interesting initializer.
1631  bool nullCheck = E->shouldNullCheckAllocation(getContext()) &&
1632  (!allocType.isPODType(getContext()) || E->hasInitializer());
1633 
1634  llvm::BasicBlock *nullCheckBB = nullptr;
1635  llvm::BasicBlock *contBB = nullptr;
1636 
1637  // The null-check means that the initializer is conditionally
1638  // evaluated.
1639  ConditionalEvaluation conditional(*this);
1640 
1641  if (nullCheck) {
1642  conditional.begin(*this);
1643 
1644  nullCheckBB = Builder.GetInsertBlock();
1645  llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull");
1646  contBB = createBasicBlock("new.cont");
1647 
1648  llvm::Value *isNull =
1649  Builder.CreateIsNull(allocation.getPointer(), "new.isnull");
1650  Builder.CreateCondBr(isNull, contBB, notNullBB);
1651  EmitBlock(notNullBB);
1652  }
1653 
1654  // If there's an operator delete, enter a cleanup to call it if an
1655  // exception is thrown.
1656  EHScopeStack::stable_iterator operatorDeleteCleanup;
1657  llvm::Instruction *cleanupDominator = nullptr;
1658  if (E->getOperatorDelete() &&
1660  EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocAlign,
1661  allocatorArgs);
1662  operatorDeleteCleanup = EHStack.stable_begin();
1663  cleanupDominator = Builder.CreateUnreachable();
1664  }
1665 
1666  assert((allocSize == allocSizeWithoutCookie) ==
1667  CalculateCookiePadding(*this, E).isZero());
1668  if (allocSize != allocSizeWithoutCookie) {
1669  assert(E->isArray());
1670  allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation,
1671  numElements,
1672  E, allocType);
1673  }
1674 
1675  llvm::Type *elementTy = ConvertTypeForMem(allocType);
1676  Address result = Builder.CreateElementBitCast(allocation, elementTy);
1677 
1678  // Passing pointer through invariant.group.barrier to avoid propagation of
1679  // vptrs information which may be included in previous type.
1680  // To not break LTO with different optimizations levels, we do it regardless
1681  // of optimization level.
1682  if (CGM.getCodeGenOpts().StrictVTablePointers &&
1683  allocator->isReservedGlobalPlacementOperator())
1684  result = Address(Builder.CreateInvariantGroupBarrier(result.getPointer()),
1685  result.getAlignment());
1686 
1687  EmitNewInitializer(*this, E, allocType, elementTy, result, numElements,
1688  allocSizeWithoutCookie);
1689  if (E->isArray()) {
1690  // NewPtr is a pointer to the base element type. If we're
1691  // allocating an array of arrays, we'll need to cast back to the
1692  // array pointer type.
1693  llvm::Type *resultType = ConvertTypeForMem(E->getType());
1694  if (result.getType() != resultType)
1695  result = Builder.CreateBitCast(result, resultType);
1696  }
1697 
1698  // Deactivate the 'operator delete' cleanup if we finished
1699  // initialization.
1700  if (operatorDeleteCleanup.isValid()) {
1701  DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator);
1702  cleanupDominator->eraseFromParent();
1703  }
1704 
1705  llvm::Value *resultPtr = result.getPointer();
1706  if (nullCheck) {
1707  conditional.end(*this);
1708 
1709  llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
1710  EmitBlock(contBB);
1711 
1712  llvm::PHINode *PHI = Builder.CreatePHI(resultPtr->getType(), 2);
1713  PHI->addIncoming(resultPtr, notNullBB);
1714  PHI->addIncoming(llvm::Constant::getNullValue(resultPtr->getType()),
1715  nullCheckBB);
1716 
1717  resultPtr = PHI;
1718  }
1719 
1720  return resultPtr;
1721 }
1722 
1724  llvm::Value *Ptr, QualType DeleteTy,
1725  llvm::Value *NumElements,
1726  CharUnits CookieSize) {
1727  assert((!NumElements && CookieSize.isZero()) ||
1728  DeleteFD->getOverloadedOperator() == OO_Array_Delete);
1729 
1730  const FunctionProtoType *DeleteFTy =
1731  DeleteFD->getType()->getAs<FunctionProtoType>();
1732 
1733  CallArgList DeleteArgs;
1734 
1735  auto Params = getUsualDeleteParams(DeleteFD);
1736  auto ParamTypeIt = DeleteFTy->param_type_begin();
1737 
1738  // Pass the pointer itself.
1739  QualType ArgTy = *ParamTypeIt++;
1740  llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy));
1741  DeleteArgs.add(RValue::get(DeletePtr), ArgTy);
1742 
1743  // Pass the std::destroying_delete tag if present.
1744  if (Params.DestroyingDelete) {
1745  QualType DDTag = *ParamTypeIt++;
1746  // Just pass an 'undef'. We expect the tag type to be an empty struct.
1747  auto *V = llvm::UndefValue::get(getTypes().ConvertType(DDTag));
1748  DeleteArgs.add(RValue::get(V), DDTag);
1749  }
1750 
1751  // Pass the size if the delete function has a size_t parameter.
1752  if (Params.Size) {
1753  QualType SizeType = *ParamTypeIt++;
1754  CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy);
1755  llvm::Value *Size = llvm::ConstantInt::get(ConvertType(SizeType),
1756  DeleteTypeSize.getQuantity());
1757 
1758  // For array new, multiply by the number of elements.
1759  if (NumElements)
1760  Size = Builder.CreateMul(Size, NumElements);
1761 
1762  // If there is a cookie, add the cookie size.
1763  if (!CookieSize.isZero())
1764  Size = Builder.CreateAdd(
1765  Size, llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity()));
1766 
1767  DeleteArgs.add(RValue::get(Size), SizeType);
1768  }
1769 
1770  // Pass the alignment if the delete function has an align_val_t parameter.
1771  if (Params.Alignment) {
1772  QualType AlignValType = *ParamTypeIt++;
1773  CharUnits DeleteTypeAlign = getContext().toCharUnitsFromBits(
1774  getContext().getTypeAlignIfKnown(DeleteTy));
1775  llvm::Value *Align = llvm::ConstantInt::get(ConvertType(AlignValType),
1776  DeleteTypeAlign.getQuantity());
1777  DeleteArgs.add(RValue::get(Align), AlignValType);
1778  }
1779 
1780  assert(ParamTypeIt == DeleteFTy->param_type_end() &&
1781  "unknown parameter to usual delete function");
1782 
1783  // Emit the call to delete.
1784  EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs);
1785 }
1786 
1787 namespace {
1788  /// Calls the given 'operator delete' on a single object.
1789  struct CallObjectDelete final : EHScopeStack::Cleanup {
1790  llvm::Value *Ptr;
1791  const FunctionDecl *OperatorDelete;
1792  QualType ElementType;
1793 
1794  CallObjectDelete(llvm::Value *Ptr,
1795  const FunctionDecl *OperatorDelete,
1796  QualType ElementType)
1797  : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {}
1798 
1799  void Emit(CodeGenFunction &CGF, Flags flags) override {
1800  CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType);
1801  }
1802  };
1803 }
1804 
1805 void
1807  llvm::Value *CompletePtr,
1808  QualType ElementType) {
1809  EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, CompletePtr,
1810  OperatorDelete, ElementType);
1811 }
1812 
1813 /// Emit the code for deleting a single object with a destroying operator
1814 /// delete. If the element type has a non-virtual destructor, Ptr has already
1815 /// been converted to the type of the parameter of 'operator delete'. Otherwise
1816 /// Ptr points to an object of the static type.
