clang 22.0.0git
LoweringPrepare.cpp
Go to the documentation of this file.
1//===- LoweringPrepare.cpp - pareparation work for LLVM lowering ----------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
10#include "PassDetail.h"
11#include "mlir/IR/Attributes.h"
13#include "clang/Basic/Module.h"
21#include "llvm/Support/Path.h"
22
23#include <memory>
24
25using namespace mlir;
26using namespace cir;
27
28namespace mlir {
29#define GEN_PASS_DEF_LOWERINGPREPARE
30#include "clang/CIR/Dialect/Passes.h.inc"
31} // namespace mlir
32
33static SmallString<128> getTransformedFileName(mlir::ModuleOp mlirModule) {
34 SmallString<128> fileName;
35
36 if (mlirModule.getSymName())
37 fileName = llvm::sys::path::filename(mlirModule.getSymName()->str());
38
39 if (fileName.empty())
40 fileName = "<null>";
41
42 for (size_t i = 0; i < fileName.size(); ++i) {
43 // Replace everything that's not [a-zA-Z0-9._] with a _. This set happens
44 // to be the set of C preprocessing numbers.
45 if (!clang::isPreprocessingNumberBody(fileName[i]))
46 fileName[i] = '_';
47 }
48
49 return fileName;
50}
51
52/// Return the FuncOp called by `callOp`.
53static cir::FuncOp getCalledFunction(cir::CallOp callOp) {
54 mlir::SymbolRefAttr sym = llvm::dyn_cast_if_present<mlir::SymbolRefAttr>(
55 callOp.getCallableForCallee());
56 if (!sym)
57 return nullptr;
58 return dyn_cast_or_null<cir::FuncOp>(
59 mlir::SymbolTable::lookupNearestSymbolFrom(callOp, sym));
60}
61
62namespace {
63struct LoweringPreparePass
64 : public impl::LoweringPrepareBase<LoweringPreparePass> {
65 LoweringPreparePass() = default;
66 void runOnOperation() override;
67
68 void runOnOp(mlir::Operation *op);
69 void lowerCastOp(cir::CastOp op);
70 void lowerComplexDivOp(cir::ComplexDivOp op);
71 void lowerComplexMulOp(cir::ComplexMulOp op);
72 void lowerUnaryOp(cir::UnaryOp op);
73 void lowerGlobalOp(cir::GlobalOp op);
74 void lowerDynamicCastOp(cir::DynamicCastOp op);
75 void lowerArrayDtor(cir::ArrayDtor op);
76 void lowerArrayCtor(cir::ArrayCtor op);
77
78 /// Build the function that initializes the specified global
79 cir::FuncOp buildCXXGlobalVarDeclInitFunc(cir::GlobalOp op);
80
81 /// Handle the dtor region by registering destructor with __cxa_atexit
82 cir::FuncOp getOrCreateDtorFunc(CIRBaseBuilderTy &builder, cir::GlobalOp op,
83 mlir::Region &dtorRegion,
84 cir::CallOp &dtorCall);
85
86 /// Build a module init function that calls all the dynamic initializers.
87 void buildCXXGlobalInitFunc();
88
89 /// Materialize global ctor/dtor list
90 void buildGlobalCtorDtorList();
91
92 cir::FuncOp buildRuntimeFunction(
93 mlir::OpBuilder &builder, llvm::StringRef name, mlir::Location loc,
94 cir::FuncType type,
95 cir::GlobalLinkageKind linkage = cir::GlobalLinkageKind::ExternalLinkage);
96
97 cir::GlobalOp buildRuntimeVariable(
98 mlir::OpBuilder &builder, llvm::StringRef name, mlir::Location loc,
99 mlir::Type type,
100 cir::GlobalLinkageKind linkage = cir::GlobalLinkageKind::ExternalLinkage,
101 cir::VisibilityKind visibility = cir::VisibilityKind::Default);
102
103 ///
104 /// AST related
105 /// -----------
106
107 clang::ASTContext *astCtx;
108
109 // Helper for lowering C++ ABI specific operations.
110 std::shared_ptr<cir::LoweringPrepareCXXABI> cxxABI;
111
112 /// Tracks current module.
113 mlir::ModuleOp mlirModule;
114
115 /// Tracks existing dynamic initializers.
116 llvm::StringMap<uint32_t> dynamicInitializerNames;
117 llvm::SmallVector<cir::FuncOp> dynamicInitializers;
118
119 /// List of ctors and their priorities to be called before main()
120 llvm::SmallVector<std::pair<std::string, uint32_t>, 4> globalCtorList;
121 /// List of dtors and their priorities to be called when unloading module.
