clang  7.0.0svn
CGExprCXX.cpp
Go to the documentation of this file.
1 //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code dealing with code generation of C++ expressions
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGDebugInfo.h"
18 #include "CGObjCRuntime.h"
19 #include "ConstantEmitter.h"
22 #include "llvm/IR/CallSite.h"
23 #include "llvm/IR/Intrinsics.h"
24 
25 using namespace clang;
26 using namespace CodeGen;
27 
28 namespace {
29 struct MemberCallInfo {
30  RequiredArgs ReqArgs;
31  // Number of prefix arguments for the call. Ignores the `this` pointer.
32  unsigned PrefixSize;
33 };
34 }
35 
36 static MemberCallInfo
38  llvm::Value *This, llvm::Value *ImplicitParam,
39  QualType ImplicitParamTy, const CallExpr *CE,
40  CallArgList &Args, CallArgList *RtlArgs) {
41  assert(CE == nullptr || isa<CXXMemberCallExpr>(CE) ||
42  isa<CXXOperatorCallExpr>(CE));
43  assert(MD->isInstance() &&
44  "Trying to emit a member or operator call expr on a static method!");
45  ASTContext &C = CGF.getContext();
46 
47  // Push the this ptr.
48  const CXXRecordDecl *RD =
50  Args.add(RValue::get(This),
51  RD ? C.getPointerType(C.getTypeDeclType(RD)) : C.VoidPtrTy);
52 
53  // If there is an implicit parameter (e.g. VTT), emit it.
54  if (ImplicitParam) {
55  Args.add(RValue::get(ImplicitParam), ImplicitParamTy);
56  }
57 
58  const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
59  RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size(), MD);
60  unsigned PrefixSize = Args.size() - 1;
61 
62  // And the rest of the call args.
63  if (RtlArgs) {
64  // Special case: if the caller emitted the arguments right-to-left already
65  // (prior to emitting the *this argument), we're done. This happens for
66  // assignment operators.
67  Args.addFrom(*RtlArgs);
68  } else if (CE) {
69  // Special case: skip first argument of CXXOperatorCall (it is "this").
70  unsigned ArgsToSkip = isa<CXXOperatorCallExpr>(CE) ? 1 : 0;
71  CGF.EmitCallArgs(Args, FPT, drop_begin(CE->arguments(), ArgsToSkip),
72  CE->getDirectCallee());
73  } else {
74  assert(
75  FPT->getNumParams() == 0 &&
76  "No CallExpr specified for function with non-zero number of arguments");
77  }
78  return {required, PrefixSize};
79 }
80 
82  const CXXMethodDecl *MD, const CGCallee &Callee,
83  ReturnValueSlot ReturnValue,
84  llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy,
85  const CallExpr *CE, CallArgList *RtlArgs) {
86  const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
87  CallArgList Args;
88  MemberCallInfo CallInfo = commonEmitCXXMemberOrOperatorCall(
89  *this, MD, This, ImplicitParam, ImplicitParamTy, CE, Args, RtlArgs);
90  auto &FnInfo = CGM.getTypes().arrangeCXXMethodCall(
91  Args, FPT, CallInfo.ReqArgs, CallInfo.PrefixSize);
92  return EmitCall(FnInfo, Callee, ReturnValue, Args, nullptr,
93  CE ? CE->getExprLoc() : SourceLocation());
94 }
95 
97  const CXXDestructorDecl *DD, const CGCallee &Callee, llvm::Value *This,
98  llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *CE,
100  CallArgList Args;
101  commonEmitCXXMemberOrOperatorCall(*this, DD, This, ImplicitParam,
102  ImplicitParamTy, CE, Args, nullptr);
103  return EmitCall(CGM.getTypes().arrangeCXXStructorDeclaration(DD, Type),
104  Callee, ReturnValueSlot(), Args);
105 }
106 
108  const CXXPseudoDestructorExpr *E) {
109  QualType DestroyedType = E->getDestroyedType();
110  if (DestroyedType.hasStrongOrWeakObjCLifetime()) {
111  // Automatic Reference Counting:
112  // If the pseudo-expression names a retainable object with weak or
113  // strong lifetime, the object shall be released.
114  Expr *BaseExpr = E->getBase();
115  Address BaseValue = Address::invalid();
116  Qualifiers BaseQuals;
117 
118  // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
119  if (E->isArrow()) {
120  BaseValue = EmitPointerWithAlignment(BaseExpr);
121  const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>();
122  BaseQuals = PTy->getPointeeType().getQualifiers();
123  } else {
124  LValue BaseLV = EmitLValue(BaseExpr);
125  BaseValue = BaseLV.getAddress();
126  QualType BaseTy = BaseExpr->getType();
127  BaseQuals = BaseTy.getQualifiers();
128  }
129 
130  switch (DestroyedType.getObjCLifetime()) {
134  break;
135 
137  EmitARCRelease(Builder.CreateLoad(BaseValue,
138  DestroyedType.isVolatileQualified()),
140  break;
141 
143  EmitARCDestroyWeak(BaseValue);
144  break;
145  }
146  } else {
147  // C++ [expr.pseudo]p1:
148  // The result shall only be used as the operand for the function call
149  // operator (), and the result of such a call has type void. The only
150  // effect is the evaluation of the postfix-expression before the dot or
151  // arrow.
152  EmitIgnoredExpr(E->getBase());
153  }
154 
155  return RValue::get(nullptr);
156 }
157 
158 static CXXRecordDecl *getCXXRecord(const Expr *E) {
159  QualType T = E->getType();
160  if (const PointerType *PTy = T->getAs<PointerType>())
161  T = PTy->getPointeeType();
162  const RecordType *Ty = T->castAs<RecordType>();
163  return cast<CXXRecordDecl>(Ty->getDecl());
164 }
165 
166 // Note: This function also emit constructor calls to support a MSVC
167 // extensions allowing explicit constructor function call.
169  ReturnValueSlot ReturnValue) {
170  const Expr *callee = CE->getCallee()->IgnoreParens();
171 
172  if (isa<BinaryOperator>(callee))
173  return EmitCXXMemberPointerCallExpr(CE, ReturnValue);
174 
175  const MemberExpr *ME = cast<MemberExpr>(callee);
176  const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl());
177 
178  if (MD->isStatic()) {
179  // The method is static, emit it as we would a regular call.
180  CGCallee callee = CGCallee::forDirect(CGM.GetAddrOfFunction(MD), MD);
181  return EmitCall(getContext().getPointerType(MD->getType()), callee, CE,
182  ReturnValue);
183  }
184 
185  bool HasQualifier = ME->hasQualifier();
186  NestedNameSpecifier *Qualifier = HasQualifier ? ME->getQualifier() : nullptr;
187  bool IsArrow = ME->isArrow();
188  const Expr *Base = ME->getBase();
189 
190  return EmitCXXMemberOrOperatorMemberCallExpr(
191  CE, MD, ReturnValue, HasQualifier, Qualifier, IsArrow, Base);
192 }
193 
195  const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue,
196  bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow,
197  const Expr *Base) {
198  assert(isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE));
199 
200  // Compute the object pointer.
201  bool CanUseVirtualCall = MD->isVirtual() && !HasQualifier;
202 
203  const CXXMethodDecl *DevirtualizedMethod = nullptr;
204  if (CanUseVirtualCall &&
205  MD->getDevirtualizedMethod(Base, getLangOpts().AppleKext)) {
206  const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType();
207  DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl);
208  assert(DevirtualizedMethod);
209  const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent();
210  const Expr *Inner = Base->ignoreParenBaseCasts();
211  if (DevirtualizedMethod->getReturnType().getCanonicalType() !=
213  // If the return types are not the same, this might be a case where more
214  // code needs to run to compensate for it. For example, the derived
215  // method might return a type that inherits form from the return
216  // type of MD and has a prefix.
217  // For now we just avoid devirtualizing these covariant cases.
218  DevirtualizedMethod = nullptr;
219  else if (getCXXRecord(Inner) == DevirtualizedClass)
220  // If the class of the Inner expression is where the dynamic method
221  // is defined, build the this pointer from it.
222  Base = Inner;
223  else if (getCXXRecord(Base) != DevirtualizedClass) {
224  // If the method is defined in a class that is not the best dynamic
225  // one or the one of the full expression, we would have to build
226  // a derived-to-base cast to compute the correct this pointer, but
227  // we don't have support for that yet, so do a virtual call.
228  DevirtualizedMethod = nullptr;
229  }
230  }
231 
232  // C++17 demands that we evaluate the RHS of a (possibly-compound) assignment
233  // operator before the LHS.
234  CallArgList RtlArgStorage;
235  CallArgList *RtlArgs = nullptr;
236  if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(CE)) {
237  if (OCE->isAssignmentOp()) {
238  RtlArgs = &RtlArgStorage;
239  EmitCallArgs(*RtlArgs, MD->getType()->castAs<FunctionProtoType>(),
240  drop_begin(CE->arguments(), 1), CE->getDirectCallee(),
241  /*ParamsToSkip*/0, EvaluationOrder::ForceRightToLeft);
242  }
243  }
244 
245  LValue This;
246  if (IsArrow) {
247  LValueBaseInfo BaseInfo;
248  TBAAAccessInfo TBAAInfo;
249  Address ThisValue = EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo);
250  This = MakeAddrLValue(ThisValue, Base->getType(), BaseInfo, TBAAInfo);
251  } else {
252  This = EmitLValue(Base);
253  }
254 
255 
256  if (MD->isTrivial() || (MD->isDefaulted() && MD->getParent()->isUnion())) {
257  if (isa<CXXDestructorDecl>(MD)) return RValue::get(nullptr);
258  if (isa<CXXConstructorDecl>(MD) &&
259  cast<CXXConstructorDecl>(MD)->isDefaultConstructor())
260  return RValue::get(nullptr);
261 
262  if (!MD->getParent()->mayInsertExtraPadding()) {
264  // We don't like to generate the trivial copy/move assignment operator
265  // when it isn't necessary; just produce the proper effect here.
266  LValue RHS = isa<CXXOperatorCallExpr>(CE)
267  ? MakeNaturalAlignAddrLValue(
268  (*RtlArgs)[0].getRValue(*this).getScalarVal(),
269  (*(CE->arg_begin() + 1))->getType())
270  : EmitLValue(*CE->arg_begin());
271  EmitAggregateAssign(This, RHS, CE->getType());
272  return RValue::get(This.getPointer());
273  }
274 
275  if (isa<CXXConstructorDecl>(MD) &&
276  cast<CXXConstructorDecl>(MD)->isCopyOrMoveConstructor()) {
277  // Trivial move and copy ctor are the same.
278  assert(CE->getNumArgs() == 1 && "unexpected argcount for trivial ctor");
279  const Expr *Arg = *CE->arg_begin();
280  LValue RHS = EmitLValue(Arg);
281  LValue Dest = MakeAddrLValue(This.getAddress(), Arg->getType());
282  // This is the MSVC p->Ctor::Ctor(...) extension. We assume that's
283  // constructing a new complete object of type Ctor.
284  EmitAggregateCopy(Dest, RHS, Arg->getType(),
286  return RValue::get(This.getPointer());
287  }
288  llvm_unreachable("unknown trivial member function");
289  }
290  }
291 
292  // Compute the function type we're calling.
293  const CXXMethodDecl *CalleeDecl =
294  DevirtualizedMethod ? DevirtualizedMethod : MD;
295  const CGFunctionInfo *FInfo = nullptr;
296  if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl))
297  FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration(
298  Dtor, StructorType::Complete);
299  else if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(CalleeDecl))
300  FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration(
301  Ctor, StructorType::Complete);
302  else
303  FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl);
304 
305  llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo);
306 
307  // C++11 [class.mfct.non-static]p2:
308  // If a non-static member function of a class X is called for an object that
309  // is not of type X, or of a type derived from X, the behavior is undefined.
310  SourceLocation CallLoc;
311  ASTContext &C = getContext();
312  if (CE)
313  CallLoc = CE->getExprLoc();
314 
315  SanitizerSet SkippedChecks;
316  if (const auto *CMCE = dyn_cast<CXXMemberCallExpr>(CE)) {
317  auto *IOA = CMCE->getImplicitObjectArgument();
318  bool IsImplicitObjectCXXThis = IsWrappedCXXThis(IOA);
319  if (IsImplicitObjectCXXThis)
320  SkippedChecks.set(SanitizerKind::Alignment, true);
321  if (IsImplicitObjectCXXThis || isa<DeclRefExpr>(IOA))
322  SkippedChecks.set(SanitizerKind::Null, true);
323  }
324  EmitTypeCheck(
325  isa<CXXConstructorDecl>(CalleeDecl) ? CodeGenFunction::TCK_ConstructorCall
327  CallLoc, This.getPointer(), C.getRecordType(CalleeDecl->getParent()),
328  /*Alignment=*/CharUnits::Zero(), SkippedChecks);
329 
330  // FIXME: Uses of 'MD' past this point need to be audited. We may need to use
331  // 'CalleeDecl' instead.
332 
333  // C++ [class.virtual]p12:
334  // Explicit qualification with the scope operator (5.1) suppresses the
335  // virtual call mechanism.
336  //
337  // We also don't emit a virtual call if the base expression has a record type
338  // because then we know what the type is.
339  bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod;
340 
341  if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(MD)) {
342  assert(CE->arg_begin() == CE->arg_end() &&
343  "Destructor shouldn't have explicit parameters");
344  assert(ReturnValue.isNull() && "Destructor shouldn't have return value");
345  if (UseVirtualCall) {
346  CGM.getCXXABI().EmitVirtualDestructorCall(
347  *this, Dtor, Dtor_Complete, This.getAddress(),
348  cast<CXXMemberCallExpr>(CE));
349  } else {
350  CGCallee Callee;
351  if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier)
352  Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty);
353  else if (!DevirtualizedMethod)
354  Callee = CGCallee::forDirect(
355  CGM.getAddrOfCXXStructor(Dtor, StructorType::Complete, FInfo, Ty),
356  Dtor);
357  else {
358  const CXXDestructorDecl *DDtor =
359  cast<CXXDestructorDecl>(DevirtualizedMethod);
360  Callee = CGCallee::forDirect(
361  CGM.GetAddrOfFunction(GlobalDecl(DDtor, Dtor_Complete), Ty),
362  DDtor);
363  }
364  EmitCXXMemberOrOperatorCall(
365  CalleeDecl, Callee, ReturnValue, This.getPointer(),
366  /*ImplicitParam=*/nullptr, QualType(), CE, nullptr);
367  }
368  return RValue::get(nullptr);
369  }
370 
371  CGCallee Callee;
372  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
373  Callee = CGCallee::forDirect(
374  CGM.GetAddrOfFunction(GlobalDecl(Ctor, Ctor_Complete), Ty),
375  Ctor);
376  } else if (UseVirtualCall) {
377  Callee = CGCallee::forVirtual(CE, MD, This.getAddress(), Ty);
378  } else {
379  if (SanOpts.has(SanitizerKind::CFINVCall) &&
380  MD->getParent()->isDynamicClass()) {
381  llvm::Value *VTable;
382  const CXXRecordDecl *RD;
383  std::tie(VTable, RD) =
384  CGM.getCXXABI().LoadVTablePtr(*this, This.getAddress(),
385  MD->getParent());
386  EmitVTablePtrCheckForCall(RD, VTable, CFITCK_NVCall, CE->getLocStart());
387  }
388 
389  if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier)
390  Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty);
391  else if (!DevirtualizedMethod)
392  Callee = CGCallee::forDirect(CGM.GetAddrOfFunction(MD, Ty), MD);
393  else {
394  Callee = CGCallee::forDirect(
395  CGM.GetAddrOfFunction(DevirtualizedMethod, Ty),
396  DevirtualizedMethod);
397  }
398  }
399 
400  if (MD->isVirtual()) {
401  Address NewThisAddr =
402  CGM.getCXXABI().adjustThisArgumentForVirtualFunctionCall(
403  *this, CalleeDecl, This.getAddress(), UseVirtualCall);
404  This.setAddress(NewThisAddr);
405  }
406 
407  return EmitCXXMemberOrOperatorCall(
408  CalleeDecl, Callee, ReturnValue, This.getPointer(),
409  /*ImplicitParam=*/nullptr, QualType(), CE, RtlArgs);
410 }
411 
412 RValue
414  ReturnValueSlot ReturnValue) {
415  const BinaryOperator *BO =
416  cast<BinaryOperator>(E->getCallee()->IgnoreParens());
417  const Expr *BaseExpr = BO->getLHS();
418  const Expr *MemFnExpr = BO->getRHS();
419 
420  const MemberPointerType *MPT =
421  MemFnExpr->getType()->castAs<MemberPointerType>();
422 
423  const FunctionProtoType *FPT =
425  const CXXRecordDecl *RD =
426  cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl());
427 
428  // Emit the 'this' pointer.