1818  const CXXDeleteExpr *DE, Address Ptr,
1819  QualType ElementType) {
1820  auto *Dtor = ElementType->getAsCXXRecordDecl()->getDestructor();
1821  if (Dtor && Dtor->isVirtual())
1822  CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType,
1823  Dtor);
1824  else
1825  CGF.EmitDeleteCall(DE->getOperatorDelete(), Ptr.getPointer(), ElementType);
1826 }
1827 
1828 /// Emit the code for deleting a single object.
1830  const CXXDeleteExpr *DE,
1831  Address Ptr,
1832  QualType ElementType) {
1833  // C++11 [expr.delete]p3:
1834  // If the static type of the object to be deleted is different from its
1835  // dynamic type, the static type shall be a base class of the dynamic type
1836  // of the object to be deleted and the static type shall have a virtual
1837  // destructor or the behavior is undefined.
1839  DE->getExprLoc(), Ptr.getPointer(),
1840  ElementType);
1841 
1842  const FunctionDecl *OperatorDelete = DE->getOperatorDelete();
1843  assert(!OperatorDelete->isDestroyingOperatorDelete());
1844 
1845  // Find the destructor for the type, if applicable. If the
1846  // destructor is virtual, we'll just emit the vcall and return.
1847  const CXXDestructorDecl *Dtor = nullptr;
1848  if (const RecordType *RT = ElementType->getAs<RecordType>()) {
1849  CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1850  if (RD->hasDefinition() && !RD->hasTrivialDestructor()) {
1851  Dtor = RD->getDestructor();
1852 
1853  if (Dtor->isVirtual()) {
1854  CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType,
1855  Dtor);
1856  return;
1857  }
1858  }
1859  }
1860 
1861  // Make sure that we call delete even if the dtor throws.
1862  // This doesn't have to a conditional cleanup because we're going
1863  // to pop it off in a second.
1864  CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup,
1865  Ptr.getPointer(),
1866  OperatorDelete, ElementType);
1867 
1868  if (Dtor)
1870  /*ForVirtualBase=*/false,
1871  /*Delegating=*/false,
1872  Ptr);
1873  else if (auto Lifetime = ElementType.getObjCLifetime()) {
1874  switch (Lifetime) {
1875  case Qualifiers::OCL_None:
1878  break;
1879 
1882  break;
1883 
1884  case Qualifiers::OCL_Weak:
1885  CGF.EmitARCDestroyWeak(Ptr);
1886  break;
1887  }
1888  }
1889 
1890  CGF.PopCleanupBlock();
1891 }
1892 
1893 namespace {
1894  /// Calls the given 'operator delete' on an array of objects.
1895  struct CallArrayDelete final : EHScopeStack::Cleanup {
1896  llvm::Value *Ptr;
1897  const FunctionDecl *OperatorDelete;
1898  llvm::Value *NumElements;
1899  QualType ElementType;
1900  CharUnits CookieSize;
1901 
1902  CallArrayDelete(llvm::Value *Ptr,
1903  const FunctionDecl *OperatorDelete,
1904  llvm::Value *NumElements,
1905  QualType ElementType,
1906  CharUnits CookieSize)
1907  : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements),
1908  ElementType(ElementType), CookieSize(CookieSize) {}
1909 
1910  void Emit(CodeGenFunction &CGF, Flags flags) override {
1911  CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType, NumElements,
1912  CookieSize);
1913  }
1914  };
1915 }
1916 
1917 /// Emit the code for deleting an array of objects.
1919  const CXXDeleteExpr *E,
1920  Address deletedPtr,
1921  QualType elementType) {
1922  llvm::Value *numElements = nullptr;
1923  llvm::Value *allocatedPtr = nullptr;
1924  CharUnits cookieSize;
1925  CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType,
1926  numElements, allocatedPtr, cookieSize);
1927 
1928  assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer");
1929 
1930  // Make sure that we call delete even if one of the dtors throws.
1931  const FunctionDecl *operatorDelete = E->getOperatorDelete();
1932  CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup,
1933  allocatedPtr, operatorDelete,
1934  numElements, elementType,
1935  cookieSize);
1936 
1937  // Destroy the elements.
1938  if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) {
1939  assert(numElements && "no element count for a type with a destructor!");
1940 
1941  CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
1942  CharUnits elementAlign =
1943  deletedPtr.getAlignment().alignmentOfArrayElement(elementSize);
1944 
1945  llvm::Value *arrayBegin = deletedPtr.getPointer();
1946  llvm::Value *arrayEnd =
1947  CGF.Builder.CreateInBoundsGEP(arrayBegin, numElements, "delete.end");
1948 
1949  // Note that it is legal to allocate a zero-length array, and we
1950  // can never fold the check away because the length should always
1951  // come from a cookie.
1952  CGF.emitArrayDestroy(arrayBegin, arrayEnd, elementType, elementAlign,
1953  CGF.getDestroyer(dtorKind),
1954  /*checkZeroLength*/ true,
1955  CGF.needsEHCleanup(dtorKind));
1956  }
1957 
1958  // Pop the cleanup block.
1959  CGF.PopCleanupBlock();
1960 }
1961 
1963  const Expr *Arg = E->getArgument();
1964  Address Ptr = EmitPointerWithAlignment(Arg);
1965 
1966  // Null check the pointer.
1967  llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull");
1968  llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end");
1969 
1970  llvm::Value *IsNull = Builder.CreateIsNull(Ptr.getPointer(), "isnull");
1971 
1972  Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull);
1973  EmitBlock(DeleteNotNull);
1974 
1975  QualType DeleteTy = E->getDestroyedType();
1976 
1977  // A destroying operator delete overrides the entire operation of the
1978  // delete expression.
1980  EmitDestroyingObjectDelete(*this, E, Ptr, DeleteTy);
1981  EmitBlock(DeleteEnd);
1982  return;
1983  }
1984 
1985  // We might be deleting a pointer to array. If so, GEP down to the
1986  // first non-array element.
1987  // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*)
1988  if (DeleteTy->isConstantArrayType()) {
1989  llvm::Value *Zero = Builder.getInt32(0);
1991 
1992  GEP.push_back(Zero); // point at the outermost array
1993 
1994  // For each layer of array type we're pointing at:
1995  while (const ConstantArrayType *Arr
1996  = getContext().getAsConstantArrayType(DeleteTy)) {
1997  // 1. Unpeel the array type.
1998  DeleteTy = Arr->getElementType();
1999 
2000  // 2. GEP to the first element of the array.