122 llvm::SmallVector<std::pair<std::string, uint32_t>, 4> globalDtorList;
123
124 void setASTContext(clang::ASTContext *c) {
125 astCtx = c;
126 switch (c->getCXXABIKind()) {
127 case clang::TargetCXXABI::GenericItanium:
128 // We'll need X86-specific support for handling vaargs lowering, but for
129 // now the Itanium ABI will work.
132 break;
133 case clang::TargetCXXABI::GenericAArch64:
134 case clang::TargetCXXABI::AppleARM64:
137 break;
138 default:
139 llvm_unreachable("NYI");
140 }
141 }
142};
143
144} // namespace
145
146cir::GlobalOp LoweringPreparePass::buildRuntimeVariable(
147 mlir::OpBuilder &builder, llvm::StringRef name, mlir::Location loc,
148 mlir::Type type, cir::GlobalLinkageKind linkage,
149 cir::VisibilityKind visibility) {
150 cir::GlobalOp g = dyn_cast_or_null<cir::GlobalOp>(
151 mlir::SymbolTable::lookupNearestSymbolFrom(
152 mlirModule, mlir::StringAttr::get(mlirModule->getContext(), name)));
153 if (!g) {
154 g = cir::GlobalOp::create(builder, loc, name, type);
155 g.setLinkageAttr(
156 cir::GlobalLinkageKindAttr::get(builder.getContext(), linkage));
157 mlir::SymbolTable::setSymbolVisibility(
158 g, mlir::SymbolTable::Visibility::Private);
159 g.setGlobalVisibilityAttr(
160 cir::VisibilityAttr::get(builder.getContext(), visibility));
161 }
162 return g;
163}
164
165cir::FuncOp LoweringPreparePass::buildRuntimeFunction(
166 mlir::OpBuilder &builder, llvm::StringRef name, mlir::Location loc,
167 cir::FuncType type, cir::GlobalLinkageKind linkage) {
168 cir::FuncOp f = dyn_cast_or_null<FuncOp>(SymbolTable::lookupNearestSymbolFrom(
169 mlirModule, StringAttr::get(mlirModule->getContext(), name)));
170 if (!f) {
171 f = cir::FuncOp::create(builder, loc, name, type);
172 f.setLinkageAttr(
173 cir::GlobalLinkageKindAttr::get(builder.getContext(), linkage));
174 mlir::SymbolTable::setSymbolVisibility(
175 f, mlir::SymbolTable::Visibility::Private);
176
178 }
179 return f;
180}
181
182static mlir::Value lowerScalarToComplexCast(mlir::MLIRContext &ctx,
183 cir::CastOp op) {
184 cir::CIRBaseBuilderTy builder(ctx);
185 builder.setInsertionPoint(op);
186
187 mlir::Value src = op.getSrc();
188 mlir::Value imag = builder.getNullValue(src.getType(), op.getLoc());
189 return builder.createComplexCreate(op.getLoc(), src, imag);
190}
191
192static mlir::Value lowerComplexToScalarCast(mlir::MLIRContext &ctx,
193 cir::CastOp op,
194 cir::CastKind elemToBoolKind) {
195 cir::CIRBaseBuilderTy builder(ctx);
196 builder.setInsertionPoint(op);
197
198 mlir::Value src = op.getSrc();
199 if (!mlir::isa<cir::BoolType>(op.getType()))
200 return builder.createComplexReal(op.getLoc(), src);
201
202 // Complex cast to bool: (bool)(a+bi) => (bool)a || (bool)b
203 mlir::Value srcReal = builder.createComplexReal(op.getLoc(), src);
204 mlir::Value srcImag = builder.createComplexImag(op.getLoc(), src);
205
206 cir::BoolType boolTy = builder.getBoolTy();
207 mlir::Value srcRealToBool =
208 builder.createCast(op.getLoc(), elemToBoolKind, srcReal, boolTy);
209 mlir::Value srcImagToBool =
210 builder.createCast(op.getLoc(), elemToBoolKind, srcImag, boolTy);
211 return builder.createLogicalOr(op.getLoc(), srcRealToBool, srcImagToBool);
212}
213
214static mlir::Value lowerComplexToComplexCast(mlir::MLIRContext &ctx,
215 cir::CastOp op,
216 cir::CastKind scalarCastKind) {
217 CIRBaseBuilderTy builder(ctx);
218 builder.setInsertionPoint(op);
219
220 mlir::Value src = op.getSrc();
221 auto dstComplexElemTy =
222 mlir::cast<cir::ComplexType>(op.getType()).getElementType();