429  Address This = Address::invalid();
430  if (BO->getOpcode() == BO_PtrMemI)
431  This = EmitPointerWithAlignment(BaseExpr);
432  else
433  This = EmitLValue(BaseExpr).getAddress();
434 
435  EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This.getPointer(),
436  QualType(MPT->getClass(), 0));
437 
438  // Get the member function pointer.
439  llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr);
440 
441  // Ask the ABI to load the callee. Note that This is modified.
442  llvm::Value *ThisPtrForCall = nullptr;
443  CGCallee Callee =
444  CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, BO, This,
445  ThisPtrForCall, MemFnPtr, MPT);
446 
447  CallArgList Args;
448 
449  QualType ThisType =
450  getContext().getPointerType(getContext().getTagDeclType(RD));
451 
452  // Push the this ptr.
453  Args.add(RValue::get(ThisPtrForCall), ThisType);
454 
455  RequiredArgs required =
456  RequiredArgs::forPrototypePlus(FPT, 1, /*FD=*/nullptr);
457 
458  // And the rest of the call args
459  EmitCallArgs(Args, FPT, E->arguments());
460  return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required,
461  /*PrefixSize=*/0),
462  Callee, ReturnValue, Args, nullptr, E->getExprLoc());
463 }
464 
465 RValue
467  const CXXMethodDecl *MD,
468  ReturnValueSlot ReturnValue) {
469  assert(MD->isInstance() &&
470  "Trying to emit a member call expr on a static method!");
471  return EmitCXXMemberOrOperatorMemberCallExpr(
472  E, MD, ReturnValue, /*HasQualifier=*/false, /*Qualifier=*/nullptr,
473  /*IsArrow=*/false, E->getArg(0));
474 }
475 
477  ReturnValueSlot ReturnValue) {
478  return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue);
479 }
480 
482  Address DestPtr,
483  const CXXRecordDecl *Base) {
484  if (Base->isEmpty())
485  return;
486 
487  DestPtr = CGF.Builder.CreateElementBitCast(DestPtr, CGF.Int8Ty);
488 
489  const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base);
490  CharUnits NVSize = Layout.getNonVirtualSize();
491 
492  // We cannot simply zero-initialize the entire base sub-object if vbptrs are
493  // present, they are initialized by the most derived class before calling the
494  // constructor.
496  Stores.emplace_back(CharUnits::Zero(), NVSize);
497 
498  // Each store is split by the existence of a vbptr.
499  CharUnits VBPtrWidth = CGF.getPointerSize();
500  std::vector<CharUnits> VBPtrOffsets =
501  CGF.CGM.getCXXABI().getVBPtrOffsets(Base);
502  for (CharUnits VBPtrOffset : VBPtrOffsets) {
503  // Stop before we hit any virtual base pointers located in virtual bases.
504  if (VBPtrOffset >= NVSize)
505  break;
506  std::pair<CharUnits, CharUnits> LastStore = Stores.pop_back_val();
507  CharUnits LastStoreOffset = LastStore.first;
508  CharUnits LastStoreSize = LastStore.second;
509 
510  CharUnits SplitBeforeOffset = LastStoreOffset;
511  CharUnits SplitBeforeSize = VBPtrOffset - SplitBeforeOffset;
512  assert(!SplitBeforeSize.isNegative() && "negative store size!");
513  if (!SplitBeforeSize.isZero())
514  Stores.emplace_back(SplitBeforeOffset, SplitBeforeSize);
515 
516  CharUnits SplitAfterOffset = VBPtrOffset + VBPtrWidth;
517  CharUnits SplitAfterSize = LastStoreSize - SplitAfterOffset;
518  assert(!SplitAfterSize.isNegative() && "negative store size!");
519  if (!SplitAfterSize.isZero())
520  Stores.emplace_back(SplitAfterOffset, SplitAfterSize);
521  }
522 
523  // If the type contains a pointer to data member we can't memset it to zero.
524  // Instead, create a null constant and copy it to the destination.
525  // TODO: there are other patterns besides zero that we can usefully memset,
526  // like -1, which happens to be the pattern used by member-pointers.
527  // TODO: isZeroInitializable can be over-conservative in the case where a
528  // virtual base contains a member pointer.
529  llvm::Constant *NullConstantForBase = CGF.CGM.EmitNullConstantForBase(Base);
530  if (!NullConstantForBase->isNullValue()) {
531  llvm::GlobalVariable *NullVariable = new llvm::GlobalVariable(
532  CGF.CGM.getModule(), NullConstantForBase->getType(),
533  /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage,
534  NullConstantForBase, Twine());
535 
536  CharUnits Align = std::max(Layout.getNonVirtualAlignment(),
537  DestPtr.getAlignment());
538  NullVariable->setAlignment(Align.getQuantity());
539 
540  Address SrcPtr = Address(CGF.EmitCastToVoidPtr(NullVariable), Align);
541 
542  // Get and call the appropriate llvm.memcpy overload.
543  for (std::pair<CharUnits, CharUnits> Store : Stores) {
544  CharUnits StoreOffset = Store.first;
545  CharUnits StoreSize = Store.second;
546  llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize);
547  CGF.Builder.CreateMemCpy(
548  CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset),
549  CGF.Builder.CreateConstInBoundsByteGEP(SrcPtr, StoreOffset),
550  StoreSizeVal);
551  }
552 
553  // Otherwise, just memset the whole thing to zero. This is legal
554  // because in LLVM, all default initializers (other than the ones we just
555  // handled above) are guaranteed to have a bit pattern of all zeros.
556  } else {
557  for (std::pair<CharUnits, CharUnits> Store : Stores) {
558  CharUnits StoreOffset = Store.first;
559  CharUnits StoreSize = Store.second;
560  llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize);
561  CGF.Builder.CreateMemSet(
562  CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset),
563  CGF.Builder.getInt8(0), StoreSizeVal);
564  }
565  }
566 }
567 
568 void
570  AggValueSlot Dest) {
571  assert(!Dest.isIgnored() && "Must have a destination!");
572  const CXXConstructorDecl *CD = E->getConstructor();
573 
574  // If we require zero initialization before (or instead of) calling the
575  // constructor, as can be the case with a non-user-provided default
576  // constructor, emit the zero initialization now, unless destination is
577  // already zeroed.
578  if (E->requiresZeroInitialization() && !Dest.isZeroed()) {
579  switch (E->getConstructionKind()) {
582  EmitNullInitialization(Dest.getAddress(), E->getType());
583  break;
587  CD->getParent());
588  break;
589  }
590  }
591 
592  // If this is a call to a trivial default constructor, do nothing.
593  if (CD->isTrivial() && CD->isDefaultConstructor())
594  return;
595 
596  // Elide the constructor if we're constructing from a temporary.
597  // The temporary check is required because Sema sets this on NRVO
598  // returns.
599  if (getLangOpts().ElideConstructors && E->isElidable()) {
600  assert(getContext().hasSameUnqualifiedType(E->getType(),
601  E->getArg(0)->getType()));
602  if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) {
603  EmitAggExpr(E->getArg(0), Dest);
604  return;
605  }
606  }
607 
608  if (const ArrayType *arrayType
609  = getContext().getAsArrayType(E->getType())) {
610  EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddress(), E);
611  } else {
613  bool ForVirtualBase = false;
614  bool Delegating = false;
615 
616  switch (E->getConstructionKind()) {
618  // We should be emitting a constructor; GlobalDecl will assert this
619  Type = CurGD.getCtorType();
620  Delegating = true;
621  break;
622 
624  Type = Ctor_Complete;
625  break;
626 
628  ForVirtualBase = true;
629  LLVM_FALLTHROUGH;
630 
632  Type = Ctor_Base;
633  }
634 
635  // Call the constructor.
636  EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating,
637  Dest.getAddress(), E, Dest.mayOverlap());
638  }
639 }
640 
642  const Expr *Exp) {
643  if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp))
644  Exp = E->getSubExpr();
645  assert(isa<CXXConstructExpr>(Exp) &&
646  "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr");
647  const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp);
648  const CXXConstructorDecl *CD = E->getConstructor();
649  RunCleanupsScope Scope(*this);
650 
651  // If we require zero initialization before (or instead of) calling the
652  // constructor, as can be the case with a non-user-provided default
653  // constructor, emit the zero initialization now.
654  // FIXME. Do I still need this for a copy ctor synthesis?
656  EmitNullInitialization(Dest, E->getType());
657 
658  assert(!getContext().getAsConstantArrayType(E->getType())
659  && "EmitSynthesizedCXXCopyCtor - Copied-in Array");
660  EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, E);
661 }
662 
664  const CXXNewExpr *E) {
665  if (!E->isArray())
666  return CharUnits::Zero();
667 
668  // No cookie is required if the operator new[] being used is the
669  // reserved placement operator new[].
671  return CharUnits::Zero();
672 
673  return CGF.CGM.getCXXABI().GetArrayCookieSize(E);
674 }
675 
677  const CXXNewExpr *e,
678  unsigned minElements,
679  llvm::Value *&numElements,
680  llvm::Value *&sizeWithoutCookie) {
682 
683  if (!e->isArray()) {
684  CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
685  sizeWithoutCookie
686  = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity());
687  return sizeWithoutCookie;
688  }
689 
690  // The width of size_t.
691  unsigned sizeWidth = CGF.SizeTy->getBitWidth();
692 
693  // Figure out the cookie size.
694  llvm::APInt cookieSize(sizeWidth,
695  CalculateCookiePadding(CGF, e).getQuantity());
696 
697  // Emit the array size expression.
698  // We multiply the size of all dimensions for NumElements.
699  // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6.
700  numElements =
702  if (!numElements)
703  numElements = CGF.EmitScalarExpr(e->getArraySize());
704  assert(isa<llvm::IntegerType>(numElements->getType()));
705 
706  // The number of elements can be have an arbitrary integer type;
707  // essentially, we need to multiply it by a constant factor, add a
708  // cookie size, and verify that the result is representable as a
709  // size_t. That's just a gloss, though, and it's wrong in one
710  // important way: if the count is negative, it's an error even if
711  // the cookie size would bring the total size >= 0.
712  bool isSigned
714  llvm::IntegerType *numElementsType
715  = cast<llvm::IntegerType>(numElements->getType());
716  unsigned numElementsWidth = numElementsType->getBitWidth();
717 
718  // Compute the constant factor.
719  llvm::APInt arraySizeMultiplier(sizeWidth, 1);
720  while (const ConstantArrayType *CAT
721  = CGF.getContext().getAsConstantArrayType(type)) {
722  type = CAT->getElementType();
723  arraySizeMultiplier *= CAT->getSize();
724  }
725 
726  CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
727  llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity());
728  typeSizeMultiplier *= arraySizeMultiplier;
729 
730  // This will be a size_t.
731  llvm::Value *size;
732 
733  // If someone is doing 'new int[42]' there is no need to do a dynamic check.
734  // Don't bloat the -O0 code.
735  if (llvm::ConstantInt *numElementsC =
736  dyn_cast<llvm::ConstantInt>(numElements)) {
737  const llvm::APInt &count = numElementsC->getValue();
738 
739  bool hasAnyOverflow = false;
740 
741  // If 'count' was a negative number, it's an overflow.
742  if (isSigned && count.isNegative())
743  hasAnyOverflow = true;
744 
745  // We want to do all this arithmetic in size_t. If numElements is
746  // wider than that, check whether it's already too big, and if so,
747  // overflow.
748  else if (numElementsWidth > sizeWidth &&
749  numElementsWidth - sizeWidth > count.countLeadingZeros())
750  hasAnyOverflow = true;
751 
752  // Okay, compute a count at the right width.
753  llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth);
754 
755  // If there is a brace-initializer, we cannot allocate fewer elements than
756  // there are initializers. If we do, that's treated like an overflow.
757  if (adjustedCount.ult(minElements))
758  hasAnyOverflow = true;
759 
760  // Scale numElements by that. This might overflow, but we don't
761  // care because it only overflows if allocationSize does, too, and
762  // if that overflows then we shouldn't use this.
763  numElements = llvm::ConstantInt::get(CGF.SizeTy,
764  adjustedCount * arraySizeMultiplier);
765 
766  // Compute the size before cookie, and track whether it overflowed.
767  bool overflow;
768  llvm::APInt allocationSize
769  = adjustedCount.umul_ov(typeSizeMultiplier, overflow);
770  hasAnyOverflow |= overflow;
771 
772  // Add in the cookie, and check whether it's overflowed.
773  if (cookieSize != 0) {
774  // Save the current size without a cookie. This shouldn't be
775  // used if there was overflow.
776  sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
777 
778  allocationSize = allocationSize.uadd_ov(cookieSize, overflow);
779  hasAnyOverflow |= overflow;
780  }
781 
782  // On overflow, produce a -1 so operator new will fail.
783  if (hasAnyOverflow) {
784  size = llvm::Constant::getAllOnesValue(CGF.SizeTy);
785  } else {
786  size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
787  }
788 
789  // Otherwise, we might need to use the overflow intrinsics.
790  } else {
791  // There are up to five conditions we need to test for:
792  // 1) if isSigned, we need to check whether numElements is negative;
793  // 2) if numElementsWidth > sizeWidth, we need to check whether
794  // numElements is larger than something representable in size_t;
795  // 3) if minElements > 0, we need to check whether numElements is smaller
796  // than that.
797  // 4) we need to compute
798  // sizeWithoutCookie := numElements * typeSizeMultiplier
799  // and check whether it overflows; and
800  // 5) if we need a cookie, we need to compute
801  // size := sizeWithoutCookie + cookieSize
802  // and check whether it overflows.
803 
804  llvm::Value *hasOverflow = nullptr;
805 
806  // If numElementsWidth > sizeWidth, then one way or another, we're
807  // going to have to do a comparison for (2), and this happens to
808  // take care of (1), too.
809  if (numElementsWidth > sizeWidth) {
810  llvm::APInt threshold(numElementsWidth, 1);
811  threshold <<= sizeWidth;
812 
813  llvm::Value *thresholdV
814  = llvm::ConstantInt::get(numElementsType, threshold);
815 
816  hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV);
817  numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy);
818 
819  // Otherwise, if we're signed, we want to sext up to size_t.