2001  GEP.push_back(Zero);
2002  }
2003 
2004  Ptr = Address(Builder.CreateInBoundsGEP(Ptr.getPointer(), GEP, "del.first"),
2005  Ptr.getAlignment());
2006  }
2007 
2008  assert(ConvertTypeForMem(DeleteTy) == Ptr.getElementType());
2009 
2010  if (E->isArrayForm()) {
2011  EmitArrayDelete(*this, E, Ptr, DeleteTy);
2012  } else {
2013  EmitObjectDelete(*this, E, Ptr, DeleteTy);
2014  }
2015 
2016  EmitBlock(DeleteEnd);
2017 }
2018 
2019 static bool isGLValueFromPointerDeref(const Expr *E) {
2020  E = E->IgnoreParens();
2021 
2022  if (const auto *CE = dyn_cast<CastExpr>(E)) {
2023  if (!CE->getSubExpr()->isGLValue())
2024  return false;
2025  return isGLValueFromPointerDeref(CE->getSubExpr());
2026  }
2027 
2028  if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E))
2029  return isGLValueFromPointerDeref(OVE->getSourceExpr());
2030 
2031  if (const auto *BO = dyn_cast<BinaryOperator>(E))
2032  if (BO->getOpcode() == BO_Comma)
2033  return isGLValueFromPointerDeref(BO->getRHS());
2034 
2035  if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(E))
2036  return isGLValueFromPointerDeref(ACO->getTrueExpr()) ||
2037  isGLValueFromPointerDeref(ACO->getFalseExpr());
2038 
2039  // C++11 [expr.sub]p1:
2040  // The expression E1[E2] is identical (by definition) to *((E1)+(E2))
2041  if (isa<ArraySubscriptExpr>(E))
2042  return true;
2043 
2044  if (const auto *UO = dyn_cast<UnaryOperator>(E))
2045  if (UO->getOpcode() == UO_Deref)
2046  return true;
2047 
2048  return false;
2049 }
2050 
2052  llvm::Type *StdTypeInfoPtrTy) {
2053  // Get the vtable pointer.
2054  Address ThisPtr = CGF.EmitLValue(E).getAddress();
2055 
2056  // C++ [expr.typeid]p2:
2057  // If the glvalue expression is obtained by applying the unary * operator to
2058  // a pointer and the pointer is a null pointer value, the typeid expression
2059  // throws the std::bad_typeid exception.
2060  //
2061  // However, this paragraph's intent is not clear. We choose a very generous
2062  // interpretation which implores us to consider comma operators, conditional
2063  // operators, parentheses and other such constructs.
2064  QualType SrcRecordTy = E->getType();
2066  isGLValueFromPointerDeref(E), SrcRecordTy)) {
2067  llvm::BasicBlock *BadTypeidBlock =
2068  CGF.createBasicBlock("typeid.bad_typeid");
2069  llvm::BasicBlock *EndBlock = CGF.createBasicBlock("typeid.end");
2070 
2071  llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr.getPointer());
2072  CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock);
2073 
2074  CGF.EmitBlock(BadTypeidBlock);
2075  CGF.CGM.getCXXABI().EmitBadTypeidCall(CGF);
2076  CGF.EmitBlock(EndBlock);
2077  }
2078 
2079  return CGF.CGM.getCXXABI().EmitTypeid(CGF, SrcRecordTy, ThisPtr,
2080  StdTypeInfoPtrTy);
2081 }
2082 
2084  llvm::Type *StdTypeInfoPtrTy =
2085  ConvertType(E->getType())->getPointerTo();
2086 
2087  if (E->isTypeOperand()) {
2088  llvm::Constant *TypeInfo =
2089  CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand(getContext()));
2090  return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy);
2091  }
2092 
2093  // C++ [expr.typeid]p2:
2094  // When typeid is applied to a glvalue expression whose type is a
2095  // polymorphic class type, the result refers to a std::type_info object
2096  // representing the type of the most derived object (that is, the dynamic
2097  // type) to which the glvalue refers.
2098  if (E->isPotentiallyEvaluated())
2099  return EmitTypeidFromVTable(*this, E->getExprOperand(),
2100  StdTypeInfoPtrTy);
2101 
2102  QualType OperandTy = E->getExprOperand()->getType();
2103  return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy),
2104  StdTypeInfoPtrTy);
2105 }
2106 
2108  QualType DestTy) {
2109  llvm::Type *DestLTy = CGF.ConvertType(DestTy);
2110  if (DestTy->isPointerType())
2111  return llvm::Constant::getNullValue(DestLTy);
2112 
2113  /// C++ [expr.dynamic.cast]p9:
2114  /// A failed cast to reference type throws std::bad_cast
2115  if (!CGF.CGM.getCXXABI().EmitBadCastCall(CGF))
2116  return nullptr;
2117 
2118  CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end"));
2119  return llvm::UndefValue::get(DestLTy);
2120 }
2121 
2123  const CXXDynamicCastExpr *DCE) {
2124  CGM.EmitExplicitCastExprType(DCE, this);
2125  QualType DestTy = DCE->getTypeAsWritten();
2126 
2127  if (DCE->isAlwaysNull())
2128  if (llvm::Value *T = EmitDynamicCastToNull(*this, DestTy))
2129  return T;
2130 
2131  QualType SrcTy = DCE->getSubExpr()->getType();
2132 
2133  // C++ [expr.dynamic.cast]p7:
2134  // If T is "pointer to cv void," then the result is a pointer to the most
2135  // derived object pointed to by v.
2136  const PointerType *DestPTy = DestTy->getAs<PointerType>();
2137 
2138  bool isDynamicCastToVoid;
2139  QualType SrcRecordTy;
2140  QualType DestRecordTy;
2141  if (DestPTy) {
2142  isDynamicCastToVoid = DestPTy->getPointeeType()->isVoidType();
2143  SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType();
2144  DestRecordTy = DestPTy->getPointeeType();
2145  } else {
2146  isDynamicCastToVoid = false;
2147  SrcRecordTy = SrcTy;
2148  DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType();
2149  }
2150 
2151  assert(SrcRecordTy->isRecordType() && "source type must be a record type!");
2152 
2153  // C++ [expr.dynamic.cast]p4:
2154  // If the value of v is a null pointer value in the pointer case, the result
2155  // is the null pointer value of type T.
2156  bool ShouldNullCheckSrcValue =
2157  CGM.getCXXABI().shouldDynamicCastCallBeNullChecked(SrcTy->isPointerType(),
2158  SrcRecordTy);
2159 
2160  llvm::BasicBlock *CastNull = nullptr;
2161  llvm::BasicBlock *CastNotNull = nullptr;
2162  llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end");
2163 
2164  if (ShouldNullCheckSrcValue) {
2165  CastNull = createBasicBlock("dynamic_cast.null");
2166  CastNotNull = createBasicBlock("dynamic_cast.notnull");
2167 
2168  llvm::Value *IsNull = Builder.CreateIsNull(ThisAddr.getPointer());
2169  Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
2170  EmitBlock(CastNotNull);
2171  }
2172 
2173  llvm::Value *Value;
2174  if (isDynamicCastToVoid) {
2175  Value = CGM.getCXXABI().EmitDynamicCastToVoid(*this, ThisAddr, SrcRecordTy,
2176  DestTy);
2177  } else {
2178  assert(DestRecordTy->isRecordType() &&
2179  "destination type must be a record type!");
2180  Value = CGM.getCXXABI().EmitDynamicCastCall(*this, ThisAddr, SrcRecordTy,
2181  DestTy, DestRecordTy, CastEnd);
2182  CastNotNull = Builder.GetInsertBlock();
2183  }
2184 
2185  if (ShouldNullCheckSrcValue) {
2186  EmitBranch(CastEnd);
2187 
2188  EmitBlock(CastNull);
2189  EmitBranch(CastEnd);
2190  }
2191 
2192  EmitBlock(CastEnd);
2193 
2194  if (ShouldNullCheckSrcValue) {
2195  llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
2196  PHI->addIncoming(Value, CastNotNull);
2197  PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull);
2198 
2199  Value = PHI;
2200  }
2201 
2202  return Value;
2203 }
2204 
2206  RunCleanupsScope Scope(*this);
2207  LValue SlotLV = MakeAddrLValue(Slot.getAddress(), E->getType());
2208 
2211  e = E->capture_init_end();
2212  i != e; ++i, ++CurField) {
2213  // Emit initialization
2214  LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField);
2215  if (CurField->hasCapturedVLAType()) {
2216  auto VAT = CurField->getCapturedVLAType();
2217  EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV);
2218  } else {
2219  EmitInitializerForField(*CurField, LV, *i);
2220  }
2221  }
2222 }
A call to an overloaded operator written using operator syntax.