223
224 mlir::Value srcReal = builder.createComplexReal(op.getLoc(), src);
225 mlir::Value srcImag = builder.createComplexImag(op.getLoc(), src);
226
227 mlir::Value dstReal = builder.createCast(op.getLoc(), scalarCastKind, srcReal,
228 dstComplexElemTy);
229 mlir::Value dstImag = builder.createCast(op.getLoc(), scalarCastKind, srcImag,
230 dstComplexElemTy);
231 return builder.createComplexCreate(op.getLoc(), dstReal, dstImag);
232}
233
234void LoweringPreparePass::lowerCastOp(cir::CastOp op) {
235 mlir::MLIRContext &ctx = getContext();
236 mlir::Value loweredValue = [&]() -> mlir::Value {
237 switch (op.getKind()) {
238 case cir::CastKind::float_to_complex:
239 case cir::CastKind::int_to_complex:
240 return lowerScalarToComplexCast(ctx, op);
241 case cir::CastKind::float_complex_to_real:
242 case cir::CastKind::int_complex_to_real:
243 return lowerComplexToScalarCast(ctx, op, op.getKind());
244 case cir::CastKind::float_complex_to_bool:
245 return lowerComplexToScalarCast(ctx, op, cir::CastKind::float_to_bool);
246 case cir::CastKind::int_complex_to_bool:
247 return lowerComplexToScalarCast(ctx, op, cir::CastKind::int_to_bool);
248 case cir::CastKind::float_complex:
249 return lowerComplexToComplexCast(ctx, op, cir::CastKind::floating);
250 case cir::CastKind::float_complex_to_int_complex:
251 return lowerComplexToComplexCast(ctx, op, cir::CastKind::float_to_int);
252 case cir::CastKind::int_complex:
253 return lowerComplexToComplexCast(ctx, op, cir::CastKind::integral);
254 case cir::CastKind::int_complex_to_float_complex:
255 return lowerComplexToComplexCast(ctx, op, cir::CastKind::int_to_float);
256 default:
257 return nullptr;
258 }
259 }();
260
261 if (loweredValue) {
262 op.replaceAllUsesWith(loweredValue);
263 op.erase();
264 }
265}
266
267static mlir::Value buildComplexBinOpLibCall(
268 LoweringPreparePass &pass, CIRBaseBuilderTy &builder,
269 llvm::StringRef (*libFuncNameGetter)(llvm::APFloat::Semantics),
270 mlir::Location loc, cir::ComplexType ty, mlir::Value lhsReal,
271 mlir::Value lhsImag, mlir::Value rhsReal, mlir::Value rhsImag) {
272 cir::FPTypeInterface elementTy =
273 mlir::cast<cir::FPTypeInterface>(ty.getElementType());
274
275 llvm::StringRef libFuncName = libFuncNameGetter(
276 llvm::APFloat::SemanticsToEnum(elementTy.getFloatSemantics()));
277 llvm::SmallVector<mlir::Type, 4> libFuncInputTypes(4, elementTy);
278
279 cir::FuncType libFuncTy = cir::FuncType::get(libFuncInputTypes, ty);
280
281 // Insert a declaration for the runtime function to be used in Complex
282 // multiplication and division when needed
283 cir::FuncOp libFunc;
284 {
285 mlir::OpBuilder::InsertionGuard ipGuard{builder};
286 builder.setInsertionPointToStart(pass.mlirModule.getBody());
287 libFunc = pass.buildRuntimeFunction(builder, libFuncName, loc, libFuncTy);
288 }
289
290 cir::CallOp call =
291 builder.createCallOp(loc, libFunc, {lhsReal, lhsImag, rhsReal, rhsImag});
292 return call.getResult();
293}
294
295static llvm::StringRef
296getComplexDivLibCallName(llvm::APFloat::Semantics semantics) {
297 switch (semantics) {
298 case llvm::APFloat::S_IEEEhalf:
299 return "__divhc3";
300 case llvm::APFloat::S_IEEEsingle:
301 return "__divsc3";
302 case llvm::APFloat::S_IEEEdouble:
303 return "__divdc3";
304 case llvm::APFloat::S_PPCDoubleDouble:
305 return "__divtc3";
306 case llvm::APFloat::S_x87DoubleExtended:
307 return "__divxc3";
308 case llvm::APFloat::S_IEEEquad:
309 return "__divtc3";
310 default:
311 llvm_unreachable("unsupported floating point type");