820  } else if (isSigned) {
821  if (numElementsWidth < sizeWidth)
822  numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy);
823 
824  // If there's a non-1 type size multiplier, then we can do the
825  // signedness check at the same time as we do the multiply
826  // because a negative number times anything will cause an
827  // unsigned overflow. Otherwise, we have to do it here. But at least
828  // in this case, we can subsume the >= minElements check.
829  if (typeSizeMultiplier == 1)
830  hasOverflow = CGF.Builder.CreateICmpSLT(numElements,
831  llvm::ConstantInt::get(CGF.SizeTy, minElements));
832 
833  // Otherwise, zext up to size_t if necessary.
834  } else if (numElementsWidth < sizeWidth) {
835  numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy);
836  }
837 
838  assert(numElements->getType() == CGF.SizeTy);
839 
840  if (minElements) {
841  // Don't allow allocation of fewer elements than we have initializers.
842  if (!hasOverflow) {
843  hasOverflow = CGF.Builder.CreateICmpULT(numElements,
844  llvm::ConstantInt::get(CGF.SizeTy, minElements));
845  } else if (numElementsWidth > sizeWidth) {
846  // The other existing overflow subsumes this check.
847  // We do an unsigned comparison, since any signed value < -1 is
848  // taken care of either above or below.
849  hasOverflow = CGF.Builder.CreateOr(hasOverflow,
850  CGF.Builder.CreateICmpULT(numElements,
851  llvm::ConstantInt::get(CGF.SizeTy, minElements)));
852  }
853  }
854 
855  size = numElements;
856 
857  // Multiply by the type size if necessary. This multiplier
858  // includes all the factors for nested arrays.
859  //
860  // This step also causes numElements to be scaled up by the
861  // nested-array factor if necessary. Overflow on this computation
862  // can be ignored because the result shouldn't be used if
863  // allocation fails.
864  if (typeSizeMultiplier != 1) {
865  llvm::Value *umul_with_overflow
866  = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy);
867 
868  llvm::Value *tsmV =
869  llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier);
870  llvm::Value *result =
871  CGF.Builder.CreateCall(umul_with_overflow, {size, tsmV});
872 
873  llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
874  if (hasOverflow)
875  hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
876  else
877  hasOverflow = overflowed;
878 
879  size = CGF.Builder.CreateExtractValue(result, 0);
880 
881  // Also scale up numElements by the array size multiplier.
882  if (arraySizeMultiplier != 1) {
883  // If the base element type size is 1, then we can re-use the
884  // multiply we just did.
885  if (typeSize.isOne()) {
886  assert(arraySizeMultiplier == typeSizeMultiplier);
887  numElements = size;
888 
889  // Otherwise we need a separate multiply.
890  } else {
891  llvm::Value *asmV =
892  llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier);
893  numElements = CGF.Builder.CreateMul(numElements, asmV);
894  }
895  }
896  } else {
897  // numElements doesn't need to be scaled.
898  assert(arraySizeMultiplier == 1);
899  }
900 
901  // Add in the cookie size if necessary.
902  if (cookieSize != 0) {
903  sizeWithoutCookie = size;
904 
905  llvm::Value *uadd_with_overflow
906  = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy);
907 
908  llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize);
909  llvm::Value *result =
910  CGF.Builder.CreateCall(uadd_with_overflow, {size, cookieSizeV});
911 
912  llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
913  if (hasOverflow)
914  hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
915  else
916  hasOverflow = overflowed;
917 
918  size = CGF.Builder.CreateExtractValue(result, 0);
919  }
920 
921  // If we had any possibility of dynamic overflow, make a select to
922  // overwrite 'size' with an all-ones value, which should cause
923  // operator new to throw.
924  if (hasOverflow)
925  size = CGF.Builder.CreateSelect(hasOverflow,
926  llvm::Constant::getAllOnesValue(CGF.SizeTy),
927  size);
928  }
929 
930  if (cookieSize == 0)
931  sizeWithoutCookie = size;
932  else
933  assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?");
934 
935  return size;
936 }
937 
938 static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init,
939  QualType AllocType, Address NewPtr,
940  AggValueSlot::Overlap_t MayOverlap) {
941  // FIXME: Refactor with EmitExprAsInit.
942  switch (CGF.getEvaluationKind(AllocType)) {
943  case TEK_Scalar:
944  CGF.EmitScalarInit(Init, nullptr,
945  CGF.MakeAddrLValue(NewPtr, AllocType), false);
946  return;
947  case TEK_Complex:
948  CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType),
949  /*isInit*/ true);
950  return;
951  case TEK_Aggregate: {
952  AggValueSlot Slot
953  = AggValueSlot::forAddr(NewPtr, AllocType.getQualifiers(),
957  MayOverlap);
958  CGF.EmitAggExpr(Init, Slot);
959  return;
960  }
961  }
962  llvm_unreachable("bad evaluation kind");
963 }
964 
966  const CXXNewExpr *E, QualType ElementType, llvm::Type *ElementTy,
967  Address BeginPtr, llvm::Value *NumElements,
968  llvm::Value *AllocSizeWithoutCookie) {
969  // If we have a type with trivial initialization and no initializer,
970  // there's nothing to do.
971  if (!E->hasInitializer())
972  return;
973 
974  Address CurPtr = BeginPtr;
975 
976  unsigned InitListElements = 0;
977 
978  const Expr *Init = E->getInitializer();
979  Address EndOfInit = Address::invalid();
980  QualType::DestructionKind DtorKind = ElementType.isDestructedType();
982  llvm::Instruction *CleanupDominator = nullptr;
983 
984  CharUnits ElementSize = getContext().getTypeSizeInChars(ElementType);
985  CharUnits ElementAlign =
986  BeginPtr.getAlignment().alignmentOfArrayElement(ElementSize);
987 
988  // Attempt to perform zero-initialization using memset.
989  auto TryMemsetInitialization = [&]() -> bool {
990  // FIXME: If the type is a pointer-to-data-member under the Itanium ABI,
991  // we can initialize with a memset to -1.
992  if (!CGM.getTypes().isZeroInitializable(ElementType))
993  return false;
994 
995  // Optimization: since zero initialization will just set the memory
996  // to all zeroes, generate a single memset to do it in one shot.
997 
998  // Subtract out the size of any elements we've already initialized.
999  auto *RemainingSize = AllocSizeWithoutCookie;
1000  if (InitListElements) {
1001  // We know this can't overflow; we check this when doing the allocation.
1002  auto *InitializedSize = llvm::ConstantInt::get(
1003  RemainingSize->getType(),
1004  getContext().getTypeSizeInChars(ElementType).getQuantity() *
1005  InitListElements);
1006  RemainingSize = Builder.CreateSub(RemainingSize, InitializedSize);
1007  }
1008 
1009  // Create the memset.
1010  Builder.CreateMemSet(CurPtr, Builder.getInt8(0), RemainingSize, false);
1011  return true;
1012  };
1013 
1014  // If the initializer is an initializer list, first do the explicit elements.
1015  if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
1016  // Initializing from a (braced) string literal is a special case; the init
1017  // list element does not initialize a (single) array element.
1018  if (ILE->isStringLiteralInit()) {
1019  // Initialize the initial portion of length equal to that of the string
1020  // literal. The allocation must be for at least this much; we emitted a
1021  // check for that earlier.
1022  AggValueSlot Slot =
1023  AggValueSlot::forAddr(CurPtr, ElementType.getQualifiers(),
1028  EmitAggExpr(ILE->getInit(0), Slot);
1029 
1030  // Move past these elements.
1031  InitListElements =
1032  cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe())
1033  ->getSize().getZExtValue();
1034  CurPtr =
1035  Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(),
1036  Builder.getSize(InitListElements),
1037  "string.init.end"),
1038  CurPtr.getAlignment().alignmentAtOffset(InitListElements *
1039  ElementSize));
1040 
1041  // Zero out the rest, if any remain.
1042  llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
1043  if (!ConstNum || !ConstNum->equalsInt(InitListElements)) {
1044  bool OK = TryMemsetInitialization();
1045  (void)OK;
1046  assert(OK && "couldn't memset character type?");
1047  }
1048  return;
1049  }
1050 
1051  InitListElements = ILE->getNumInits();
1052 
1053  // If this is a multi-dimensional array new, we will initialize multiple
1054  // elements with each init list element.
1055  QualType AllocType = E->getAllocatedType();
1056  if (const ConstantArrayType *CAT = dyn_cast_or_null<ConstantArrayType>(
1057  AllocType->getAsArrayTypeUnsafe())) {
1058  ElementTy = ConvertTypeForMem(AllocType);
1059  CurPtr = Builder.CreateElementBitCast(CurPtr, ElementTy);
1060  InitListElements *= getContext().getConstantArrayElementCount(CAT);
1061  }
1062 
1063  // Enter a partial-destruction Cleanup if necessary.
1064  if (needsEHCleanup(DtorKind)) {
1065  // In principle we could tell the Cleanup where we are more
1066  // directly, but the control flow can get so varied here that it
1067  // would actually be quite complex. Therefore we go through an
1068  // alloca.
1069  EndOfInit = CreateTempAlloca(BeginPtr.getType(), getPointerAlign(),
1070  "array.init.end");
1071  CleanupDominator = Builder.CreateStore(BeginPtr.getPointer(), EndOfInit);
1072  pushIrregularPartialArrayCleanup(BeginPtr.getPointer(), EndOfInit,
1073  ElementType, ElementAlign,
1074  getDestroyer(DtorKind));
1075  Cleanup = EHStack.stable_begin();
1076  }
1077 
1078  CharUnits StartAlign = CurPtr.getAlignment();
1079  for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) {
1080  // Tell the cleanup that it needs to destroy up to this
1081  // element. TODO: some of these stores can be trivially
1082  // observed to be unnecessary.
1083  if (EndOfInit.isValid()) {
1084  auto FinishedPtr =
1085  Builder.CreateBitCast(CurPtr.getPointer(), BeginPtr.getType());
1086  Builder.CreateStore(FinishedPtr, EndOfInit);
1087  }
1088  // FIXME: If the last initializer is an incomplete initializer list for
1089  // an array, and we have an array filler, we can fold together the two
1090  // initialization loops.
1091  StoreAnyExprIntoOneUnit(*this, ILE->getInit(i),
1092  ILE->getInit(i)->getType(), CurPtr,
1094  CurPtr = Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(),
1095  Builder.getSize(1),
1096  "array.exp.next"),
1097  StartAlign.alignmentAtOffset((i + 1) * ElementSize));
1098  }
1099 
1100  // The remaining elements are filled with the array filler expression.
1101  Init = ILE->getArrayFiller();
1102 
1103  // Extract the initializer for the individual array elements by pulling
1104  // out the array filler from all the nested initializer lists. This avoids
1105  // generating a nested loop for the initialization.
1106  while (Init && Init->getType()->isConstantArrayType()) {
1107  auto *SubILE = dyn_cast<InitListExpr>(Init);
1108  if (!SubILE)
1109  break;
1110  assert(SubILE->getNumInits() == 0 && "explicit inits in array filler?");
1111  Init = SubILE->getArrayFiller();
1112  }
1113 
1114  // Switch back to initializing one base element at a time.
1115  CurPtr = Builder.CreateBitCast(CurPtr, BeginPtr.getType());
1116  }
1117 
1118  // If all elements have already been initialized, skip any further
1119  // initialization.
1120  llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
1121  if (ConstNum && ConstNum->getZExtValue() <= InitListElements) {
1122  // If there was a Cleanup, deactivate it.
1123  if (CleanupDominator)
1124  DeactivateCleanupBlock(Cleanup, CleanupDominator);
1125  return;
1126  }
1127 
1128  assert(Init && "have trailing elements to initialize but no initializer");
1129 
1130  // If this is a constructor call, try to optimize it out, and failing that
1131  // emit a single loop to initialize all remaining elements.
1132  if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
1133  CXXConstructorDecl *Ctor = CCE->getConstructor();
1134  if (Ctor->isTrivial()) {
1135  // If new expression did not specify value-initialization, then there
1136  // is no initialization.
1137  if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty())
1138  return;
1139 
1140  if (TryMemsetInitialization())
1141  return;
1142  }
1143 
1144  // Store the new Cleanup position for irregular Cleanups.
1145  //
1146  // FIXME: Share this cleanup with the constructor call emission rather than
1147  // having it create a cleanup of its own.
1148  if (EndOfInit.isValid())
1149  Builder.CreateStore(CurPtr.getPointer(), EndOfInit);
1150 
1151  // Emit a constructor call loop to initialize the remaining elements.
1152  if (InitListElements)
1153  NumElements = Builder.CreateSub(
1154  NumElements,
1155  llvm::ConstantInt::get(NumElements->getType(), InitListElements));
1156  EmitCXXAggrConstructorCall(Ctor, NumElements, CurPtr, CCE,
1157  CCE->requiresZeroInitialization());
1158  return;
1159  }
1160 
1161  // If this is value-initialization, we can usually use memset.
1162  ImplicitValueInitExpr IVIE(ElementType);
1163  if (isa<ImplicitValueInitExpr>(Init)) {
1164  if (TryMemsetInitialization())
1165  return;
1166 
1167  // Switch to an ImplicitValueInitExpr for the element type. This handles
1168  // only one case: multidimensional array new of pointers to members. In
1169  // all other cases, we already have an initializer for the array element.
1170  Init = &IVIE;
1171  }
1172 
1173  // At this point we should have found an initializer for the individual
1174  // elements of the array.
1175  assert(getContext().hasSameUnqualifiedType(ElementType, Init->getType()) &&
1176  "got wrong type of element to initialize");
1177 
1178  // If we have an empty initializer list, we can usually use memset.
1179  if (auto *ILE = dyn_cast<InitListExpr>(Init))
1180  if (ILE->getNumInits() == 0 && TryMemsetInitialization())
1181  return;
1182 
1183  // If we have a struct whose every field is value-initialized, we can
1184  // usually use memset.
1185  if (auto *ILE = dyn_cast<InitListExpr>(Init)) {
1186  if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
1187  if (RType->getDecl()->isStruct()) {
1188  unsigned NumElements = 0;
1189  if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RType->getDecl()))
1190  NumElements = CXXRD->getNumBases();
1191  for (auto *Field : RType->getDecl()->fields())
1192  if (!Field->isUnnamedBitfield())
1193  ++NumElements;
1194  // FIXME: Recurse into nested InitListExprs.
1195  if (ILE->getNumInits() == NumElements)
1196  for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
1197  if (!isa<ImplicitValueInitExpr>(ILE->getInit(i)))
1198  --NumElements;
1199  if (ILE->getNumInits() == NumElements && TryMemsetInitialization())
1200  return;
1201  }
1202  }
1203  }
1204 
1205  // Create the loop blocks.
1206  llvm::BasicBlock *EntryBB = Builder.GetInsertBlock();
1207  llvm::BasicBlock *LoopBB = createBasicBlock("new.loop");
1208  llvm::BasicBlock *ContBB = createBasicBlock("new.loop.end");
1209 
1210  // Find the end of the array, hoisted out of the loop.
1211  llvm::Value *EndPtr =
1212  Builder.CreateInBoundsGEP(BeginPtr.getPointer(), NumElements, "array.end");
1213 
1214  // If the number of elements isn't constant, we have to now check if there is
1215  // anything left to initialize.