Definition: ExprCXX.h:52
ReturnValueSlot - Contains the address where the return value of a function can be stored...
Definition: CGCall.h:281
virtual void EmitBadTypeidCall(CodeGenFunction &CGF)=0
FunctionDecl - An instance of this class is created to represent a function declaration or definition...
Definition: Decl.h:1631
bool isReservedGlobalPlacementOperator() const
Determines whether this operator new or delete is one of the reserved global placement operators: voi...
Definition: Decl.cpp:2646
Address getAddress() const
Definition: CGValue.h:561
Complete object ctor.
Definition: ABI.h:26
PointerType - C99 6.7.5.1 - Pointer Declarators.
Definition: Type.h:2222
QualType getPointeeType() const
Definition: Type.h:2236
llvm::iterator_range< arg_iterator > placement_arguments()
Definition: ExprCXX.h:1938
Destroyer * getDestroyer(QualType::DestructionKind destructionKind)
Definition: CGDecl.cpp:1457
A (possibly-)qualified type.
Definition: Type.h:614
static RValue EmitNewDeleteCall(CodeGenFunction &CGF, const FunctionDecl *CalleeDecl, const FunctionProtoType *CalleeType, const CallArgList &Args)
Emit a call to an operator new or operator delete function, as implicitly created by new-expressions ...
Definition: CGExprCXX.cpp:1263
bool isPODType(const ASTContext &Context) const
Determine whether this is a Plain Old Data (POD) type (C++ 3.9p10).
Definition: Type.cpp:2026
static CGCallee BuildAppleKextVirtualCall(CodeGenFunction &CGF, GlobalDecl GD, llvm::Type *Ty, const CXXRecordDecl *RD)
Definition: CGCXX.cpp:260
ValueDecl * getMemberDecl() const
Retrieve the member declaration to which this expression refers.
Definition: Expr.h:2483
Expr * getArg(unsigned Arg)
getArg - Return the specified argument.
Definition: Expr.h:2278
void EmitARCDestroyWeak(Address addr)
void @objc_destroyWeak(i8** addr) Essentially objc_storeWeak(addr, nil).
Definition: CGObjC.cpp:2296
const ASTRecordLayout & getASTRecordLayout(const RecordDecl *D) const
Get or compute information about the layout of the specified record (struct/union/class) D...
Stmt - This represents one statement.
Definition: Stmt.h:60
unsigned getNumArgs() const
getNumArgs - Return the number of actual arguments to this call.
Definition: Expr.h:2266
void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType, llvm::Type *ElementTy, Address NewPtr, llvm::Value *NumElements, llvm::Value *AllocSizeWithoutCookie)
Definition: CGExprCXX.cpp:948
QualType getPointeeType() const
If this is a pointer, ObjC object pointer, or block pointer, this returns the respective pointee...
Definition: Type.cpp:435
virtual bool shouldTypeidBeNullChecked(bool IsDeref, QualType SrcRecordTy)=0
Checking the &#39;this&#39; pointer for a constructor call.
bool isRecordType() const
Definition: Type.h:5823
Expr * getBase() const
Definition: Expr.h:2477
Decl - This represents one declaration (or definition), e.g.
Definition: DeclBase.h:81
void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V, QualType Type, CharUnits Alignment=CharUnits::Zero(), SanitizerSet SkippedChecks=SanitizerSet())
Emit a check that V is the address of storage of the appropriate size and alignment for an object of ...
Definition: CGExpr.cpp:588
bool isVirtual() const
Definition: DeclCXX.h:1962
FunctionDecl * getOperatorNew() const
Definition: ExprCXX.h:1867
Opcode getOpcode() const
Definition: Expr.h:3027
bool hasQualifier() const
Determines whether this member expression actually had a C++ nested-name-specifier prior to the name ...
Definition: Expr.h:2497
const void * Store
Store - This opaque type encapsulates an immutable mapping from locations to values.
Definition: StoreRef.h:26
The base class of the type hierarchy.
Definition: Type.h:1300
bool requiresZeroInitialization() const
Whether this construction first requires zero-initialization before the initializer is called...
Definition: ExprCXX.h:1267
void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit)
EmitComplexExprIntoLValue - Emit the given expression of complex type and place its result into the s...
Represents an array type, per C99 6.7.5.2 - Array Declarators.
Definition: Type.h:2495
Represents a call to a C++ constructor.
Definition: ExprCXX.h:1177
RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E, ReturnValueSlot ReturnValue)
Definition: CGExprCXX.cpp:167
bool isZero() const
isZero - Test whether the quantity equals zero.
Definition: CharUnits.h:116
The l-value was an access to a declared entity or something equivalently strong, like the address of ...
llvm::IntegerType * Int8Ty
i8, i16, i32, and i64
Represents a C++ constructor within a class.
Definition: DeclCXX.h:2344
Expr * ignoreParenBaseCasts() LLVM_READONLY
Ignore parentheses and derived-to-base casts.
Definition: Expr.cpp:2533
static llvm::Value * EmitCXXNewAllocSize(CodeGenFunction &CGF, const CXXNewExpr *e, unsigned minElements, llvm::Value *&numElements, llvm::Value *&sizeWithoutCookie)
Definition: CGExprCXX.cpp:661
Expr *const * const_capture_init_iterator
Const iterator that walks over the capture initialization arguments.
Definition: ExprCXX.h:1646
static saved_type save(CodeGenFunction &CGF, type value)
Definition: EHScopeStack.h:60
QualType getReturnType() const
Definition: Decl.h:2122
unsigned getNumParams() const
Definition: Type.h:3393
const T * getAs() const
Member-template getAs<specific type>&#39;.
Definition: Type.h:6099
IsZeroed_t isZeroed() const
Definition: CGValue.h:586
Address CreateConstInBoundsByteGEP(Address Addr, CharUnits Offset, const llvm::Twine &Name="")
Given a pointer to i8, adjust it by a given constant offset.