312 }
313}
314
315static mlir::Value
316buildAlgebraicComplexDiv(CIRBaseBuilderTy &builder, mlir::Location loc,
317 mlir::Value lhsReal, mlir::Value lhsImag,
318 mlir::Value rhsReal, mlir::Value rhsImag) {
319 // (a+bi) / (c+di) = ((ac+bd)/(cc+dd)) + ((bc-ad)/(cc+dd))i
320 mlir::Value &a = lhsReal;
321 mlir::Value &b = lhsImag;
322 mlir::Value &c = rhsReal;
323 mlir::Value &d = rhsImag;
324
325 mlir::Value ac = builder.createBinop(loc, a, cir::BinOpKind::Mul, c); // a*c
326 mlir::Value bd = builder.createBinop(loc, b, cir::BinOpKind::Mul, d); // b*d
327 mlir::Value cc = builder.createBinop(loc, c, cir::BinOpKind::Mul, c); // c*c
328 mlir::Value dd = builder.createBinop(loc, d, cir::BinOpKind::Mul, d); // d*d
329 mlir::Value acbd =
330 builder.createBinop(loc, ac, cir::BinOpKind::Add, bd); // ac+bd
331 mlir::Value ccdd =
332 builder.createBinop(loc, cc, cir::BinOpKind::Add, dd); // cc+dd
333 mlir::Value resultReal =
334 builder.createBinop(loc, acbd, cir::BinOpKind::Div, ccdd);
335
336 mlir::Value bc = builder.createBinop(loc, b, cir::BinOpKind::Mul, c); // b*c
337 mlir::Value ad = builder.createBinop(loc, a, cir::BinOpKind::Mul, d); // a*d
338 mlir::Value bcad =
339 builder.createBinop(loc, bc, cir::BinOpKind::Sub, ad); // bc-ad
340 mlir::Value resultImag =
341 builder.createBinop(loc, bcad, cir::BinOpKind::Div, ccdd);
342 return builder.createComplexCreate(loc, resultReal, resultImag);
343}
344
345static mlir::Value
347 mlir::Value lhsReal, mlir::Value lhsImag,
348 mlir::Value rhsReal, mlir::Value rhsImag) {
349 // Implements Smith's algorithm for complex division.
350 // SMITH, R. L. Algorithm 116: Complex division. Commun. ACM 5, 8 (1962).
351
352 // Let:
353 // - lhs := a+bi
354 // - rhs := c+di
355 // - result := lhs / rhs = e+fi
356 //
357 // The algorithm pseudocode looks like follows:
358 // if fabs(c) >= fabs(d):
359 // r := d / c
360 // tmp := c + r*d
361 // e = (a + b*r) / tmp
362 // f = (b - a*r) / tmp
363 // else:
364 // r := c / d
365 // tmp := d + r*c
366 // e = (a*r + b) / tmp
367 // f = (b*r - a) / tmp
368
369 mlir::Value &a = lhsReal;
370 mlir::Value &b = lhsImag;
371 mlir::Value &c = rhsReal;
372 mlir::Value &d = rhsImag;
373
374 auto trueBranchBuilder = [&](mlir::OpBuilder &, mlir::Location) {
375 mlir::Value r = builder.createBinop(loc, d, cir::BinOpKind::Div,
376 c); // r := d / c
377 mlir::Value rd = builder.createBinop(loc, r, cir::BinOpKind::Mul, d); // r*d
378 mlir::Value tmp = builder.createBinop(loc, c, cir::BinOpKind::Add,
379 rd); // tmp := c + r*d
380
381 mlir::Value br = builder.createBinop(loc, b, cir::BinOpKind::Mul, r); // b*r
382 mlir::Value abr =
383 builder.createBinop(loc, a, cir::BinOpKind::Add, br); // a + b*r
384 mlir::Value e = builder.createBinop(loc, abr, cir::BinOpKind::Div, tmp);
385
386 mlir::Value ar = builder.createBinop(loc, a, cir::BinOpKind::Mul, r); // a*r
387 mlir::Value bar =
388 builder.createBinop(loc, b, cir::BinOpKind::Sub, ar); // b - a*r
389 mlir::Value f = builder.createBinop(loc, bar, cir::BinOpKind::Div, tmp);
390
391 mlir::Value result = builder.createComplexCreate(loc, e, f);
392 builder.createYield(loc, result);
393 };
394
395 auto falseBranchBuilder = [&](mlir::OpBuilder &, mlir::Location) {
396 mlir::Value r = builder.createBinop(loc, c, cir::BinOpKind::Div,
397 d); // r := c / d
398 mlir::Value rc = builder.createBinop(loc, r, cir::BinOpKind::Mul, c); // r*c
399 mlir::Value tmp = builder.createBinop(loc, d, cir::BinOpKind::Add,
400 rc); // tmp := d + r*c