1216  if (!ConstNum) {
1217  llvm::Value *IsEmpty =
1218  Builder.CreateICmpEQ(CurPtr.getPointer(), EndPtr, "array.isempty");
1219  Builder.CreateCondBr(IsEmpty, ContBB, LoopBB);
1220  }
1221 
1222  // Enter the loop.
1223  EmitBlock(LoopBB);
1224 
1225  // Set up the current-element phi.
1226  llvm::PHINode *CurPtrPhi =
1227  Builder.CreatePHI(CurPtr.getType(), 2, "array.cur");
1228  CurPtrPhi->addIncoming(CurPtr.getPointer(), EntryBB);
1229 
1230  CurPtr = Address(CurPtrPhi, ElementAlign);
1231 
1232  // Store the new Cleanup position for irregular Cleanups.
1233  if (EndOfInit.isValid())
1234  Builder.CreateStore(CurPtr.getPointer(), EndOfInit);
1235 
1236  // Enter a partial-destruction Cleanup if necessary.
1237  if (!CleanupDominator && needsEHCleanup(DtorKind)) {
1238  pushRegularPartialArrayCleanup(BeginPtr.getPointer(), CurPtr.getPointer(),
1239  ElementType, ElementAlign,
1240  getDestroyer(DtorKind));
1241  Cleanup = EHStack.stable_begin();
1242  CleanupDominator = Builder.CreateUnreachable();
1243  }
1244 
1245  // Emit the initializer into this element.
1246  StoreAnyExprIntoOneUnit(*this, Init, Init->getType(), CurPtr,
1248 
1249  // Leave the Cleanup if we entered one.
1250  if (CleanupDominator) {
1251  DeactivateCleanupBlock(Cleanup, CleanupDominator);
1252  CleanupDominator->eraseFromParent();
1253  }
1254 
1255  // Advance to the next element by adjusting the pointer type as necessary.
1256  llvm::Value *NextPtr =
1257  Builder.CreateConstInBoundsGEP1_32(ElementTy, CurPtr.getPointer(), 1,
1258  "array.next");
1259 
1260  // Check whether we've gotten to the end of the array and, if so,
1261  // exit the loop.
1262  llvm::Value *IsEnd = Builder.CreateICmpEQ(NextPtr, EndPtr, "array.atend");
1263  Builder.CreateCondBr(IsEnd, ContBB, LoopBB);
1264  CurPtrPhi->addIncoming(NextPtr, Builder.GetInsertBlock());
1265 
1266  EmitBlock(ContBB);
1267 }
1268 
1269 static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E,
1270  QualType ElementType, llvm::Type *ElementTy,
1271  Address NewPtr, llvm::Value *NumElements,
1272  llvm::Value *AllocSizeWithoutCookie) {
1273  ApplyDebugLocation DL(CGF, E);
1274  if (E->isArray())
1275  CGF.EmitNewArrayInitializer(E, ElementType, ElementTy, NewPtr, NumElements,
1276  AllocSizeWithoutCookie);
1277  else if (const Expr *Init = E->getInitializer())
1278  StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr,
1280 }
1281 
1282 /// Emit a call to an operator new or operator delete function, as implicitly
1283 /// created by new-expressions and delete-expressions.
1285  const FunctionDecl *CalleeDecl,
1286  const FunctionProtoType *CalleeType,
1287  const CallArgList &Args) {
1288  llvm::Instruction *CallOrInvoke;
1289  llvm::Constant *CalleePtr = CGF.CGM.GetAddrOfFunction(CalleeDecl);
1290  CGCallee Callee = CGCallee::forDirect(CalleePtr, CalleeDecl);
1291  RValue RV =
1293  Args, CalleeType, /*chainCall=*/false),
1294  Callee, ReturnValueSlot(), Args, &CallOrInvoke);
1295 
1296  /// C++1y [expr.new]p10:
1297  /// [In a new-expression,] an implementation is allowed to omit a call
1298  /// to a replaceable global allocation function.
1299  ///
1300  /// We model such elidable calls with the 'builtin' attribute.
1301  llvm::Function *Fn = dyn_cast<llvm::Function>(CalleePtr);
1302  if (CalleeDecl->isReplaceableGlobalAllocationFunction() &&
1303  Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) {
1304  // FIXME: Add addAttribute to CallSite.
1305  if (llvm::CallInst *CI = dyn_cast<llvm::CallInst>(CallOrInvoke))
1306  CI->addAttribute(llvm::AttributeList::FunctionIndex,
1307  llvm::Attribute::Builtin);
1308  else if (llvm::InvokeInst *II = dyn_cast<llvm::InvokeInst>(CallOrInvoke))
1309  II->addAttribute(llvm::AttributeList::FunctionIndex,
1310  llvm::Attribute::Builtin);
1311  else
1312  llvm_unreachable("unexpected kind of call instruction");
1313  }
1314 
1315  return RV;
1316 }
1317 
1319  const CallExpr *TheCall,
1320  bool IsDelete) {
1321  CallArgList Args;
1322  EmitCallArgs(Args, Type->getParamTypes(), TheCall->arguments());
1323  // Find the allocation or deallocation function that we're calling.
1324  ASTContext &Ctx = getContext();
1325  DeclarationName Name = Ctx.DeclarationNames
1326  .getCXXOperatorName(IsDelete ? OO_Delete : OO_New);
1327 
1328  for (auto *Decl : Ctx.getTranslationUnitDecl()->lookup(Name))
1329  if (auto *FD = dyn_cast<FunctionDecl>(Decl))
1330  if (Ctx.hasSameType(FD->getType(), QualType(Type, 0)))
1331  return EmitNewDeleteCall(*this, FD, Type, Args);
1332  llvm_unreachable("predeclared global operator new/delete is missing");
1333 }
1334 
1335 namespace {
1336 /// The parameters to pass to a usual operator delete.
1337 struct UsualDeleteParams {
1338  bool DestroyingDelete = false;
1339  bool Size = false;
1340  bool Alignment = false;
1341 };
1342 }
1343 
1344 static UsualDeleteParams getUsualDeleteParams(const FunctionDecl *FD) {
1345  UsualDeleteParams Params;
1346 
1347  const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>();
1348  auto AI = FPT->param_type_begin(), AE = FPT->param_type_end();
1349 
1350  // The first argument is always a void*.
1351  ++AI;
1352 
1353  // The next parameter may be a std::destroying_delete_t.
1354  if (FD->isDestroyingOperatorDelete()) {
1355  Params.DestroyingDelete = true;
1356  assert(AI != AE);
1357  ++AI;
1358  }
1359 
1360  // Figure out what other parameters we should be implicitly passing.
1361  if (AI != AE && (*AI)->isIntegerType()) {
1362  Params.Size = true;
1363  ++AI;
1364  }
1365 
1366  if (AI != AE && (*AI)->isAlignValT()) {
1367  Params.Alignment = true;
1368  ++AI;
1369  }
1370 
1371  assert(AI == AE && "unexpected usual deallocation function parameter");
1372  return Params;
1373 }
1374 
1375 namespace {
1376  /// A cleanup to call the given 'operator delete' function upon abnormal
1377  /// exit from a new expression. Templated on a traits type that deals with
1378  /// ensuring that the arguments dominate the cleanup if necessary.
1379  template<typename Traits>
1380  class CallDeleteDuringNew final : public EHScopeStack::Cleanup {
1381  /// Type used to hold llvm::Value*s.
1382  typedef typename Traits::ValueTy ValueTy;
1383  /// Type used to hold RValues.
1384  typedef typename Traits::RValueTy RValueTy;
1385  struct PlacementArg {
1386  RValueTy ArgValue;
1387  QualType ArgType;
1388  };
1389 
1390  unsigned NumPlacementArgs : 31;
1391  unsigned PassAlignmentToPlacementDelete : 1;
1392  const FunctionDecl *OperatorDelete;
1393  ValueTy Ptr;
1394  ValueTy AllocSize;
1395  CharUnits AllocAlign;
1396 
1397  PlacementArg *getPlacementArgs() {
1398  return reinterpret_cast<PlacementArg *>(this + 1);
1399  }
1400 
1401  public:
1402  static size_t getExtraSize(size_t NumPlacementArgs) {
1403  return NumPlacementArgs * sizeof(PlacementArg);
1404  }
1405 
1406  CallDeleteDuringNew(size_t NumPlacementArgs,
1407  const FunctionDecl *OperatorDelete, ValueTy Ptr,
1408  ValueTy AllocSize, bool PassAlignmentToPlacementDelete,
1409  CharUnits AllocAlign)
1410  : NumPlacementArgs(NumPlacementArgs),
1411  PassAlignmentToPlacementDelete(PassAlignmentToPlacementDelete),
1412  OperatorDelete(OperatorDelete), Ptr(Ptr), AllocSize(AllocSize),
1413  AllocAlign(AllocAlign) {}
1414 
1415  void setPlacementArg(unsigned I, RValueTy Arg, QualType Type) {
1416  assert(I < NumPlacementArgs && "index out of range");
1417  getPlacementArgs()[I] = {Arg, Type};
1418  }
1419 
1420  void Emit(CodeGenFunction &CGF, Flags flags) override {
1421  const FunctionProtoType *FPT =
1422  OperatorDelete->getType()->getAs<FunctionProtoType>();
1423  CallArgList DeleteArgs;
1424 
1425  // The first argument is always a void* (or C* for a destroying operator
1426  // delete for class type C).
1427  DeleteArgs.add(Traits::get(CGF, Ptr), FPT->getParamType(0));
1428 
1429  // Figure out what other parameters we should be implicitly passing.
1430  UsualDeleteParams Params;
1431  if (NumPlacementArgs) {
1432  // A placement deallocation function is implicitly passed an alignment
1433  // if the placement allocation function was, but is never passed a size.
1434  Params.Alignment = PassAlignmentToPlacementDelete;
1435  } else {
1436  // For a non-placement new-expression, 'operator delete' can take a
1437  // size and/or an alignment if it has the right parameters.
1438  Params = getUsualDeleteParams(OperatorDelete);
1439  }
1440 
1441  assert(!Params.DestroyingDelete &&
1442  "should not call destroying delete in a new-expression");
1443 
1444  // The second argument can be a std::size_t (for non-placement delete).
1445  if (Params.Size)
1446  DeleteArgs.add(Traits::get(CGF, AllocSize),
1447  CGF.getContext().getSizeType());
1448 
1449  // The next (second or third) argument can be a std::align_val_t, which
1450  // is an enum whose underlying type is std::size_t.
1451  // FIXME: Use the right type as the parameter type. Note that in a call
1452  // to operator delete(size_t, ...), we may not have it available.
1453  if (Params.Alignment)
1454  DeleteArgs.add(RValue::get(llvm::ConstantInt::get(
1455  CGF.SizeTy, AllocAlign.getQuantity())),
1456  CGF.getContext().getSizeType());
1457 
1458  // Pass the rest of the arguments, which must match exactly.
1459  for (unsigned I = 0; I != NumPlacementArgs; ++I) {
1460  auto Arg = getPlacementArgs()[I];
1461  DeleteArgs.add(Traits::get(CGF, Arg.ArgValue), Arg.ArgType);
1462  }
1463 
1464  // Call 'operator delete'.
1465  EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs);
1466  }
1467  };
1468 }
1469 
1470 /// Enter a cleanup to call 'operator delete' if the initializer in a
1471 /// new-expression throws.
1473  const CXXNewExpr *E,
1474  Address NewPtr,
1475  llvm::Value *AllocSize,
1476  CharUnits AllocAlign,
1477  const CallArgList &NewArgs) {
1478  unsigned NumNonPlacementArgs = E->passAlignment() ? 2 : 1;
1479 
1480  // If we're not inside a conditional branch, then the cleanup will
1481  // dominate and we can do the easier (and more efficient) thing.
1482  if (!CGF.isInConditionalBranch()) {
1483  struct DirectCleanupTraits {
1484  typedef llvm::Value *ValueTy;
1485  typedef RValue RValueTy;
1486  static RValue get(CodeGenFunction &, ValueTy V) { return RValue::get(V); }
1487  static RValue get(CodeGenFunction &, RValueTy V) { return V; }
1488  };
1489 
1490  typedef CallDeleteDuringNew<DirectCleanupTraits> DirectCleanup;
1491 
1492  DirectCleanup *Cleanup = CGF.EHStack
1493  .pushCleanupWithExtra<DirectCleanup>(EHCleanup,
1494  E->getNumPlacementArgs(),
1495  E->getOperatorDelete(),
1496  NewPtr.getPointer(),
1497  AllocSize,
1498  E->passAlignment(),
1499  AllocAlign);
1500  for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) {
1501  auto &Arg = NewArgs[I + NumNonPlacementArgs];
1502  Cleanup->setPlacementArg(I, Arg.getRValue(CGF), Arg.Ty);
1503  }
1504 
1505  return;
1506  }
1507 
1508  // Otherwise, we need to save all this stuff.
1511  DominatingValue<RValue>::saved_type SavedAllocSize =
1512  DominatingValue<RValue>::save(CGF, RValue::get(AllocSize));
1513 
1514  struct ConditionalCleanupTraits {
1515  typedef DominatingValue<RValue>::saved_type ValueTy;
1516  typedef DominatingValue<RValue>::saved_type RValueTy;
1517  static RValue get(CodeGenFunction &CGF, ValueTy V) {
1518  return V.restore(CGF);
1519  }
1520  };
1521  typedef CallDeleteDuringNew<ConditionalCleanupTraits> ConditionalCleanup;
1522 
1523  ConditionalCleanup *Cleanup = CGF.EHStack
1524  .pushCleanupWithExtra<ConditionalCleanup>(EHCleanup,
1525  E->getNumPlacementArgs(),
1526  E->getOperatorDelete(),
1527  SavedNewPtr,
1528  SavedAllocSize,
1529  E->passAlignment(),
1530  AllocAlign);
1531  for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) {
1532  auto &Arg = NewArgs[I + NumNonPlacementArgs];
1533  Cleanup->setPlacementArg(
1534  I, DominatingValue<RValue>::save(CGF, Arg.getRValue(CGF)), Arg.Ty);
1535  }
1536 
1537  CGF.initFullExprCleanup();
1538 }
1539 
1541  // The element type being allocated.
1542  QualType allocType = getContext().getBaseElementType(E->getAllocatedType());
1543 
1544  // 1. Build a call to the allocation function.
1545  FunctionDecl *allocator = E->getOperatorNew();
1546 
1547  // If there is a brace-initializer, cannot allocate fewer elements than inits.
1548  unsigned minElements = 0;
1549  if (E->isArray() && E->hasInitializer()) {
1550  const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer());
1551  if (ILE && ILE->isStringLiteralInit())
1552  minElements =
1553  cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe())
1554  ->getSize().getZExtValue();
1555  else if (ILE)
1556  minElements = ILE->getNumInits();
1557  }
1558 
1559  llvm::Value *numElements = nullptr;
1560  llvm::Value *allocSizeWithoutCookie = nullptr;
1561  llvm::Value *allocSize =
1562  EmitCXXNewAllocSize(*this, E, minElements, numElements,
1563  allocSizeWithoutCookie);
1564  CharUnits allocAlign = getContext().getTypeAlignInChars(allocType);
1565 
1566  // Emit the allocation call. If the allocator is a global placement
1567  // operator, just "inline" it directly.