Definition: CGBuilder.h:234
llvm::Value * getPointer() const
Definition: Address.h:38
unsigned getNumPlacementArgs() const
Definition: ExprCXX.h:1880
static MemberCallInfo commonEmitCXXMemberOrOperatorCall(CodeGenFunction &CGF, const CXXMethodDecl *MD, llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *CE, CallArgList &Args, CallArgList *RtlArgs)
Definition: CGExprCXX.cpp:37
RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, ReturnValueSlot ReturnValue)
Definition: CGExprCXX.cpp:461
bool hasDefinition() const
Definition: DeclCXX.h:701
Expr * getExprOperand() const
Definition: ExprCXX.h:645
Represents an expression – generally a full-expression – that introduces cleanups to be run at the ...
Definition: ExprCXX.h:2920
RValue EmitCXXMemberOrOperatorCall(const CXXMethodDecl *Method, const CGCallee &Callee, ReturnValueSlot ReturnValue, llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *E, CallArgList *RtlArgs)
Definition: CGExprCXX.cpp:81
The collection of all-type qualifiers we support.
Definition: Type.h:116
CXXRecordDecl * getLambdaClass() const
Retrieve the class that corresponds to the lambda.
Definition: ExprCXX.cpp:994
bool mayInsertExtraPadding(bool EmitRemark=false) const
Whether we are allowed to insert extra padding between fields.
Definition: Decl.cpp:3951
bool isMoveAssignmentOperator() const
Determine whether this is a move assignment operator.
Definition: DeclCXX.cpp:1861
bool isEmpty() const
Determine whether this is an empty class in the sense of (C++11 [meta.unary.prop]).
Definition: DeclCXX.h:1236
An object to manage conditionally-evaluated expressions.
llvm::Value * EmitCXXNewExpr(const CXXNewExpr *E)
Definition: CGExprCXX.cpp:1519
Address getAddress() const
Definition: CGValue.h:329
CodeGenFunction - This class organizes the per-function state that is used while generating LLVM code...
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition: ASTContext.h:128
llvm::Value * EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE)
Definition: CGExprCXX.cpp:2122
static llvm::Value * EmitTypeidFromVTable(CodeGenFunction &CGF, const Expr *E, llvm::Type *StdTypeInfoPtrTy)
Definition: CGExprCXX.cpp:2051
Denotes a cleanup that should run when a scope is exited using exceptional control flow (a throw stat...
Definition: EHScopeStack.h:81
QualType getDestroyedType() const
Retrieve the type being destroyed.
Definition: ExprCXX.cpp:230
static CharUnits Zero()
Zero - Construct a CharUnits quantity of zero.
Definition: CharUnits.h:53
A metaprogramming class for ensuring that a value will dominate an arbitrary position in a function...
Definition: EHScopeStack.h:66
Expr * getSubExpr()
Definition: Expr.h:2762
bool isReplaceableGlobalAllocationFunction(bool *IsAligned=nullptr) const
Determines whether this function is one of the replaceable global allocation functions: void *operato...
Definition: Decl.cpp:2669
Describes an C or C++ initializer list.
Definition: Expr.h:3873
A C++ typeid expression (C++ [expr.typeid]), which gets the type_info that corresponds to the supplie...
Definition: ExprCXX.h:590
Expr * getArraySize()
Definition: ExprCXX.h:1873
FunctionDecl * getOperatorDelete() const
Definition: ExprCXX.h:2037
Base object ctor.
Definition: ABI.h:27
bool isElidable() const
Whether this construction is elidable.
Definition: ExprCXX.h:1246
Address CreateElementBitCast(Address Addr, llvm::Type *Ty, const llvm::Twine &Name="")
Cast the element type of the given address to a different type, preserving information like the align...
Definition: CGBuilder.h:157
CharUnits - This is an opaque type for sizes expressed in character units.
Definition: CharUnits.h:38
void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise)
Destroy a __strong variable.
Definition: CGObjC.cpp:2120
const ArrayType * getAsArrayTypeUnsafe() const
A variant of getAs<> for array types which silently discards qualifiers from the outermost type...
Definition: Type.h:6148
capture_init_iterator capture_init_begin()
Retrieve the first initialization argument for this lambda expression (which initializes the first ca...
Definition: ExprCXX.h:1660
bool isOne() const
isOne - Test whether the quantity equals one.
Definition: CharUnits.h:119
Expr * getInitializer()
The initializer of this new-expression.
Definition: ExprCXX.h:1910
CharUnits getAlignment() const
Return the alignment of this pointer.
Definition: Address.h:67
A builtin binary operation expression such as "x + y" or "x <= y".
Definition: Expr.h:2986
bool isVolatileQualified() const
Determine whether this type is volatile-qualified.
Definition: Type.h:5613
bool needsEHCleanup(QualType::DestructionKind kind)
Determines whether an EH cleanup is required to destroy a type with the given destruction kind...
llvm::CallInst * CreateMemCpy(Address Dest, Address Src, llvm::Value *Size, bool IsVolatile=false)
Definition: CGBuilder.h:259
const Type * getClass() const
Definition: Type.h:2473
bool isArrow() const
Definition: Expr.h:2582
Scope - A scope is a transient data structure that is used while parsing the program.
Definition: Scope.h:39
static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init, QualType AllocType, Address NewPtr)
Definition: CGExprCXX.cpp:923
void initFullExprCleanup()
Set up the last cleaup that was pushed as a conditional full-expression cleanup.
Definition: CGCleanup.cpp:284
void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr, QualType DeleteTy, llvm::Value *NumElements=nullptr, CharUnits CookieSize=CharUnits())
Definition: CGExprCXX.cpp:1723
field_iterator field_begin() const
Definition: Decl.cpp:3904
param_type_iterator param_type_begin() const
Definition: Type.h:3523
llvm::BasicBlock * createBasicBlock(const Twine &name="", llvm::Function *parent=nullptr, llvm::BasicBlock *before=nullptr)
createBasicBlock - Create an LLVM basic block.
static void EmitNullBaseClassInitialization(CodeGenFunction &CGF, Address DestPtr, const CXXRecordDecl *Base)
Definition: CGExprCXX.cpp:466
A C++ lambda expression, which produces a function object (of unspecified type) that can be invoked l...
Definition: ExprCXX.h:1519
bool hasTrivialDestructor() const
Determine whether this class has a trivial destructor (C++ [class.dtor]p3)
Definition: DeclCXX.h:1361
bool isInstance() const
Definition: DeclCXX.h:1945
CXXDestructorDecl * getDestructor() const
Returns the destructor decl for this class.
Definition: DeclCXX.cpp:1437
CXXMethodDecl * getCorrespondingMethodInClass(const CXXRecordDecl *RD, bool MayBeBase=false)
Find the method in RD that corresponds to this one.
Definition: DeclCXX.cpp:1636
bool isNegative() const
isNegative - Test whether the quantity is less than zero.
Definition: CharUnits.h:125
This object can be modified without requiring retains or releases.
Definition: Type.h:137
arg_iterator arg_end()
Definition: Expr.h:2309
Checking the &#39;this&#39; pointer for a call to a non-static member function.
lookup_result lookup(DeclarationName Name) const
lookup - Find the declarations (if any) with the given Name in this context.
Definition: DeclBase.cpp:1506
bool isArrayForm() const
Definition: ExprCXX.h:2026
QualType getTypeAsWritten() const
getTypeAsWritten - Returns the type that this expression is casting to, as written in the source code...