401
402 mlir::Value ar = builder.createBinop(loc, a, cir::BinOpKind::Mul, r); // a*r
403 mlir::Value arb =
404 builder.createBinop(loc, ar, cir::BinOpKind::Add, b); // a*r + b
405 mlir::Value e = builder.createBinop(loc, arb, cir::BinOpKind::Div, tmp);
406
407 mlir::Value br = builder.createBinop(loc, b, cir::BinOpKind::Mul, r); // b*r
408 mlir::Value bra =
409 builder.createBinop(loc, br, cir::BinOpKind::Sub, a); // b*r - a
410 mlir::Value f = builder.createBinop(loc, bra, cir::BinOpKind::Div, tmp);
411
412 mlir::Value result = builder.createComplexCreate(loc, e, f);
413 builder.createYield(loc, result);
414 };
415
416 auto cFabs = cir::FAbsOp::create(builder, loc, c);
417 auto dFabs = cir::FAbsOp::create(builder, loc, d);
418 cir::CmpOp cmpResult =
419 builder.createCompare(loc, cir::CmpOpKind::ge, cFabs, dFabs);
420 auto ternary = cir::TernaryOp::create(builder, loc, cmpResult,
421 trueBranchBuilder, falseBranchBuilder);
422
423 return ternary.getResult();
424}
425
427 mlir::MLIRContext &context, clang::ASTContext &cc,
428 CIRBaseBuilderTy &builder, mlir::Type elementType) {
429
430 auto getHigherPrecisionFPType = [&context](mlir::Type type) -> mlir::Type {
431 if (mlir::isa<cir::FP16Type>(type))
432 return cir::SingleType::get(&context);
433
434 if (mlir::isa<cir::SingleType>(type) || mlir::isa<cir::BF16Type>(type))
435 return cir::DoubleType::get(&context);
436
437 if (mlir::isa<cir::DoubleType>(type))
438 return cir::LongDoubleType::get(&context, type);
439
440 return type;
441 };
442
443 auto getFloatTypeSemantics =
444 [&cc](mlir::Type type) -> const llvm::fltSemantics & {
445 const clang::TargetInfo &info = cc.getTargetInfo();
446 if (mlir::isa<cir::FP16Type>(type))
447 return info.getHalfFormat();
448
449 if (mlir::isa<cir::BF16Type>(type))
450 return info.getBFloat16Format();
451
452 if (mlir::isa<cir::SingleType>(type))
453 return info.getFloatFormat();
454
455 if (mlir::isa<cir::DoubleType>(type))
456 return info.getDoubleFormat();
457
458 if (mlir::isa<cir::LongDoubleType>(type)) {
459 if (cc.getLangOpts().OpenMP && cc.getLangOpts().OpenMPIsTargetDevice)
460 llvm_unreachable("NYI Float type semantics with OpenMP");
461 return info.getLongDoubleFormat();
462 }
463
464 if (mlir::isa<cir::FP128Type>(type)) {
465 if (cc.getLangOpts().OpenMP && cc.getLangOpts().OpenMPIsTargetDevice)
466 llvm_unreachable("NYI Float type semantics with OpenMP");
467 return info.getFloat128Format();
468 }
469
470 llvm_unreachable("Unsupported float type semantics");
471 };
472
473 const mlir::Type higherElementType = getHigherPrecisionFPType(elementType);
474 const llvm::fltSemantics &elementTypeSemantics =
475 getFloatTypeSemantics(elementType);
476 const llvm::fltSemantics &higherElementTypeSemantics =
477 getFloatTypeSemantics(higherElementType);
478
479 // Check that the promoted type can handle the intermediate values without
480 // overflowing. This can be interpreted as:
481 // (SmallerType.LargestFiniteVal * SmallerType.LargestFiniteVal) * 2 <=
482 // LargerType.LargestFiniteVal.
483 // In terms of exponent it gives this formula:
484 // (SmallerType.LargestFiniteVal * SmallerType.LargestFiniteVal
485 // doubles the exponent of SmallerType.LargestFiniteVal)
486 if (llvm::APFloat::semanticsMaxExponent(elementTypeSemantics) * 2 + 1 <=
487 llvm::APFloat::semanticsMaxExponent(higherElementTypeSemantics)) {
488 return higherElementType;
489 }
490
491 // The intermediate values can't be represented in the promoted type
492 // without overflowing.