1568  Address allocation = Address::invalid();
1569  CallArgList allocatorArgs;
1570  if (allocator->isReservedGlobalPlacementOperator()) {
1571  assert(E->getNumPlacementArgs() == 1);
1572  const Expr *arg = *E->placement_arguments().begin();
1573 
1574  LValueBaseInfo BaseInfo;
1575  allocation = EmitPointerWithAlignment(arg, &BaseInfo);
1576 
1577  // The pointer expression will, in many cases, be an opaque void*.
1578  // In these cases, discard the computed alignment and use the
1579  // formal alignment of the allocated type.
1580  if (BaseInfo.getAlignmentSource() != AlignmentSource::Decl)
1581  allocation = Address(allocation.getPointer(), allocAlign);
1582 
1583  // Set up allocatorArgs for the call to operator delete if it's not
1584  // the reserved global operator.
1585  if (E->getOperatorDelete() &&
1587  allocatorArgs.add(RValue::get(allocSize), getContext().getSizeType());
1588  allocatorArgs.add(RValue::get(allocation.getPointer()), arg->getType());
1589  }
1590 
1591  } else {
1592  const FunctionProtoType *allocatorType =
1593  allocator->getType()->castAs<FunctionProtoType>();
1594  unsigned ParamsToSkip = 0;
1595 
1596  // The allocation size is the first argument.
1597  QualType sizeType = getContext().getSizeType();
1598  allocatorArgs.add(RValue::get(allocSize), sizeType);
1599  ++ParamsToSkip;
1600 
1601  if (allocSize != allocSizeWithoutCookie) {
1602  CharUnits cookieAlign = getSizeAlign(); // FIXME: Ask the ABI.
1603  allocAlign = std::max(allocAlign, cookieAlign);
1604  }
1605 
1606  // The allocation alignment may be passed as the second argument.
1607  if (E->passAlignment()) {
1608  QualType AlignValT = sizeType;
1609  if (allocatorType->getNumParams() > 1) {
1610  AlignValT = allocatorType->getParamType(1);
1611  assert(getContext().hasSameUnqualifiedType(
1612  AlignValT->castAs<EnumType>()->getDecl()->getIntegerType(),
1613  sizeType) &&
1614  "wrong type for alignment parameter");
1615  ++ParamsToSkip;
1616  } else {
1617  // Corner case, passing alignment to 'operator new(size_t, ...)'.
1618  assert(allocator->isVariadic() && "can't pass alignment to allocator");
1619  }
1620  allocatorArgs.add(
1621  RValue::get(llvm::ConstantInt::get(SizeTy, allocAlign.getQuantity())),
1622  AlignValT);
1623  }
1624 
1625  // FIXME: Why do we not pass a CalleeDecl here?
1626  EmitCallArgs(allocatorArgs, allocatorType, E->placement_arguments(),
1627  /*AC*/AbstractCallee(), /*ParamsToSkip*/ParamsToSkip);
1628 
1629  RValue RV =
1630  EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs);
1631 
1632  // If this was a call to a global replaceable allocation function that does
1633  // not take an alignment argument, the allocator is known to produce
1634  // storage that's suitably aligned for any object that fits, up to a known
1635  // threshold. Otherwise assume it's suitably aligned for the allocated type.
1636  CharUnits allocationAlign = allocAlign;
1637  if (!E->passAlignment() &&
1639  unsigned AllocatorAlign = llvm::PowerOf2Floor(std::min<uint64_t>(
1640  Target.getNewAlign(), getContext().getTypeSize(allocType)));
1641  allocationAlign = std::max(
1642  allocationAlign, getContext().toCharUnitsFromBits(AllocatorAlign));
1643  }
1644 
1645  allocation = Address(RV.getScalarVal(), allocationAlign);
1646  }
1647 
1648  // Emit a null check on the allocation result if the allocation
1649  // function is allowed to return null (because it has a non-throwing
1650  // exception spec or is the reserved placement new) and we have an
1651  // interesting initializer.
1652  bool nullCheck = E->shouldNullCheckAllocation(getContext()) &&
1653  (!allocType.isPODType(getContext()) || E->hasInitializer());
1654 
1655  llvm::BasicBlock *nullCheckBB = nullptr;
1656  llvm::BasicBlock *contBB = nullptr;
1657 
1658  // The null-check means that the initializer is conditionally
1659  // evaluated.
1660  ConditionalEvaluation conditional(*this);
1661 
1662  if (nullCheck) {
1663  conditional.begin(*this);
1664 
1665  nullCheckBB = Builder.GetInsertBlock();
1666  llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull");
1667  contBB = createBasicBlock("new.cont");
1668 
1669  llvm::Value *isNull =
1670  Builder.CreateIsNull(allocation.getPointer(), "new.isnull");
1671  Builder.CreateCondBr(isNull, contBB, notNullBB);
1672  EmitBlock(notNullBB);
1673  }
1674 
1675  // If there's an operator delete, enter a cleanup to call it if an
1676  // exception is thrown.
1677  EHScopeStack::stable_iterator operatorDeleteCleanup;
1678  llvm::Instruction *cleanupDominator = nullptr;
1679  if (E->getOperatorDelete() &&
1681  EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocAlign,
1682  allocatorArgs);
1683  operatorDeleteCleanup = EHStack.stable_begin();
1684  cleanupDominator = Builder.CreateUnreachable();
1685  }
1686 
1687  assert((allocSize == allocSizeWithoutCookie) ==
1688  CalculateCookiePadding(*this, E).isZero());
1689  if (allocSize != allocSizeWithoutCookie) {
1690  assert(E->isArray());
1691  allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation,
1692  numElements,
1693  E, allocType);
1694  }
1695 
1696  llvm::Type *elementTy = ConvertTypeForMem(allocType);
1697  Address result = Builder.CreateElementBitCast(allocation, elementTy);
1698 
1699  // Passing pointer through invariant.group.barrier to avoid propagation of
1700  // vptrs information which may be included in previous type.
1701  // To not break LTO with different optimizations levels, we do it regardless
1702  // of optimization level.
1703  if (CGM.getCodeGenOpts().StrictVTablePointers &&
1704  allocator->isReservedGlobalPlacementOperator())
1705  result = Address(Builder.CreateInvariantGroupBarrier(result.getPointer()),
1706  result.getAlignment());
1707 
1708  EmitNewInitializer(*this, E, allocType, elementTy, result, numElements,
1709  allocSizeWithoutCookie);
1710  if (E->isArray()) {
1711  // NewPtr is a pointer to the base element type. If we're
1712  // allocating an array of arrays, we'll need to cast back to the
1713  // array pointer type.
1714  llvm::Type *resultType = ConvertTypeForMem(E->getType());
1715  if (result.getType() != resultType)
1716  result = Builder.CreateBitCast(result, resultType);
1717  }
1718 
1719  // Deactivate the 'operator delete' cleanup if we finished
1720  // initialization.
1721  if (operatorDeleteCleanup.isValid()) {
1722  DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator);
1723  cleanupDominator->eraseFromParent();
1724  }
1725 
1726  llvm::Value *resultPtr = result.getPointer();
1727  if (nullCheck) {
1728  conditional.end(*this);
1729 
1730  llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
1731  EmitBlock(contBB);
1732 
1733  llvm::PHINode *PHI = Builder.CreatePHI(resultPtr->getType(), 2);
1734  PHI->addIncoming(resultPtr, notNullBB);
1735  PHI->addIncoming(llvm::Constant::getNullValue(resultPtr->getType()),
1736  nullCheckBB);
1737 
1738  resultPtr = PHI;
1739  }
1740 
1741  return resultPtr;
1742 }
1743 
1745  llvm::Value *Ptr, QualType DeleteTy,
1746  llvm::Value *NumElements,
1747  CharUnits CookieSize) {
1748  assert((!NumElements && CookieSize.isZero()) ||
1749  DeleteFD->getOverloadedOperator() == OO_Array_Delete);
1750 
1751  const FunctionProtoType *DeleteFTy =
1752  DeleteFD->getType()->getAs<FunctionProtoType>();
1753 
1754  CallArgList DeleteArgs;
1755 
1756  auto Params = getUsualDeleteParams(DeleteFD);
1757  auto ParamTypeIt = DeleteFTy->param_type_begin();
1758 
1759  // Pass the pointer itself.
1760  QualType ArgTy = *ParamTypeIt++;
1761  llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy));
1762  DeleteArgs.add(RValue::get(DeletePtr), ArgTy);
1763 
1764  // Pass the std::destroying_delete tag if present.
1765  if (Params.DestroyingDelete) {
1766  QualType DDTag = *ParamTypeIt++;
1767  // Just pass an 'undef'. We expect the tag type to be an empty struct.
1768  auto *V = llvm::UndefValue::get(getTypes().ConvertType(DDTag));
1769  DeleteArgs.add(RValue::get(V), DDTag);
1770  }
1771 
1772  // Pass the size if the delete function has a size_t parameter.
1773  if (Params.Size) {
1774  QualType SizeType = *ParamTypeIt++;
1775  CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy);
1776  llvm::Value *Size = llvm::ConstantInt::get(ConvertType(SizeType),
1777  DeleteTypeSize.getQuantity());
1778 
1779  // For array new, multiply by the number of elements.
1780  if (NumElements)
1781  Size = Builder.CreateMul(Size, NumElements);
1782 
1783  // If there is a cookie, add the cookie size.
1784  if (!CookieSize.isZero())
1785  Size = Builder.CreateAdd(
1786  Size, llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity()));
1787 
1788  DeleteArgs.add(RValue::get(Size), SizeType);
1789  }
1790 
1791  // Pass the alignment if the delete function has an align_val_t parameter.
1792  if (Params.Alignment) {
1793  QualType AlignValType = *ParamTypeIt++;
1794  CharUnits DeleteTypeAlign = getContext().toCharUnitsFromBits(
1795  getContext().getTypeAlignIfKnown(DeleteTy));
1796  llvm::Value *Align = llvm::ConstantInt::get(ConvertType(AlignValType),
1797  DeleteTypeAlign.getQuantity());
1798  DeleteArgs.add(RValue::get(Align), AlignValType);
1799  }
1800 
1801  assert(ParamTypeIt == DeleteFTy->param_type_end() &&
1802  "unknown parameter to usual delete function");
1803 
1804  // Emit the call to delete.
1805  EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs);
1806 }
1807 
1808 namespace {
1809  /// Calls the given 'operator delete' on a single object.
1810  struct CallObjectDelete final : EHScopeStack::Cleanup {
1811  llvm::Value *Ptr;
1812  const FunctionDecl *OperatorDelete;
1813  QualType ElementType;
1814 
1815  CallObjectDelete(llvm::Value *Ptr,
1816  const FunctionDecl *OperatorDelete,
1817  QualType ElementType)
1818  : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {}
1819 
1820  void Emit(CodeGenFunction &CGF, Flags flags) override {
1821  CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType);
1822  }
1823  };
1824 }
1825 
1826 void
1828  llvm::Value *CompletePtr,
1829  QualType ElementType) {
1830  EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, CompletePtr,
1831  OperatorDelete, ElementType);
1832 }
1833 
1834 /// Emit the code for deleting a single object with a destroying operator
1835 /// delete. If the element type has a non-virtual destructor, Ptr has already
1836 /// been converted to the type of the parameter of 'operator delete'. Otherwise
1837 /// Ptr points to an object of the static type.
1839  const CXXDeleteExpr *DE, Address Ptr,
1840  QualType ElementType) {
1841  auto *Dtor = ElementType->getAsCXXRecordDecl()->getDestructor();
1842  if (Dtor && Dtor->isVirtual())
1843  CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType,
1844  Dtor);
1845  else
1846  CGF.EmitDeleteCall(DE->getOperatorDelete(), Ptr.getPointer(), ElementType);
1847 }
1848 
1849 /// Emit the code for deleting a single object.
1851  const CXXDeleteExpr *DE,
1852  Address Ptr,
1853  QualType ElementType) {
1854  // C++11 [expr.delete]p3:
1855  // If the static type of the object to be deleted is different from its
1856  // dynamic type, the static type shall be a base class of the dynamic type
1857  // of the object to be deleted and the static type shall have a virtual
1858  // destructor or the behavior is undefined.
1860  DE->getExprLoc(), Ptr.getPointer(),
1861  ElementType);
1862 
1863  const FunctionDecl *OperatorDelete = DE->getOperatorDelete();
1864  assert(!OperatorDelete->isDestroyingOperatorDelete());
1865 
1866  // Find the destructor for the type, if applicable. If the
1867  // destructor is virtual, we'll just emit the vcall and return.
1868  const CXXDestructorDecl *Dtor = nullptr;
1869  if (const RecordType *RT = ElementType->getAs<RecordType>()) {
1870  CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1871  if (RD->hasDefinition() && !RD->hasTrivialDestructor()) {
1872  Dtor = RD->getDestructor();
1873 
1874  if (Dtor->isVirtual()) {
1875  CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType,
1876  Dtor);
1877  return;
1878  }
1879  }
1880  }
1881 
1882  // Make sure that we call delete even if the dtor throws.
1883  // This doesn't have to a conditional cleanup because we're going
1884  // to pop it off in a second.
1885  CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup,
1886  Ptr.getPointer(),
1887  OperatorDelete, ElementType);
1888 
1889  if (Dtor)
1891  /*ForVirtualBase=*/false,
1892  /*Delegating=*/false,
1893  Ptr);
1894  else if (auto Lifetime = ElementType.getObjCLifetime()) {
1895  switch (Lifetime) {
1896  case Qualifiers::OCL_None:
1899  break;
1900 
1903  break;
1904 
1905  case Qualifiers::OCL_Weak:
1906  CGF.EmitARCDestroyWeak(Ptr);
1907  break;
1908  }
1909  }
1910 
1911  CGF.PopCleanupBlock();
1912 }
1913 
1914 namespace {
1915  /// Calls the given 'operator delete' on an array of objects.
1916  struct CallArrayDelete final : EHScopeStack::Cleanup {
1917  llvm::Value *Ptr;
1918  const FunctionDecl *OperatorDelete;
1919  llvm::Value *NumElements;
1920  QualType ElementType;
1921  CharUnits CookieSize;
1922 
1923  CallArrayDelete(llvm::Value *Ptr,
1924  const FunctionDecl *OperatorDelete,
1925  llvm::Value *NumElements,
1926  QualType ElementType,
1927  CharUnits CookieSize)
1928  : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements),
1929  ElementType(ElementType), CookieSize(CookieSize) {}
1930 
1931  void Emit(CodeGenFunction &CGF, Flags flags) override {
1932  CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType, NumElements,
1933  CookieSize);
1934  }
1935  };
1936 }
1937 
1938 /// Emit the code for deleting an array of objects.
1940  const CXXDeleteExpr *E,
1941  Address deletedPtr,
1942  QualType elementType) {
1943  llvm::Value *numElements = nullptr;
1944  llvm::Value *allocatedPtr = nullptr;
1945  CharUnits cookieSize;
1946  CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType,
1947  numElements, allocatedPtr, cookieSize);
1948 
1949  assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer");
1950 
1951  // Make sure that we call delete even if one of the dtors throws.
1952  const FunctionDecl *operatorDelete = E->getOperatorDelete();
1953  CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup,
1954  allocatedPtr, operatorDelete,
1955  numElements, elementType,
1956  cookieSize);
1957 
1958  // Destroy the elements.