Definition: Expr.h:2912
bool isValid() const
Definition: Address.h:36
void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest)
Definition: CGExprCXX.cpp:554
Represents a C++ pseudo-destructor (C++ [expr.pseudo]).
Definition: ExprCXX.h:2113
void addFrom(const CallArgList &other)
Add all the arguments from another CallArgList to this one.
Definition: CGCall.h:214
CXXRecordDecl * getAsCXXRecordDecl() const
Retrieves the CXXRecordDecl that this type refers to, either because the type is a RecordType or beca...
Definition: Type.cpp:1569
Represents a prototype with parameter type info, e.g.
Definition: Type.h:3170
bool isDynamicClass() const
Definition: DeclCXX.h:714
virtual CharUnits GetArrayCookieSize(const CXXNewExpr *expr)
Returns the extra size required in order to store the array cookie for the given new-expression.
Definition: CGCXXABI.cpp:165
OverloadedOperatorKind getOverloadedOperator() const
getOverloadedOperator - Which C++ overloaded operator this function represents, if any...
Definition: Decl.cpp:3139
CXXConstructorDecl * getConstructor() const
Get the constructor that this expression will (ultimately) call.
Definition: ExprCXX.h:1240
NestedNameSpecifier * getQualifier() const
If the member name was qualified, retrieves the nested-name-specifier that precedes the member name...
Definition: Expr.h:2512
RValue - This trivial value class is used to represent the result of an expression that is evaluated...
Definition: CGValue.h:39
QuantityType getQuantity() const
getQuantity - Get the raw integer representation of this quantity.
Definition: CharUnits.h:179
ASTRecordLayout - This class contains layout information for one RecordDecl, which is a struct/union/...
Definition: RecordLayout.h:34
static TypeEvaluationKind getEvaluationKind(QualType T)
getEvaluationKind - Return the TypeEvaluationKind of QualType T.
Expr - This represents one expression.
Definition: Expr.h:106
bool isVariadic() const
Whether this function is variadic.
Definition: Decl.cpp:2540
bool isDefaulted() const
Whether this function is defaulted per C++0x.
Definition: Decl.h:1927
static Address invalid()
Definition: Address.h:35
static void EnterNewDeleteCleanup(CodeGenFunction &CGF, const CXXNewExpr *E, Address NewPtr, llvm::Value *AllocSize, CharUnits AllocAlign, const CallArgList &NewArgs)
Enter a cleanup to call &#39;operator delete&#39; if the initializer in a new-expression throws.
Definition: CGExprCXX.cpp:1451
virtual void ReadArrayCookie(CodeGenFunction &CGF, Address Ptr, const CXXDeleteExpr *expr, QualType ElementType, llvm::Value *&NumElements, llvm::Value *&AllocPtr, CharUnits &CookieSize)
Reads the array cookie associated with the given pointer, if it has one.
Definition: CGCXXABI.cpp:205
Enters a new scope for capturing cleanups, all of which will be executed once the scope is exited...
const FunctionProtoType * T
RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E)
Definition: CGExprCXX.cpp:106
void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete, llvm::Value *CompletePtr, QualType ElementType)
Definition: CGExprCXX.cpp:1806
void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo, llvm::iterator_range< CallExpr::const_arg_iterator > ArgRange, AbstractCallee AC=AbstractCallee(), unsigned ParamsToSkip=0, EvaluationOrder Order=EvaluationOrder::Default)
EmitCallArgs - Emit call arguments for a function.
const T * castAs() const
Member-template castAs<specific type>.
Definition: Type.h:6162
static CGCallee forDirect(llvm::Constant *functionPtr, const CGCalleeInfo &abstractInfo=CGCalleeInfo())
Definition: CGCall.h:125
SourceLocation getExprLoc() const LLVM_READONLY
Definition: ExprCXX.h:161
Represents a C++ destructor within a class.
Definition: DeclCXX.h:2566
unsigned getNumInits() const
Definition: Expr.h:3903
const Expr * getCallee() const
Definition: Expr.h:2249
bool isArrow() const
Determine whether this pseudo-destructor expression was written using an &#39;->&#39; (otherwise, it used a &#39;.
Definition: ExprCXX.h:2177
llvm::PointerType * getType() const
Return the type of the pointer value.
Definition: Address.h:44
virtual bool EmitBadCastCall(CodeGenFunction &CGF)=0
void add(RValue rvalue, QualType type, bool needscopy=false)
Definition: CGCall.h:207
A class for recording the number of arguments that a function signature requires. ...
bool isTemporaryObject(ASTContext &Ctx, const CXXRecordDecl *TempTy) const
Determine whether the result of this expression is a temporary object of the given class type...
Definition: Expr.cpp:2657
QualType getType() const
Definition: Expr.h:128
void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest)
Definition: CGExprCXX.cpp:2205
RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue, bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow, const Expr *Base)
Definition: CGExprCXX.cpp:193
CharUnits alignmentOfArrayElement(CharUnits elementSize) const
Given that this is the alignment of the first element of an array, return the minimum alignment of an...
Definition: CharUnits.h:197
bool hasInitializer() const
Whether this new-expression has any initializer at all.
Definition: ExprCXX.h:1900
QualType getRecordType(const RecordDecl *Decl) const
static void EmitObjectDelete(CodeGenFunction &CGF, const CXXDeleteExpr *DE, Address Ptr, QualType ElementType)
Emit the code for deleting a single object.
Definition: CGExprCXX.cpp:1829
llvm::CallInst * CreateMemSet(Address Dest, llvm::Value *Value, llvm::Value *Size, bool IsVolatile=false)
Definition: CGBuilder.h:281
llvm::Value * EmitCastToVoidPtr(llvm::Value *value)
Emit a cast to void* in the appropriate address space.
Definition: CGExpr.cpp:50
QualType getTypeOperand(ASTContext &Context) const
Retrieves the type operand of this typeid() expression after various required adjustments (removing r...
Definition: ExprCXX.cpp:59
void emitArrayDestroy(llvm::Value *begin, llvm::Value *end, QualType elementType, CharUnits elementAlign, Destroyer *destroyer, bool checkZeroLength, bool useEHCleanup)
emitArrayDestroy - Destroys all the elements of the given array, beginning from last to first...
Definition: CGDecl.cpp:1572
bool isTrivial() const
Whether this function is "trivial" in some specialized C++ senses.
Definition: Decl.h:1922
QualType getDestroyedType() const
Retrieve the type being destroyed.
Definition: ExprCXX.cpp:161
static AggValueSlot forAddr(Address addr, Qualifiers quals, IsDestructed_t isDestructed, NeedsGCBarriers_t needsGC, IsAliased_t isAliased, IsZeroed_t isZeroed=IsNotZeroed)
forAddr - Make a slot for an aggregate value.
Definition: CGValue.h:501
GlobalDecl - represents a global declaration.
Definition: GlobalDecl.h:29
The l-value was considered opaque, so the alignment was determined from a type.
RecordDecl * getDecl() const
Definition: Type.h:3848
Expr * getArgument()
Definition: ExprCXX.h:2039
bool isAlignValT() const
Definition: Type.cpp:2328
There is no lifetime qualification on this type.
Definition: Type.h:133
A C++ dynamic_cast expression (C++ [expr.dynamic.cast]).