493 return {};
494}
495
496static mlir::Value
497lowerComplexDiv(LoweringPreparePass &pass, CIRBaseBuilderTy &builder,
498 mlir::Location loc, cir::ComplexDivOp op, mlir::Value lhsReal,
499 mlir::Value lhsImag, mlir::Value rhsReal, mlir::Value rhsImag,
500 mlir::MLIRContext &mlirCx, clang::ASTContext &cc) {
501 cir::ComplexType complexTy = op.getType();
502 if (mlir::isa<cir::FPTypeInterface>(complexTy.getElementType())) {
503 cir::ComplexRangeKind range = op.getRange();
504 if (range == cir::ComplexRangeKind::Improved)
505 return buildRangeReductionComplexDiv(builder, loc, lhsReal, lhsImag,
506 rhsReal, rhsImag);
507
508 if (range == cir::ComplexRangeKind::Full)
510 loc, complexTy, lhsReal, lhsImag, rhsReal,
511 rhsImag);
512
513 if (range == cir::ComplexRangeKind::Promoted) {
514 mlir::Type originalElementType = complexTy.getElementType();
515 mlir::Type higherPrecisionElementType =
517 originalElementType);
518
519 if (!higherPrecisionElementType)
520 return buildRangeReductionComplexDiv(builder, loc, lhsReal, lhsImag,
521 rhsReal, rhsImag);
522
523 cir::CastKind floatingCastKind = cir::CastKind::floating;
524 lhsReal = builder.createCast(floatingCastKind, lhsReal,
525 higherPrecisionElementType);
526 lhsImag = builder.createCast(floatingCastKind, lhsImag,
527 higherPrecisionElementType);
528 rhsReal = builder.createCast(floatingCastKind, rhsReal,
529 higherPrecisionElementType);
530 rhsImag = builder.createCast(floatingCastKind, rhsImag,
531 higherPrecisionElementType);
532
533 mlir::Value algebraicResult = buildAlgebraicComplexDiv(
534 builder, loc, lhsReal, lhsImag, rhsReal, rhsImag);
535
536 mlir::Value resultReal = builder.createComplexReal(loc, algebraicResult);
537 mlir::Value resultImag = builder.createComplexImag(loc, algebraicResult);
538
539 mlir::Value finalReal =
540 builder.createCast(floatingCastKind, resultReal, originalElementType);
541 mlir::Value finalImag =
542 builder.createCast(floatingCastKind, resultImag, originalElementType);
543 return builder.createComplexCreate(loc, finalReal, finalImag);
544 }
545 }
546
547 return buildAlgebraicComplexDiv(builder, loc, lhsReal, lhsImag, rhsReal,
548 rhsImag);
549}
550
551void LoweringPreparePass::lowerComplexDivOp(cir::ComplexDivOp op) {
552 cir::CIRBaseBuilderTy builder(getContext());
553 builder.setInsertionPointAfter(op);
554 mlir::Location loc = op.getLoc();
555 mlir::TypedValue<cir::ComplexType> lhs = op.getLhs();
556 mlir::TypedValue<cir::ComplexType> rhs = op.getRhs();
557 mlir::Value lhsReal = builder.createComplexReal(loc, lhs);
558 mlir::Value lhsImag = builder.createComplexImag(loc, lhs);
559 mlir::Value rhsReal = builder.createComplexReal(loc, rhs);
560 mlir::Value rhsImag = builder.createComplexImag(loc, rhs);
561
562 mlir::Value loweredResult =
563 lowerComplexDiv(*this, builder, loc, op, lhsReal, lhsImag, rhsReal,
564 rhsImag, getContext(), *astCtx);
565 op.replaceAllUsesWith(loweredResult);
566 op.erase();
567}
568
569static llvm::StringRef
570getComplexMulLibCallName(llvm::APFloat::Semantics semantics) {
571 switch (semantics) {
572 case llvm::APFloat::S_IEEEhalf:
573 return "__mulhc3";
574 case llvm::APFloat::S_IEEEsingle:
575 return "__mulsc3";
576 case llvm::APFloat::S_IEEEdouble:
577 return "__muldc3";
578 case llvm::APFloat::S_PPCDoubleDouble:
579 return "__multc3";
580 case llvm::APFloat::S_x87DoubleExtended:
581 return "__mulxc3";
582 case llvm::APFloat::S_IEEEquad:
583 return "__multc3";
584 default:
585 llvm_unreachable("unsupported floating point type");
586 }
587}
588
589static mlir::Value lowerComplexMul(LoweringPreparePass &pass,
590 CIRBaseBuilderTy &builder,
591 mlir::Location loc, cir::ComplexMulOp op,
592 mlir::Value lhsReal, mlir::Value lhsImag,
593 mlir::Value rhsReal, mlir::Value rhsImag) {
594 // (a+bi) * (c+di) = (ac-bd) + (ad+bc)i
595 mlir::Value resultRealLhs =
596 builder.createBinop(loc, lhsReal, cir::BinOpKind::Mul, rhsReal);
597 mlir::Value resultRealRhs =
598 builder.createBinop(loc, lhsImag, cir::BinOpKind::Mul, rhsImag);
599 mlir::Value resultImagLhs =
600 builder.createBinop(loc, lhsReal, cir::BinOpKind::Mul, rhsImag);
601 mlir::Value resultImagRhs =
602 builder.createBinop(loc, lhsImag, cir::BinOpKind::Mul, rhsReal);