1959  if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) {
1960  assert(numElements && "no element count for a type with a destructor!");
1961 
1962  CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
1963  CharUnits elementAlign =
1964  deletedPtr.getAlignment().alignmentOfArrayElement(elementSize);
1965 
1966  llvm::Value *arrayBegin = deletedPtr.getPointer();
1967  llvm::Value *arrayEnd =
1968  CGF.Builder.CreateInBoundsGEP(arrayBegin, numElements, "delete.end");
1969 
1970  // Note that it is legal to allocate a zero-length array, and we
1971  // can never fold the check away because the length should always
1972  // come from a cookie.
1973  CGF.emitArrayDestroy(arrayBegin, arrayEnd, elementType, elementAlign,
1974  CGF.getDestroyer(dtorKind),
1975  /*checkZeroLength*/ true,
1976  CGF.needsEHCleanup(dtorKind));
1977  }
1978 
1979  // Pop the cleanup block.
1980  CGF.PopCleanupBlock();
1981 }
1982 
1984  const Expr *Arg = E->getArgument();
1985  Address Ptr = EmitPointerWithAlignment(Arg);
1986 
1987  // Null check the pointer.
1988  llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull");
1989  llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end");
1990 
1991  llvm::Value *IsNull = Builder.CreateIsNull(Ptr.getPointer(), "isnull");
1992 
1993  Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull);
1994  EmitBlock(DeleteNotNull);
1995 
1996  QualType DeleteTy = E->getDestroyedType();
1997 
1998  // A destroying operator delete overrides the entire operation of the
1999  // delete expression.
2001  EmitDestroyingObjectDelete(*this, E, Ptr, DeleteTy);
2002  EmitBlock(DeleteEnd);
2003  return;
2004  }
2005 
2006  // We might be deleting a pointer to array. If so, GEP down to the
2007  // first non-array element.
2008  // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*)
2009  if (DeleteTy->isConstantArrayType()) {
2010  llvm::Value *Zero = Builder.getInt32(0);
2012 
2013  GEP.push_back(Zero); // point at the outermost array
2014 
2015  // For each layer of array type we're pointing at:
2016  while (const ConstantArrayType *Arr
2017  = getContext().getAsConstantArrayType(DeleteTy)) {
2018  // 1. Unpeel the array type.
2019  DeleteTy = Arr->getElementType();
2020 
2021  // 2. GEP to the first element of the array.
2022  GEP.push_back(Zero);
2023  }
2024 
2025  Ptr = Address(Builder.CreateInBoundsGEP(Ptr.getPointer(), GEP, "del.first"),
2026  Ptr.getAlignment());
2027  }
2028 
2029  assert(ConvertTypeForMem(DeleteTy) == Ptr.getElementType());
2030 
2031  if (E->isArrayForm()) {
2032  EmitArrayDelete(*this, E, Ptr, DeleteTy);
2033  } else {
2034  EmitObjectDelete(*this, E, Ptr, DeleteTy);
2035  }
2036 
2037  EmitBlock(DeleteEnd);
2038 }
2039 
2040 static bool isGLValueFromPointerDeref(const Expr *E) {
2041  E = E->IgnoreParens();
2042 
2043  if (const auto *CE = dyn_cast<CastExpr>(E)) {
2044  if (!CE->getSubExpr()->isGLValue())
2045  return false;
2046  return isGLValueFromPointerDeref(CE->getSubExpr());
2047  }
2048 
2049  if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E))
2050  return isGLValueFromPointerDeref(OVE->getSourceExpr());
2051 
2052  if (const auto *BO = dyn_cast<BinaryOperator>(E))
2053  if (BO->getOpcode() == BO_Comma)
2054  return isGLValueFromPointerDeref(BO->getRHS());
2055 
2056  if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(E))
2057  return isGLValueFromPointerDeref(ACO->getTrueExpr()) ||
2058  isGLValueFromPointerDeref(ACO->getFalseExpr());
2059 
2060  // C++11 [expr.sub]p1:
2061  // The expression E1[E2] is identical (by definition) to *((E1)+(E2))
2062  if (isa<ArraySubscriptExpr>(E))
2063  return true;
2064 
2065  if (const auto *UO = dyn_cast<UnaryOperator>(E))
2066  if (UO->getOpcode() == UO_Deref)
2067  return true;
2068 
2069  return false;
2070 }
2071 
2073  llvm::Type *StdTypeInfoPtrTy) {
2074  // Get the vtable pointer.
2075  Address ThisPtr = CGF.EmitLValue(E).getAddress();
2076 
2077  QualType SrcRecordTy = E->getType();
2078 
2079  // C++ [class.cdtor]p4:
2080  // If the operand of typeid refers to the object under construction or
2081  // destruction and the static type of the operand is neither the constructor
2082  // or destructor’s class nor one of its bases, the behavior is undefined.
2084  ThisPtr.getPointer(), SrcRecordTy);
2085 
2086  // C++ [expr.typeid]p2:
2087  // If the glvalue expression is obtained by applying the unary * operator to
2088  // a pointer and the pointer is a null pointer value, the typeid expression
2089  // throws the std::bad_typeid exception.
2090  //
2091  // However, this paragraph's intent is not clear. We choose a very generous
2092  // interpretation which implores us to consider comma operators, conditional
2093  // operators, parentheses and other such constructs.
2095  isGLValueFromPointerDeref(E), SrcRecordTy)) {
2096  llvm::BasicBlock *BadTypeidBlock =
2097  CGF.createBasicBlock("typeid.bad_typeid");
2098  llvm::BasicBlock *EndBlock = CGF.createBasicBlock("typeid.end");
2099 
2100  llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr.getPointer());
2101  CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock);
2102 
2103  CGF.EmitBlock(BadTypeidBlock);
2104  CGF.CGM.getCXXABI().EmitBadTypeidCall(CGF);
2105  CGF.EmitBlock(EndBlock);
2106  }
2107 
2108  return CGF.CGM.getCXXABI().EmitTypeid(CGF, SrcRecordTy, ThisPtr,
2109  StdTypeInfoPtrTy);
2110 }
2111 
2113  llvm::Type *StdTypeInfoPtrTy =
2114  ConvertType(E->getType())->getPointerTo();
2115 
2116  if (E->isTypeOperand()) {
2117  llvm::Constant *TypeInfo =
2118  CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand(getContext()));
2119  return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy);
2120  }
2121 
2122  // C++ [expr.typeid]p2:
2123  // When typeid is applied to a glvalue expression whose type is a
2124  // polymorphic class type, the result refers to a std::type_info object
2125  // representing the type of the most derived object (that is, the dynamic
2126  // type) to which the glvalue refers.
2127  if (E->isPotentiallyEvaluated())
2128  return EmitTypeidFromVTable(*this, E->getExprOperand(),
2129  StdTypeInfoPtrTy);
2130 
2131  QualType OperandTy = E->getExprOperand()->getType();
2132  return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy),
2133  StdTypeInfoPtrTy);
2134 }
2135 
2137  QualType DestTy) {
2138  llvm::Type *DestLTy = CGF.ConvertType(DestTy);
2139  if (DestTy->isPointerType())
2140  return llvm::Constant::getNullValue(DestLTy);
2141 
2142  /// C++ [expr.dynamic.cast]p9:
2143  /// A failed cast to reference type throws std::bad_cast
2144  if (!CGF.CGM.getCXXABI().EmitBadCastCall(CGF))
2145  return nullptr;
2146 
2147  CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end"));
2148  return llvm::UndefValue::get(DestLTy);
2149 }
2150 
2152  const CXXDynamicCastExpr *DCE) {
2153  CGM.EmitExplicitCastExprType(DCE, this);
2154  QualType DestTy = DCE->getTypeAsWritten();
2155 
2156  QualType SrcTy = DCE->getSubExpr()->getType();
2157 
2158  // C++ [expr.dynamic.cast]p7:
2159  // If T is "pointer to cv void," then the result is a pointer to the most
2160  // derived object pointed to by v.
2161  const PointerType *DestPTy = DestTy->getAs<PointerType>();
2162 
2163  bool isDynamicCastToVoid;
2164  QualType SrcRecordTy;
2165  QualType DestRecordTy;
2166  if (DestPTy) {
2167  isDynamicCastToVoid = DestPTy->getPointeeType()->isVoidType();
2168  SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType();
2169  DestRecordTy = DestPTy->getPointeeType();
2170  } else {
2171  isDynamicCastToVoid = false;
2172  SrcRecordTy = SrcTy;
2173  DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType();
2174  }
2175 
2176  // C++ [class.cdtor]p5:
2177  // If the operand of the dynamic_cast refers to the object under
2178  // construction or destruction and the static type of the operand is not a
2179  // pointer to or object of the constructor or destructor’s own class or one
2180  // of its bases, the dynamic_cast results in undefined behavior.
2181  EmitTypeCheck(TCK_DynamicOperation, DCE->getExprLoc(), ThisAddr.getPointer(),
2182  SrcRecordTy);
2183 
2184  if (DCE->isAlwaysNull())
2185  if (llvm::Value *T = EmitDynamicCastToNull(*this, DestTy))
2186  return T;
2187 
2188  assert(SrcRecordTy->isRecordType() && "source type must be a record type!");
2189 
2190  // C++ [expr.dynamic.cast]p4:
2191  // If the value of v is a null pointer value in the pointer case, the result
2192  // is the null pointer value of type T.
2193  bool ShouldNullCheckSrcValue =
2194  CGM.getCXXABI().shouldDynamicCastCallBeNullChecked(SrcTy->isPointerType(),
2195  SrcRecordTy);
2196 
2197  llvm::BasicBlock *CastNull = nullptr;
2198  llvm::BasicBlock *CastNotNull = nullptr;
2199  llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end");
2200 
2201  if (ShouldNullCheckSrcValue) {
2202  CastNull = createBasicBlock("dynamic_cast.null");
2203  CastNotNull = createBasicBlock("dynamic_cast.notnull");
2204 
2205  llvm::Value *IsNull = Builder.CreateIsNull(ThisAddr.getPointer());
2206  Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
2207  EmitBlock(CastNotNull);
2208  }
2209 
2210  llvm::Value *Value;
2211  if (isDynamicCastToVoid) {
2212  Value = CGM.getCXXABI().EmitDynamicCastToVoid(*this, ThisAddr, SrcRecordTy,
2213  DestTy);
2214  } else {
2215  assert(DestRecordTy->isRecordType() &&
2216  "destination type must be a record type!");
2217  Value = CGM.getCXXABI().EmitDynamicCastCall(*this, ThisAddr, SrcRecordTy,
2218  DestTy, DestRecordTy, CastEnd);
2219  CastNotNull = Builder.GetInsertBlock();
2220  }
2221 
2222  if (ShouldNullCheckSrcValue) {
2223  EmitBranch(CastEnd);
2224 
2225  EmitBlock(CastNull);
2226  EmitBranch(CastEnd);
2227  }
2228 
2229  EmitBlock(CastEnd);
2230 
2231  if (ShouldNullCheckSrcValue) {
2232  llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
2233  PHI->addIncoming(Value, CastNotNull);
2234  PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull);
2235 
2236  Value = PHI;
2237  }
2238 
2239  return Value;
2240 }
2241 
2243  RunCleanupsScope Scope(*this);
2244  LValue SlotLV = MakeAddrLValue(Slot.getAddress(), E->getType());
2245 
2248  e = E->capture_init_end();
2249  i != e; ++i, ++CurField) {
2250  // Emit initialization
2251  LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField);
2252  if (CurField->hasCapturedVLAType()) {
2253  auto VAT = CurField->getCapturedVLAType();
2254  EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV);
2255  } else {
2256  EmitInitializerForField(*CurField, LV, *i);
2257  }
2258  }
2259 }
A call to an overloaded operator written using operator syntax.
Definition: ExprCXX.h:78
ReturnValueSlot - Contains the address where the return value of a function can be stored...
Definition: CGCall.h:361
virtual void EmitBadTypeidCall(CodeGenFunction &CGF)=0
Represents a function declaration or definition.
Definition: Decl.h:1709
bool isReservedGlobalPlacementOperator() const
Determines whether this operator new or delete is one of the reserved global placement operators: voi...
Definition: Decl.cpp:2709
Address getAddress() const
Definition: CGValue.h:569
Complete object ctor.
Definition: ABI.h:26
PointerType - C99 6.7.5.1 - Pointer Declarators.
Definition: Type.h:2352
QualType getPointeeType() const
Definition: Type.h:2365
llvm::iterator_range< arg_iterator > placement_arguments()
Definition: ExprCXX.h:2018
Destroyer * getDestroyer(QualType::DestructionKind destructionKind)
Definition: CGDecl.cpp:1582
A (possibly-)qualified type.
Definition: Type.h:653
static RValue EmitNewDeleteCall(CodeGenFunction &CGF, const FunctionDecl *CalleeDecl, const FunctionProtoType *CalleeType, const CallArgList &Args)
Emit a call to an operator new or operator delete function, as implicitly created by new-expressions ...
Definition: CGExprCXX.cpp:1284
bool isPODType(const ASTContext &Context) const
Determine whether this is a Plain Old Data (POD) type (C++ 3.9p10).
Definition: Type.cpp:2056
static CGCallee BuildAppleKextVirtualCall(CodeGenFunction &CGF, GlobalDecl GD, llvm::Type *Ty, const CXXRecordDecl *RD)
Definition: CGCXX.cpp:264
ValueDecl * getMemberDecl() const
Retrieve the member declaration to which this expression refers.
Definition: Expr.h:2505
Expr * getArg(unsigned Arg)
getArg - Return the specified argument.
Definition: Expr.h:2296
void EmitARCDestroyWeak(Address addr)
void @objc_destroyWeak(i8** addr) Essentially objc_storeWeak(addr, nil).
Definition: CGObjC.cpp:2280
const ASTRecordLayout & getASTRecordLayout(const RecordDecl *D) const
Get or compute information about the layout of the specified record (struct/union/class) D...
unsigned getNumArgs() const
getNumArgs - Return the number of actual arguments to this call.
Definition: Expr.h:2284
void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType, llvm::Type *ElementTy, Address NewPtr, llvm::Value *NumElements, llvm::Value *AllocSizeWithoutCookie)
Definition: CGExprCXX.cpp:965
QualType getPointeeType() const
If this is a pointer, ObjC object pointer, or block pointer, this returns the respective pointee...
Definition: Type.cpp:460
virtual bool shouldTypeidBeNullChecked(bool IsDeref, QualType SrcRecordTy)=0
Checking the &#39;this&#39; pointer for a constructor call.
bool isRecordType() const
Definition: Type.h:6094
Expr * getBase() const
Definition: Expr.h:2499
Decl - This represents one declaration (or definition), e.g.
Definition: DeclBase.h:86
void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V, QualType Type, CharUnits Alignment=CharUnits::Zero(), SanitizerSet SkippedChecks=SanitizerSet())
Emit a check that V is the address of storage of the appropriate size and alignment for an object of ...
Definition: CGExpr.cpp:593
bool isVirtual() const
Definition: DeclCXX.h:2061
FunctionDecl * getOperatorNew() const
Definition: ExprCXX.h:1945
Opcode getOpcode() const
Definition: Expr.h:3048
bool hasQualifier() const
Determines whether this member expression actually had a C++ nested-name-specifier prior to the name ...
Definition: Expr.h:2519
The base class of the type hierarchy.
Definition: Type.h:1419
bool requiresZeroInitialization() const
Whether this construction first requires zero-initialization before the initializer is called...
Definition: ExprCXX.h:1329
void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit)
EmitComplexExprIntoLValue - Emit the given expression of complex type and place its result into the s...
Represents an array type, per C99 6.7.5.2 - Array Declarators.
Definition: Type.h:2627
Represents a call to a C++ constructor.