Definition: ExprCXX.h:305
void set(SanitizerMask K, bool Value)
Enable or disable a certain (single) sanitizer.
Definition: Sanitizers.h:59
Assigning into this object requires the old value to be released and the new value to be retained...
Definition: Type.h:144
QualType getCanonicalType() const
Definition: Type.h:5582
llvm::Value * EmitCXXTypeidExpr(const CXXTypeidExpr *E)
Definition: CGExprCXX.cpp:2083
Encodes a location in the source.
A helper class that allows the use of isa/cast/dyncast to detect TagType objects of enums...
Definition: Type.h:3864
virtual llvm::Value * EmitTypeid(CodeGenFunction &CGF, QualType SrcRecordTy, Address ThisPtr, llvm::Type *StdTypeInfoPtrTy)=0
A saved depth on the scope stack.
Definition: EHScopeStack.h:107
static CXXRecordDecl * getCXXRecord(const Expr *E)
Definition: CGExprCXX.cpp:157
Represents a new-expression for memory allocation and constructor calls, e.g: "new CXXNewExpr(foo)"...
Definition: ExprCXX.h:1780
Represents a call to a member function that may be written either with member call syntax (e...
Definition: ExprCXX.h:136
An aggregate value slot.
Definition: CGValue.h:440
A scoped helper to set the current debug location to the specified location or preferred location of ...
Definition: CGDebugInfo.h:620
static void EmitArrayDelete(CodeGenFunction &CGF, const CXXDeleteExpr *E, Address deletedPtr, QualType elementType)
Emit the code for deleting an array of objects.
Definition: CGExprCXX.cpp:1918
Represents a static or instance method of a struct/union/class.
Definition: DeclCXX.h:1918
const ConstantArrayType * getAsConstantArrayType(QualType T) const
Definition: ASTContext.h:2272
Represents a C++ nested name specifier, such as "\::std::vector<int>::".
llvm::Constant * EmitNullConstantForBase(const CXXRecordDecl *Record)
Return a null constant appropriate for zero-initializing a base class with the given type...
QualType getAllocatedType() const
Definition: ExprCXX.h:1841
bool isSignedIntegerOrEnumerationType() const
Determines whether this is an integer type that is signed or an enumeration types whose underlying ty...
Definition: Type.cpp:1781
bool isArray() const
Definition: ExprCXX.h:1872
arg_range arguments()
Definition: Expr.h:2303
virtual void emitVirtualObjectDelete(CodeGenFunction &CGF, const CXXDeleteExpr *DE, Address Ptr, QualType ElementType, const CXXDestructorDecl *Dtor)=0
An aligned address.
Definition: Address.h:25
DestructionKind isDestructedType() const
Returns a nonzero value if objects of this type require non-trivial work to clean up after...
Definition: Type.h:1052
All available information about a concrete callee.
Definition: CGCall.h:66
const CXXRecordDecl * getBestDynamicClassType() const
For an expression of class type or pointer to class type, return the most derived class decl the expr...
Definition: Expr.cpp:63
Complete object dtor.
Definition: ABI.h:36
EnumDecl * getDecl() const
Definition: Type.h:3870
RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, ReturnValueSlot ReturnValue)
Definition: CGExprCXX.cpp:398
Assigning into this object requires a lifetime extension.
Definition: Type.h:150
static void EmitDestroyingObjectDelete(CodeGenFunction &CGF, const CXXDeleteExpr *DE, Address Ptr, QualType ElementType)
Emit the code for deleting a single object with a destroying operator delete.
Definition: CGExprCXX.cpp:1817
RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type, const Expr *Arg, bool IsDelete)
Definition: CGExprCXX.cpp:1297
bool passAlignment() const
Indicates whether the required alignment should be implicitly passed to the allocation function...
Definition: ExprCXX.h:1924
FunctionDecl * getOperatorDelete() const
Definition: ExprCXX.h:1869
CXXCtorType
C++ constructor types.
Definition: ABI.h:25
SourceLocation getExprLoc() const LLVM_READONLY
getExprLoc - Return the preferred location for the arrow when diagnosing a problem with a generic exp...
Definition: Expr.cpp:216
Expr * getLHS() const
Definition: Expr.h:3030
llvm::Value * EmitScalarExpr(const Expr *E, bool IgnoreResultAssign=false)
EmitScalarExpr - Emit the computation of the specified expression of LLVM scalar type, returning the result.
static CharUnits CalculateCookiePadding(CodeGenFunction &CGF, const CXXNewExpr *E)
Definition: CGExprCXX.cpp:648
CharUnits getNonVirtualAlignment() const
getNonVirtualSize - Get the non-virtual alignment (in chars) of an object, which is the alignment of ...
Definition: RecordLayout.h:197
CGFunctionInfo - Class to encapsulate the information about a function definition.
CharUnits alignmentAtOffset(CharUnits offset) const
Given that this is a non-zero alignment value, what is the alignment at the given offset...
Definition: CharUnits.h:190
bool isTypeOperand() const
Definition: ExprCXX.h:628
Dataflow Directional Tag Classes.
void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type, bool ForVirtualBase, bool Delegating, Address This)
Definition: CGClass.cpp:2343
Represents a delete expression for memory deallocation and destructor calls, e.g. ...
Definition: ExprCXX.h:1992
FunctionDecl * getDirectCallee()
If the callee is a FunctionDecl, return it. Otherwise return 0.
Definition: Expr.cpp:1216
bool isInConditionalBranch() const
isInConditionalBranch - Return true if we&#39;re currently emitting one branch or the other of a conditio...
DeclarationName - The name of a declaration.
const CXXRecordDecl * getParent() const
Returns the parent of this method declaration, which is the class in which this method is defined...
Definition: DeclCXX.h:2033
llvm::Function * getIntrinsic(unsigned IID, ArrayRef< llvm::Type *> Tys=None)
A pointer to member type per C++ 8.3.3 - Pointers to members.
Definition: Type.h:2440
bool isCopyAssignmentOperator() const
Determine whether this is a copy-assignment operator, regardless of whether it was declared implicitl...
Definition: DeclCXX.cpp:1840
bool isDestroyingOperatorDelete() const
Determine whether this is a destroying operator delete.
Definition: Decl.cpp:2735
llvm::Module & getModule() const
LValue MakeAddrLValue(Address Addr, QualType T, AlignmentSource Source=AlignmentSource::Type)
specific_decl_iterator - Iterates over a subrange of declarations stored in a DeclContext, providing only those that are of type SpecificDecl (or a class derived from it).
Definition: DeclBase.h:1566
void EmitAggExpr(const Expr *E, AggValueSlot AS)
EmitAggExpr - Emit the computation of the specified expression of aggregate type. ...
Definition: CGExprAgg.cpp:1522
bool isStringLiteralInit() const
Definition: Expr.cpp:1917
static llvm::Value * EmitDynamicCastToNull(CodeGenFunction &CGF, QualType DestTy)
Definition: CGExprCXX.cpp:2107
AlignmentSource getAlignmentSource() const
Definition: CGValue.h:158
A helper class that allows the use of isa/cast/dyncast to detect TagType objects of structs/unions/cl...