603 mlir::Value resultReal = builder.createBinop(
604 loc, resultRealLhs, cir::BinOpKind::Sub, resultRealRhs);
605 mlir::Value resultImag = builder.createBinop(
606 loc, resultImagLhs, cir::BinOpKind::Add, resultImagRhs);
607 mlir::Value algebraicResult =
608 builder.createComplexCreate(loc, resultReal, resultImag);
609
610 cir::ComplexType complexTy = op.getType();
611 cir::ComplexRangeKind rangeKind = op.getRange();
612 if (mlir::isa<cir::IntType>(complexTy.getElementType()) ||
613 rangeKind == cir::ComplexRangeKind::Basic ||
614 rangeKind == cir::ComplexRangeKind::Improved ||
615 rangeKind == cir::ComplexRangeKind::Promoted)
616 return algebraicResult;
617
619
620 // Check whether the real part and the imaginary part of the result are both
621 // NaN. If so, emit a library call to compute the multiplication instead.
622 // We check a value against NaN by comparing the value against itself.
623 mlir::Value resultRealIsNaN = builder.createIsNaN(loc, resultReal);
624 mlir::Value resultImagIsNaN = builder.createIsNaN(loc, resultImag);
625 mlir::Value resultRealAndImagAreNaN =
626 builder.createLogicalAnd(loc, resultRealIsNaN, resultImagIsNaN);
627
628 return cir::TernaryOp::create(
629 builder, loc, resultRealAndImagAreNaN,
630 [&](mlir::OpBuilder &, mlir::Location) {
631 mlir::Value libCallResult = buildComplexBinOpLibCall(
632 pass, builder, &getComplexMulLibCallName, loc, complexTy,
633 lhsReal, lhsImag, rhsReal, rhsImag);
634 builder.createYield(loc, libCallResult);
635 },
636 [&](mlir::OpBuilder &, mlir::Location) {
637 builder.createYield(loc, algebraicResult);
638 })
639 .getResult();
640}
641
642void LoweringPreparePass::lowerComplexMulOp(cir::ComplexMulOp op) {
643 cir::CIRBaseBuilderTy builder(getContext());
644 builder.setInsertionPointAfter(op);
645 mlir::Location loc = op.getLoc();
646 mlir::TypedValue<cir::ComplexType> lhs = op.getLhs();
647 mlir::TypedValue<cir::ComplexType> rhs = op.getRhs();
648 mlir::Value lhsReal = builder.createComplexReal(loc, lhs);
649 mlir::Value lhsImag = builder.createComplexImag(loc, lhs);
650 mlir::Value rhsReal = builder.createComplexReal(loc, rhs);
651 mlir::Value rhsImag = builder.createComplexImag(loc, rhs);
652 mlir::Value loweredResult = lowerComplexMul(*this, builder, loc, op, lhsReal,
653 lhsImag, rhsReal, rhsImag);
654 op.replaceAllUsesWith(loweredResult);
655 op.erase();
656}
657
658void LoweringPreparePass::lowerUnaryOp(cir::UnaryOp op) {
659 mlir::Type ty = op.getType();
660 if (!mlir::isa<cir::ComplexType>(ty))
661 return;
662
663 mlir::Location loc = op.getLoc();
664 cir::UnaryOpKind opKind = op.getKind();
665
666 CIRBaseBuilderTy builder(getContext());
667 builder.setInsertionPointAfter(op);
668
669 mlir::Value operand = op.getInput();
670 mlir::Value operandReal = builder.createComplexReal(loc, operand);
671 mlir::Value operandImag = builder.createComplexImag(loc, operand);
672
673 mlir::Value resultReal;
674 mlir::Value resultImag;
675
676 switch (opKind) {
677 case cir::UnaryOpKind::Inc:
678 case cir::UnaryOpKind::Dec:
679 resultReal = builder.createUnaryOp(loc, opKind, operandReal);
680 resultImag = operandImag;
681 break;
682
683 case cir::UnaryOpKind::Plus:
684 case cir::UnaryOpKind::Minus:
685 resultReal = builder.createUnaryOp(loc, opKind, operandReal);
686 resultImag = builder.createUnaryOp(loc, opKind, operandImag);
687 break;
688
689 case cir::UnaryOpKind::Not:
690 resultReal = operandReal;
691 resultImag =
692 builder.createUnaryOp(loc, cir::UnaryOpKind::Minus, operandImag);
693 break;
694 }
695
696 mlir::Value result = builder.createComplexCreate(loc, resultReal, resultImag);
697 op.replaceAllUsesWith(result);
698 op.erase();
699}
700
701cir::FuncOp LoweringPreparePass::getOrCreateDtorFunc(CIRBaseBuilderTy &builder,
702 cir::GlobalOp op,
703 mlir::Region &dtorRegion,
704 cir::CallOp &dtorCall) {
705 mlir::OpBuilder::InsertionGuard guard(builder);
708
709 cir::VoidType voidTy = builder.getVoidTy();
710 auto voidPtrTy = cir::PointerType::get(voidTy);
711
712 // Look for operations in dtorBlock
713 mlir::Block &dtorBlock = dtorRegion.front();
714
715 // The first operation should be a get_global to retrieve the address
716 // of the global variable we're destroying.