Definition: ExprCXX.h:1239
RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E, ReturnValueSlot ReturnValue)
Definition: CGExprCXX.cpp:168
bool isZero() const
isZero - Test whether the quantity equals zero.
Definition: CharUnits.h:116
The l-value was an access to a declared entity or something equivalently strong, like the address of ...
llvm::IntegerType * Int8Ty
i8, i16, i32, and i64
Represents a C++ constructor within a class.
Definition: DeclCXX.h:2448
Expr * ignoreParenBaseCasts() LLVM_READONLY
Ignore parentheses and derived-to-base casts.
Definition: Expr.cpp:2539
static llvm::Value * EmitCXXNewAllocSize(CodeGenFunction &CGF, const CXXNewExpr *e, unsigned minElements, llvm::Value *&numElements, llvm::Value *&sizeWithoutCookie)
Definition: CGExprCXX.cpp:676
RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, ReturnValueSlot ReturnValue, const CallArgList &Args, llvm::Instruction **callOrInvoke, SourceLocation Loc)
EmitCall - Generate a call of the given function, expecting the given result type, and using the given argument list which specifies both the LLVM arguments and the types they were derived from.
Definition: CGCall.cpp:3741
static saved_type save(CodeGenFunction &CGF, type value)
Definition: EHScopeStack.h:60
QualType getReturnType() const
Definition: Decl.h:2257
unsigned getNumParams() const
Definition: Type.h:3567
const T * getAs() const
Member-template getAs<specific type>&#39;.
Definition: Type.h:6390
const void * Store
Store - This opaque type encapsulates an immutable mapping from locations to values.
Definition: StoreRef.h:28
IsZeroed_t isZeroed() const
Definition: CGValue.h:598
Address CreateConstInBoundsByteGEP(Address Addr, CharUnits Offset, const llvm::Twine &Name="")
Given a pointer to i8, adjust it by a given constant offset.
Definition: CGBuilder.h:234
llvm::Value * getPointer() const
Definition: Address.h:38
unsigned getNumPlacementArgs() const
Definition: ExprCXX.h:1959
static MemberCallInfo commonEmitCXXMemberOrOperatorCall(CodeGenFunction &CGF, const CXXMethodDecl *MD, llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *CE, CallArgList &Args, CallArgList *RtlArgs)
Definition: CGExprCXX.cpp:37
RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, ReturnValueSlot ReturnValue)
Definition: CGExprCXX.cpp:476
bool hasDefinition() const
Definition: DeclCXX.h:761
Expr * getExprOperand() const
Definition: ExprCXX.h:695
Represents an expression – generally a full-expression – that introduces cleanups to be run at the ...
Definition: ExprCXX.h:3003
RValue EmitCXXMemberOrOperatorCall(const CXXMethodDecl *Method, const CGCallee &Callee, ReturnValueSlot ReturnValue, llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *E, CallArgList *RtlArgs)
Definition: CGExprCXX.cpp:81
The collection of all-type qualifiers we support.
Definition: Type.h:152
void add(RValue rvalue, QualType type)
Definition: CGCall.h:285
CXXRecordDecl * getLambdaClass() const
Retrieve the class that corresponds to the lambda.
Definition: ExprCXX.cpp:998
bool mayInsertExtraPadding(bool EmitRemark=false) const
Whether we are allowed to insert extra padding between fields.
Definition: Decl.cpp:4057
bool isMoveAssignmentOperator() const
Determine whether this is a move assignment operator.
Definition: DeclCXX.cpp:2078
bool isEmpty() const
Determine whether this is an empty class in the sense of (C++11 [meta.unary.prop]).
Definition: DeclCXX.h:1302
An object to manage conditionally-evaluated expressions.
llvm::Value * EmitCXXNewExpr(const CXXNewExpr *E)
Definition: CGExprCXX.cpp:1540
Address getAddress() const
Definition: CGValue.h:327
CodeGenFunction - This class organizes the per-function state that is used while generating LLVM code...
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition: ASTContext.h:149
ArrayRef< QualType > getParamTypes() const
Definition: Type.h:3574
llvm::Value * EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE)
Definition: CGExprCXX.cpp:2151
static llvm::Value * EmitTypeidFromVTable(CodeGenFunction &CGF, const Expr *E, llvm::Type *StdTypeInfoPtrTy)
Definition: CGExprCXX.cpp:2072
Denotes a cleanup that should run when a scope is exited using exceptional control flow (a throw stat...
Definition: EHScopeStack.h:81
QualType getDestroyedType() const
Retrieve the type being destroyed.
Definition: ExprCXX.cpp:246
static CharUnits Zero()
Zero - Construct a CharUnits quantity of zero.
Definition: CharUnits.h:53
A metaprogramming class for ensuring that a value will dominate an arbitrary position in a function...
Definition: EHScopeStack.h:66
Expr * getSubExpr()
Definition: Expr.h:2783
bool isReplaceableGlobalAllocationFunction(bool *IsAligned=nullptr) const
Determines whether this function is one of the replaceable global allocation functions: void *operato...
Definition: Decl.cpp:2732
Describes an C or C++ initializer list.
Definition: Expr.h:3894
A C++ typeid expression (C++ [expr.typeid]), which gets the type_info that corresponds to the supplie...
Definition: ExprCXX.h:638
Expr * getArraySize()
Definition: ExprCXX.h:1952
FunctionDecl * getOperatorDelete() const
Definition: ExprCXX.h:2126
Base object ctor.
Definition: ABI.h:27
bool isElidable() const
Whether this construction is elidable.
Definition: ExprCXX.h:1308
Address CreateElementBitCast(Address Addr, llvm::Type *Ty, const llvm::Twine &Name="")
Cast the element type of the given address to a different type, preserving information like the align...
Definition: CGBuilder.h:157
CharUnits - This is an opaque type for sizes expressed in character units.
Definition: CharUnits.h:38
void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise)
Destroy a __strong variable.
Definition: CGObjC.cpp:2104
const ArrayType * getAsArrayTypeUnsafe() const
A variant of getAs<> for array types which silently discards qualifiers from the outermost type...
Definition: Type.h:6439
capture_init_iterator capture_init_begin()
Retrieve the first initialization argument for this lambda expression (which initializes the first ca...
Definition: ExprCXX.h:1728
bool isOne() const
isOne - Test whether the quantity equals one.
Definition: CharUnits.h:119
Expr * getInitializer()
The initializer of this new-expression.
Definition: ExprCXX.h:1990
CharUnits getAlignment() const
Return the alignment of this pointer.
Definition: Address.h:67
A builtin binary operation expression such as "x + y" or "x <= y".
Definition: Expr.h:3007
bool isVolatileQualified() const
Determine whether this type is volatile-qualified.
Definition: Type.h:5867
Checking the operand of a dynamic_cast or a typeid expression.
bool needsEHCleanup(QualType::DestructionKind kind)
Determines whether an EH cleanup is required to destroy a type with the given destruction kind...
llvm::CallInst * CreateMemCpy(Address Dest, Address Src, llvm::Value *Size, bool IsVolatile=false)
Definition: CGBuilder.h:259
const Type * getClass() const
Definition: Type.h:2605
bool isArrow() const
Definition: Expr.h:2604
Scope - A scope is a transient data structure that is used while parsing the program.
Definition: Scope.h:40
void initFullExprCleanup()
Set up the last cleaup that was pushed as a conditional full-expression cleanup.
Definition: CGCleanup.cpp:284
void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr, QualType DeleteTy, llvm::Value *NumElements=nullptr, CharUnits CookieSize=CharUnits())
Definition: CGExprCXX.cpp:1744
field_iterator field_begin() const
Definition: Decl.cpp:4010
param_type_iterator param_type_begin() const
Definition: Type.h:3719
llvm::BasicBlock * createBasicBlock(const Twine &name="", llvm::Function *parent=nullptr, llvm::BasicBlock *before=nullptr)
createBasicBlock - Create an LLVM basic block.
static void EmitNullBaseClassInitialization(CodeGenFunction &CGF, Address DestPtr, const CXXRecordDecl *Base)
Definition: CGExprCXX.cpp:481
A C++ lambda expression, which produces a function object (of unspecified type) that can be invoked l...
Definition: ExprCXX.h:1583
bool hasTrivialDestructor() const
Determine whether this class has a trivial destructor (C++ [class.dtor]p3)
Definition: DeclCXX.h:1453
bool isInstance() const
Definition: DeclCXX.h:2044
CXXDestructorDecl * getDestructor() const
Returns the destructor decl for this class.
Definition: DeclCXX.cpp:1655
CXXMethodDecl * getCorrespondingMethodInClass(const CXXRecordDecl *RD, bool MayBeBase=false)
Find the method in RD that corresponds to this one.
Definition: DeclCXX.cpp:1852
bool isNegative() const
isNegative - Test whether the quantity is less than zero.
Definition: CharUnits.h:125
This object can be modified without requiring retains or releases.
Definition: Type.h:173
arg_iterator arg_end()
Definition: Expr.h:2327
Checking the &#39;this&#39; pointer for a call to a non-static member function.
lookup_result lookup(DeclarationName Name) const
lookup - Find the declarations (if any) with the given Name in this context.
Definition: DeclBase.cpp:1531
bool isArrayForm() const
Definition: ExprCXX.h:2115
QualType getTypeAsWritten() const
getTypeAsWritten - Returns the type that this expression is casting to, as written in the source code...
Definition: Expr.h:2933
bool isValid() const
Definition: Address.h:36
void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest)
Definition: CGExprCXX.cpp:569
Represents a C++ pseudo-destructor (C++ [expr.pseudo]).
Definition: ExprCXX.h:2200
void addFrom(const CallArgList &other)
Add all the arguments from another CallArgList to this one.
Definition: CGCall.h:294
CXXRecordDecl * getAsCXXRecordDecl() const
Retrieves the CXXRecordDecl that this type refers to, either because the type is a RecordType or beca...
Definition: Type.cpp:1590
Represents a prototype with parameter type info, e.g.
Definition: Type.h:3346
bool isDynamicClass() const
Definition: DeclCXX.h:774
virtual CharUnits GetArrayCookieSize(const CXXNewExpr *expr)
Returns the extra size required in order to store the array cookie for the given new-expression.
Definition: CGCXXABI.cpp:168
OverloadedOperatorKind getOverloadedOperator() const
getOverloadedOperator - Which C++ overloaded operator this function represents, if any...
Definition: Decl.cpp:3208
CXXConstructorDecl * getConstructor() const
Get the constructor that this expression will (ultimately) call.
Definition: ExprCXX.h:1302
NestedNameSpecifier * getQualifier() const
If the member name was qualified, retrieves the nested-name-specifier that precedes the member name...
Definition: Expr.h:2534
RValue - This trivial value class is used to represent the result of an expression that is evaluated...
Definition: CGValue.h:39
QuantityType getQuantity() const
getQuantity - Get the raw integer representation of this quantity.
Definition: CharUnits.h:179
ASTRecordLayout - This class contains layout information for one RecordDecl, which is a struct/union/...
Definition: RecordLayout.h:39
static TypeEvaluationKind getEvaluationKind(QualType T)
getEvaluationKind - Return the TypeEvaluationKind of QualType T.
Expr - This represents one expression.
Definition: Expr.h:106
bool isVariadic() const
Whether this function is variadic.
Definition: Decl.cpp:2603
bool isDefaulted() const
Whether this function is defaulted per C++0x.
Definition: Decl.h:2053
static Address invalid()
Definition: Address.h:35
static void EnterNewDeleteCleanup(CodeGenFunction &CGF, const CXXNewExpr *E, Address NewPtr, llvm::Value *AllocSize, CharUnits AllocAlign, const CallArgList &NewArgs)
Enter a cleanup to call &#39;operator delete&#39; if the initializer in a new-expression throws.
Definition: CGExprCXX.cpp:1472
virtual void ReadArrayCookie(CodeGenFunction &CGF, Address Ptr, const CXXDeleteExpr *expr, QualType ElementType, llvm::Value *&NumElements, llvm::Value *&AllocPtr, CharUnits &CookieSize)
Reads the array cookie associated with the given pointer, if it has one.
Definition: CGCXXABI.cpp:208
Enters a new scope for capturing cleanups, all of which will be executed once the scope is exited...
const FunctionProtoType * T
RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E)
Definition: CGExprCXX.cpp:107
void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete, llvm::Value *CompletePtr, QualType ElementType)
Definition: CGExprCXX.cpp:1827
void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo, llvm::iterator_range< CallExpr::const_arg_iterator > ArgRange, AbstractCallee AC=AbstractCallee(), unsigned ParamsToSkip=0, EvaluationOrder Order=EvaluationOrder::Default)
EmitCallArgs - Emit call arguments for a function.
const T * castAs() const
Member-template castAs<specific type>.
Definition: Type.h:6453
static CGCallee forDirect(llvm::Constant *functionPtr, const CGCalleeInfo &abstractInfo=CGCalleeInfo())
Definition: CGCall.h:134
SourceLocation getExprLoc() const LLVM_READONLY
Definition: ExprCXX.h:189
Represents a C++ destructor within a class.
Definition: DeclCXX.h:2671
unsigned getNumInits() const
Definition: Expr.h:3924
const Expr * getCallee() const
Definition: Expr.h:2267
bool isArrow() const
Determine whether this pseudo-destructor expression was written using an &#39;->&#39; (otherwise, it used a &#39;.
Definition: ExprCXX.h:2263
llvm::PointerType * getType() const
Return the type of the pointer value.
Definition: Address.h:44
virtual bool EmitBadCastCall(CodeGenFunction &CGF)=0
const AstTypeMatcher< ArrayType > arrayType
Matches all kinds of arrays.
A class for recording the number of arguments that a function signature requires. ...
bool isTemporaryObject(ASTContext &Ctx, const CXXRecordDecl *TempTy) const
Determine whether the result of this expression is a temporary object of the given class type...
Definition: Expr.cpp:2663
QualType getType() const
Definition: Expr.h:128
void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest)
Definition: CGExprCXX.cpp:2242
RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue, bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow, const Expr *Base)
Definition: CGExprCXX.cpp:194
CharUnits alignmentOfArrayElement(CharUnits elementSize) const
Given that this is the alignment of the first element of an array, return the minimum alignment of an...
Definition: CharUnits.h:197
bool hasInitializer() const
Whether this new-expression has any initializer at all.
Definition: ExprCXX.h:1980
QualType getRecordType(const RecordDecl *Decl) const
static void EmitObjectDelete(CodeGenFunction &CGF, const CXXDeleteExpr *DE, Address Ptr, QualType ElementType)
Emit the code for deleting a single object.
Definition: CGExprCXX.cpp:1850
llvm::CallInst * CreateMemSet(Address Dest, llvm::Value *Value, llvm::Value *Size, bool IsVolatile=false)
Definition: CGBuilder.h:281
llvm::Value * EmitCastToVoidPtr(llvm::Value *value)
Emit a cast to void* in the appropriate address space.
Definition: CGExpr.cpp:50
QualType getTypeOperand(ASTContext &Context) const
Retrieves the type operand of this typeid() expression after various required adjustments (removing r...
Definition: ExprCXX.cpp:77
void emitArrayDestroy(llvm::Value *begin, llvm::Value *end, QualType elementType, CharUnits elementAlign, Destroyer *destroyer, bool checkZeroLength, bool useEHCleanup)
emitArrayDestroy - Destroys all the elements of the given array, beginning from last to first...