Definition: Type.h:3839
CXXMethodDecl * getDevirtualizedMethod(const Expr *Base, bool IsAppleKext)
If it&#39;s possible to devirtualize a call to this method, return the called function.
Definition: DeclCXX.cpp:1694
bool isIntegerType() const
isIntegerType() does not include complex integers (a GCC extension).
Definition: Type.h:5985
arg_iterator arg_begin()
Definition: Expr.h:2308
llvm::Type * getElementType() const
Return the type of the values stored in this address.
Definition: Address.h:52
Represents a call to a CUDA kernel function.
Definition: ExprCXX.h:175
SourceLocation getLocStart() const LLVM_READONLY
Definition: Expr.cpp:1326
void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue, bool capturedByInit)
Definition: CGDecl.cpp:709
Expr * getArg(unsigned Arg)
Return the specified argument.
Definition: ExprCXX.h:1303
Base for LValueReferenceType and RValueReferenceType.
Definition: Type.h:2358
void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp)
Definition: CGExprCXX.cpp:626
llvm::Constant * GetAddrOfFunction(GlobalDecl GD, llvm::Type *Ty=nullptr, bool ForVTable=false, bool DontDefer=false, ForDefinition_t IsForDefinition=NotForDefinition)
Return the address of the given function.
void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false)
EmitBlock - Emit the given block.
Definition: CGStmt.cpp:436
bool isConstantArrayType() const
Definition: Type.h:5808
char __ovld __cnfn max(char x, char y)
Returns y if x < y, otherwise it returns x.
static bool isGLValueFromPointerDeref(const Expr *E)
Definition: CGExprCXX.cpp:2019
llvm::ConstantInt * getSize(CharUnits numChars)
Emit the given number of characters as a value of type size_t.
Reading or writing from this object requires a barrier call.
Definition: Type.h:147
QualType getParamType(unsigned i) const
Definition: Type.h:3394
MemberExpr - [C99 6.5.2.3] Structure and Union Members.
Definition: Expr.h:2387
Represents a C++ struct/union/class.
Definition: DeclCXX.h:266
virtual const CXXRecordDecl * getThisArgumentTypeForMethod(const CXXMethodDecl *MD)
Get the type of the implicit "this" parameter used by a method.
Definition: CGCXXABI.h:329
bool isVoidType() const
Definition: Type.h:5963
bool hasStrongOrWeakObjCLifetime() const
Definition: Type.h:1034
static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E, QualType ElementType, llvm::Type *ElementTy, Address NewPtr, llvm::Value *NumElements, llvm::Value *AllocSizeWithoutCookie)
Definition: CGExprCXX.cpp:1249
llvm::Type * ConvertType(QualType T)
Qualifiers getQualifiers() const
Retrieve the set of qualifiers applied to this type.
Definition: Type.h:5570
void EmitCXXDeleteExpr(const CXXDeleteExpr *E)
Definition: CGExprCXX.cpp:1962
LValue EmitLValue(const Expr *E)
EmitLValue - Emit code to compute a designator that specifies the location of the expression...
Definition: CGExpr.cpp:1121
CharUnits getNonVirtualSize() const
getNonVirtualSize - Get the non-virtual size (in chars) of an object, which is the size of the object...
Definition: RecordLayout.h:189
T * pushCleanupWithExtra(CleanupKind Kind, size_t N, As... A)
Push a cleanup with non-constant storage requirements on the stack.
Definition: EHScopeStack.h:305
static UsualDeleteParams getUsualDeleteParams(const FunctionDecl *FD)
Definition: CGExprCXX.cpp:1323
CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
Definition: Expr.h:2209
QualType getIntegerType() const
getIntegerType - Return the integer type this enum decl corresponds to.
Definition: Decl.h:3256
llvm::Constant * tryEmitAbstract(const Expr *E, QualType T)
Try to emit the result of the given expression as an abstract constant.
CGCXXABI & getCXXABI() const
capture_init_iterator capture_init_end()
Retrieve the iterator pointing one past the last initialization argument for this lambda expression...
Definition: ExprCXX.h:1672
bool isAlwaysNull() const
isAlwaysNull - Return whether the result of the dynamic_cast is proven to always be null...
Definition: ExprCXX.cpp:600
static RValue get(llvm::Value *V)
Definition: CGValue.h:86
bool isUnion() const
Definition: Decl.h:3058
static RequiredArgs forPrototypePlus(const FunctionProtoType *prototype, unsigned additional, const FunctionDecl *FD)
Compute the arguments required by the given formal prototype, given that there may be some additional...
Expr * getRHS() const
Definition: Expr.h:3032
bool isPointerType() const
Definition: Type.h:5766
const CGFunctionInfo & arrangeFreeFunctionCall(const CallArgList &Args, const FunctionType *Ty, bool ChainCall)
Figure out the rules for calling a function with the given formal type using the given arguments...
Definition: CGCall.cpp:597
CharUnits getTypeSizeInChars(QualType T) const
Return the size of the specified (complete) type T, in characters.
virtual std::vector< CharUnits > getVBPtrOffsets(const CXXRecordDecl *RD)
Gets the offsets of all the virtual base pointers in a given class.
Definition: CGCXXABI.cpp:302
QualType getType() const
Definition: Decl.h:602
bool shouldNullCheckAllocation(const ASTContext &Ctx) const
True if the allocation result needs to be null-checked.
Definition: ExprCXX.cpp:154
LValue - This represents an lvalue references.
Definition: CGValue.h:172
An abstract representation of regular/ObjC call/message targets.
Information for lazily generating a cleanup.
Definition: EHScopeStack.h:147
bool isPotentiallyEvaluated() const
Determine whether this typeid has a type operand which is potentially evaluated, per C++11 [expr...
Definition: ExprCXX.cpp:44
RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue)
Definition: CGExprCXX.cpp:451
TranslationUnitDecl * getTranslationUnitDecl()
Definition: DeclBase.cpp:331
CallArgList - Type for representing both the value and type of arguments in a call.
Definition: CGCall.h:182
void PopCleanupBlock(bool FallThroughIsBranchThrough=false)
PopCleanupBlock - Will pop the cleanup entry on the stack and process all branch fixups.
Definition: CGCleanup.cpp:640
Represents the canonical version of C arrays with a specified constant size.
Definition: Type.h:2551
Represents an implicitly-generated value initialization of an object of a given type.
Definition: Expr.h:4581
QualType getPointeeType() const
Definition: Type.h:2459
RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, ReturnValueSlot ReturnValue, const CallArgList &Args, llvm::Instruction **callOrInvoke=nullptr)
EmitCall - Generate a call of the given function, expecting the given result type, and using the given argument list which specifies both the LLVM arguments and the types they were derived from.
Definition: CGCall.cpp:3708
Expr * IgnoreParens() LLVM_READONLY
IgnoreParens - Ignore parentheses.
Definition: Expr.cpp:2432
ConstructionKind getConstructionKind() const
Determine whether this constructor is actually constructing a base class (rather than a complete obje...
Definition: ExprCXX.h:1274
CanQualType getSizeType() const
Return the unique type for "size_t" (C99 7.17), defined in <stddef.h>.
Qualifiers::ObjCLifetime getObjCLifetime() const
Returns lifetime attribute of this type.
Definition: Type.h:1026
param_type_iterator param_type_end() const
Definition: Type.h:3526