Definition: CGDecl.cpp:1699
bool isTrivial() const
Whether this function is "trivial" in some specialized C++ senses.
Definition: Decl.h:2045
QualType getDestroyedType() const
Retrieve the type being destroyed.
Definition: ExprCXX.cpp:178
GlobalDecl - represents a global declaration.
Definition: GlobalDecl.h:35
The l-value was considered opaque, so the alignment was determined from a type.
RecordDecl * getDecl() const
Definition: Type.h:4064
Expr * getArgument()
Definition: ExprCXX.h:2128
bool isAlignValT() const
Definition: Type.cpp:2392
There is no lifetime qualification on this type.
Definition: Type.h:169
A C++ dynamic_cast expression (C++ [expr.dynamic.cast]).
Definition: ExprCXX.h:338
void set(SanitizerMask K, bool Value)
Enable or disable a certain (single) sanitizer.
Definition: Sanitizers.h:61
static AggValueSlot forAddr(Address addr, Qualifiers quals, IsDestructed_t isDestructed, NeedsGCBarriers_t needsGC, IsAliased_t isAliased, Overlap_t mayOverlap, IsZeroed_t isZeroed=IsNotZeroed)
forAddr - Make a slot for an aggregate value.
Definition: CGValue.h:506
Assigning into this object requires the old value to be released and the new value to be retained...
Definition: Type.h:180
QualType getCanonicalType() const
Definition: Type.h:5836
llvm::Value * EmitCXXTypeidExpr(const CXXTypeidExpr *E)
Definition: CGExprCXX.cpp:2112
Encodes a location in the source.
A helper class that allows the use of isa/cast/dyncast to detect TagType objects of enums...
Definition: Type.h:4080
virtual llvm::Value * EmitTypeid(CodeGenFunction &CGF, QualType SrcRecordTy, Address ThisPtr, llvm::Type *StdTypeInfoPtrTy)=0
A saved depth on the scope stack.
Definition: EHScopeStack.h:107
static CXXRecordDecl * getCXXRecord(const Expr *E)
Definition: CGExprCXX.cpp:158
Represents a new-expression for memory allocation and constructor calls, e.g: "new CXXNewExpr(foo)"...
Definition: ExprCXX.h:1845
Represents a call to a member function that may be written either with member call syntax (e...
Definition: ExprCXX.h:164
An aggregate value slot.
Definition: CGValue.h:437
A scoped helper to set the current debug location to the specified location or preferred location of ...
Definition: CGDebugInfo.h:641
static void EmitArrayDelete(CodeGenFunction &CGF, const CXXDeleteExpr *E, Address deletedPtr, QualType elementType)
Emit the code for deleting an array of objects.
Definition: CGExprCXX.cpp:1939
Represents a static or instance method of a struct/union/class.
Definition: DeclCXX.h:2016
const ConstantArrayType * getAsConstantArrayType(QualType T) const
Definition: ASTContext.h:2336
Represents a C++ nested name specifier, such as "\::std::vector<int>::".
llvm::Constant * EmitNullConstantForBase(const CXXRecordDecl *Record)
Return a null constant appropriate for zero-initializing a base class with the given type...
QualType getAllocatedType() const
Definition: ExprCXX.h:1919
bool isSignedIntegerOrEnumerationType() const
Determines whether this is an integer type that is signed or an enumeration types whose underlying ty...
Definition: Type.cpp:1816
bool isArray() const
Definition: ExprCXX.h:1950
arg_range arguments()
Definition: Expr.h:2321
virtual void emitVirtualObjectDelete(CodeGenFunction &CGF, const CXXDeleteExpr *DE, Address Ptr, QualType ElementType, const CXXDestructorDecl *Dtor)=0
An aligned address.
Definition: Address.h:25
DestructionKind isDestructedType() const
Returns a nonzero value if objects of this type require non-trivial work to clean up after...
Definition: Type.h:1164
All available information about a concrete callee.
Definition: CGCall.h:67
const CXXRecordDecl * getBestDynamicClassType() const
For an expression of class type or pointer to class type, return the most derived class decl the expr...
Definition: Expr.cpp:63
Complete object dtor.
Definition: ABI.h:36
EnumDecl * getDecl() const
Definition: Type.h:4087
RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, ReturnValueSlot ReturnValue)
Definition: CGExprCXX.cpp:413
Assigning into this object requires a lifetime extension.
Definition: Type.h:186
static void EmitDestroyingObjectDelete(CodeGenFunction &CGF, const CXXDeleteExpr *DE, Address Ptr, QualType ElementType)
Emit the code for deleting a single object with a destroying operator delete.
Definition: CGExprCXX.cpp:1838
QualType getType() const
Definition: CGValue.h:264
bool passAlignment() const
Indicates whether the required alignment should be implicitly passed to the allocation function...
Definition: ExprCXX.h:2004
FunctionDecl * getOperatorDelete() const
Definition: ExprCXX.h:1947
CXXCtorType
C++ constructor types.
Definition: ABI.h:25
SourceLocation getExprLoc() const LLVM_READONLY
getExprLoc - Return the preferred location for the arrow when diagnosing a problem with a generic exp...
Definition: Expr.cpp:216
Expr * getLHS() const
Definition: Expr.h:3051
llvm::Value * EmitScalarExpr(const Expr *E, bool IgnoreResultAssign=false)
EmitScalarExpr - Emit the computation of the specified expression of LLVM scalar type, returning the result.
static CharUnits CalculateCookiePadding(CodeGenFunction &CGF, const CXXNewExpr *E)
Definition: CGExprCXX.cpp:663
CharUnits getNonVirtualAlignment() const
getNonVirtualSize - Get the non-virtual alignment (in chars) of an object, which is the alignment of ...
Definition: RecordLayout.h:201
CGFunctionInfo - Class to encapsulate the information about a function definition.
CharUnits alignmentAtOffset(CharUnits offset) const
Given that this is a non-zero alignment value, what is the alignment at the given offset...
Definition: CharUnits.h:190
bool isTypeOperand() const
Definition: ExprCXX.h:678
Dataflow Directional Tag Classes.
void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type, bool ForVirtualBase, bool Delegating, Address This)
Definition: CGClass.cpp:2363
Represents a delete expression for memory deallocation and destructor calls, e.g. ...
Definition: ExprCXX.h:2074
FunctionDecl * getDirectCallee()
If the callee is a FunctionDecl, return it. Otherwise return 0.
Definition: Expr.cpp:1216
bool isInConditionalBranch() const
isInConditionalBranch - Return true if we&#39;re currently emitting one branch or the other of a conditio...
DeclarationName - The name of a declaration.
const CXXRecordDecl * getParent() const
Returns the parent of this method declaration, which is the class in which this method is defined...
Definition: DeclCXX.h:2136
llvm::Function * getIntrinsic(unsigned IID, ArrayRef< llvm::Type *> Tys=None)
A pointer to member type per C++ 8.3.3 - Pointers to members.
Definition: Type.h:2571
bool isCopyAssignmentOperator() const
Determine whether this is a copy-assignment operator, regardless of whether it was declared implicitl...
Definition: DeclCXX.cpp:2057
bool isDestroyingOperatorDelete() const
Determine whether this is a destroying operator delete.
Definition: Decl.cpp:2798
llvm::Module & getModule() const
LValue MakeAddrLValue(Address Addr, QualType T, AlignmentSource Source=AlignmentSource::Type)
specific_decl_iterator - Iterates over a subrange of declarations stored in a DeclContext, providing only those that are of type SpecificDecl (or a class derived from it).
Definition: DeclBase.h:1600
void EmitAggExpr(const Expr *E, AggValueSlot AS)
EmitAggExpr - Emit the computation of the specified expression of aggregate type. ...
Definition: CGExprAgg.cpp:1623
bool isStringLiteralInit() const
Definition: Expr.cpp:1919
static llvm::Value * EmitDynamicCastToNull(CodeGenFunction &CGF, QualType DestTy)
Definition: CGExprCXX.cpp:2136
AlignmentSource getAlignmentSource() const
Definition: CGValue.h:156
A helper class that allows the use of isa/cast/dyncast to detect TagType objects of structs/unions/cl...
Definition: Type.h:4054
CXXMethodDecl * getDevirtualizedMethod(const Expr *Base, bool IsAppleKext)
If it&#39;s possible to devirtualize a call to this method, return the called function.
Definition: DeclCXX.cpp:1910
bool isIntegerType() const
isIntegerType() does not include complex integers (a GCC extension).
Definition: Type.h:6276
arg_iterator arg_begin()
Definition: Expr.h:2326
llvm::Type * getElementType() const
Return the type of the values stored in this address.
Definition: Address.h:52
Represents a call to a CUDA kernel function.
Definition: ExprCXX.h:203
SourceLocation getLocStart() const LLVM_READONLY
Definition: Expr.cpp:1326
void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue, bool capturedByInit)
Definition: CGDecl.cpp:738
Expr * getArg(unsigned Arg)
Return the specified argument.
Definition: ExprCXX.h:1365
Base for LValueReferenceType and RValueReferenceType.
Definition: Type.h:2488
void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp)
Definition: CGExprCXX.cpp:641
llvm::Constant * GetAddrOfFunction(GlobalDecl GD, llvm::Type *Ty=nullptr, bool ForVTable=false, bool DontDefer=false, ForDefinition_t IsForDefinition=NotForDefinition)
Return the address of the given function.
void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false)
EmitBlock - Emit the given block.
Definition: CGStmt.cpp:445
bool isConstantArrayType() const
Definition: Type.h:6074
static bool isGLValueFromPointerDeref(const Expr *E)
Definition: CGExprCXX.cpp:2040
llvm::ConstantInt * getSize(CharUnits numChars)
Emit the given number of characters as a value of type size_t.
Reading or writing from this object requires a barrier call.
Definition: Type.h:183
Overlap_t mayOverlap() const
Definition: CGValue.h:585
QualType getParamType(unsigned i) const
Definition: Type.h:3569
MemberExpr - [C99 6.5.2.3] Structure and Union Members.
Definition: Expr.h:2409
Represents a C++ struct/union/class.
Definition: DeclCXX.h:300
virtual const CXXRecordDecl * getThisArgumentTypeForMethod(const CXXMethodDecl *MD)
Get the type of the implicit "this" parameter used by a method.
Definition: CGCXXABI.h:338
bool isVoidType() const
Definition: Type.h:6248
bool hasStrongOrWeakObjCLifetime() const
Definition: Type.h:1078
static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E, QualType ElementType, llvm::Type *ElementTy, Address NewPtr, llvm::Value *NumElements, llvm::Value *AllocSizeWithoutCookie)
Definition: CGExprCXX.cpp:1269
llvm::Type * ConvertType(QualType T)
Qualifiers getQualifiers() const
Retrieve the set of qualifiers applied to this type.
Definition: Type.h:5824
RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type, const CallExpr *TheCallExpr, bool IsDelete)
Definition: CGExprCXX.cpp:1318
void EmitCXXDeleteExpr(const CXXDeleteExpr *E)
Definition: CGExprCXX.cpp:1983
LValue EmitLValue(const Expr *E)
EmitLValue - Emit code to compute a designator that specifies the location of the expression...
Definition: CGExpr.cpp:1176
CharUnits getNonVirtualSize() const
getNonVirtualSize - Get the non-virtual size (in chars) of an object, which is the size of the object...
Definition: RecordLayout.h:193
T * pushCleanupWithExtra(CleanupKind Kind, size_t N, As... A)
Push a cleanup with non-constant storage requirements on the stack.
Definition: EHScopeStack.h:305
static CGCallee forVirtual(const CallExpr *CE, GlobalDecl MD, Address Addr, llvm::FunctionType *FTy)
Definition: CGCall.h:139
static UsualDeleteParams getUsualDeleteParams(const FunctionDecl *FD)
Definition: CGExprCXX.cpp:1344
CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
Definition: Expr.h:2227
QualType getIntegerType() const
Return the integer type this enum decl corresponds to.
Definition: Decl.h:3417
llvm::Constant * tryEmitAbstract(const Expr *E, QualType T)
Try to emit the result of the given expression as an abstract constant.
CGCXXABI & getCXXABI() const
__DEVICE__ int max(int __a, int __b)
capture_init_iterator capture_init_end()
Retrieve the iterator pointing one past the last initialization argument for this lambda expression...
Definition: ExprCXX.h:1740
bool isAlwaysNull() const
isAlwaysNull - Return whether the result of the dynamic_cast is proven to always be null...
Definition: ExprCXX.cpp:611
static RValue get(llvm::Value *V)
Definition: CGValue.h:86
bool isUnion() const
Definition: Decl.h:3220
static RequiredArgs forPrototypePlus(const FunctionProtoType *prototype, unsigned additional, const FunctionDecl *FD)
Compute the arguments required by the given formal prototype, given that there may be some additional...
Expr * getRHS() const
Definition: Expr.h:3053
Expr *const * const_capture_init_iterator
Const iterator that walks over the capture initialization arguments.
Definition: ExprCXX.h:1714
bool isPointerType() const
Definition: Type.h:6021
static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init, QualType AllocType, Address NewPtr, AggValueSlot::Overlap_t MayOverlap)
Definition: CGExprCXX.cpp:938
const CGFunctionInfo & arrangeFreeFunctionCall(const CallArgList &Args, const FunctionType *Ty, bool ChainCall)
Figure out the rules for calling a function with the given formal type using the given arguments...
Definition: CGCall.cpp:597
CharUnits getTypeSizeInChars(QualType T) const
Return the size of the specified (complete) type T, in characters.
virtual std::vector< CharUnits > getVBPtrOffsets(const CXXRecordDecl *RD)
Gets the offsets of all the virtual base pointers in a given class.
Definition: CGCXXABI.cpp:319
QualType getType() const
Definition: Decl.h:647
bool shouldNullCheckAllocation(const ASTContext &Ctx) const
True if the allocation result needs to be null-checked.
Definition: ExprCXX.cpp:171
LValue - This represents an lvalue references.
Definition: CGValue.h:167
An abstract representation of regular/ObjC call/message targets.
Information for lazily generating a cleanup.
Definition: EHScopeStack.h:147
bool isPotentiallyEvaluated() const
Determine whether this typeid has a type operand which is potentially evaluated, per C++11 [expr...
Definition: ExprCXX.cpp:62
RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue)
Definition: CGExprCXX.cpp:466
TranslationUnitDecl * getTranslationUnitDecl()
Definition: DeclBase.cpp:361
CallArgList - Type for representing both the value and type of arguments in a call.
Definition: CGCall.h:260
void PopCleanupBlock(bool FallThroughIsBranchThrough=false)
PopCleanupBlock - Will pop the cleanup entry on the stack and process all branch fixups.
Definition: CGCleanup.cpp:640
Represents the canonical version of C arrays with a specified constant size.
Definition: Type.h:2687
Represents an implicitly-generated value initialization of an object of a given type.
Definition: Expr.h:4602
QualType getPointeeType() const
Definition: Type.h:2591
Expr * IgnoreParens() LLVM_READONLY
IgnoreParens - Ignore parentheses.
Definition: Expr.cpp:2438
ConstructionKind getConstructionKind() const
Determine whether this constructor is actually constructing a base class (rather than a complete obje...
Definition: ExprCXX.h:1336
CanQualType getSizeType() const
Return the unique type for "size_t" (C99 7.17), defined in <stddef.h>.
Qualifiers::ObjCLifetime getObjCLifetime() const
Returns lifetime attribute of this type.
Definition: Type.h:1070
param_type_iterator param_type_end() const
Definition: Type.h:3723