717 auto opIt = dtorBlock.getOperations().begin();
718 cir::GetGlobalOp ggop = mlir::cast<cir::GetGlobalOp>(*opIt);
719
720 // The simple case is just a call to a destructor, like this:
721 //
722 // %0 = cir.get_global %globalS : !cir.ptr<!rec_S>
723 // cir.call %_ZN1SD1Ev(%0) : (!cir.ptr<!rec_S>) -> ()
724 // (implicit cir.yield)
725 //
726 // That is, if the second operation is a call that takes the get_global result
727 // as its only operand, and the only other operation is a yield, then we can
728 // just return the called function.
729 if (dtorBlock.getOperations().size() == 3) {
730 auto callOp = mlir::dyn_cast<cir::CallOp>(&*(++opIt));
731 auto yieldOp = mlir::dyn_cast<cir::YieldOp>(&*(++opIt));
732 if (yieldOp && callOp && callOp.getNumOperands() == 1 &&
733 callOp.getArgOperand(0) == ggop) {
734 dtorCall = callOp;
735 return getCalledFunction(callOp);
736 }
737 }
738
739 // Otherwise, we need to create a helper function to replace the dtor region.
740 // This name is kind of arbitrary, but it matches the name that classic
741 // codegen uses, based on the expected case that gets us here.
742 builder.setInsertionPointAfter(op);
743 SmallString<256> fnName("__cxx_global_array_dtor");
744 uint32_t cnt = dynamicInitializerNames[fnName]++;
745 if (cnt)
746 fnName += "." + std::to_string(cnt);
747
748 // Create the helper function.
749 auto fnType = cir::FuncType::get({voidPtrTy}, voidTy);
750 cir::FuncOp dtorFunc =
751 buildRuntimeFunction(builder, fnName, op.getLoc(), fnType,
752 cir::GlobalLinkageKind::InternalLinkage);
753 mlir::Block *entryBB = dtorFunc.addEntryBlock();
754
755 // Move everything from the dtor region into the helper function.
756 entryBB->getOperations().splice(entryBB->begin(), dtorBlock.getOperations(),
757 dtorBlock.begin(), dtorBlock.end());
758
759 // Before erasing this, clone it back into the dtor region
760 cir::GetGlobalOp dtorGGop =
761 mlir::cast<cir::GetGlobalOp>(entryBB->getOperations().front());
762 builder.setInsertionPointToStart(&dtorBlock);
763 builder.clone(*dtorGGop.getOperation());
764
765 // Replace all uses of the help function's get_global with the function
766 // argument.
767 mlir::Value dtorArg = entryBB->getArgument(0);
768 dtorGGop.replaceAllUsesWith(dtorArg);
769 dtorGGop.erase();
770
771 // Replace the yield in the final block with a return
772 mlir::Block &finalBlock = dtorFunc.getBody().back();
773 auto yieldOp = cast<cir::YieldOp>(finalBlock.getTerminator());
774 builder.setInsertionPoint(yieldOp);
775 cir::ReturnOp::create(builder, yieldOp->getLoc());
776 yieldOp->erase();
777
778 // Create a call to the helper function, passing the original get_global op
779 // as the argument.
780 cir::GetGlobalOp origGGop =
781 mlir::cast<cir::GetGlobalOp>(dtorBlock.getOperations().front());
782 builder.setInsertionPointAfter(origGGop);
783 mlir::Value ggopResult = origGGop.getResult();
784 dtorCall = builder.createCallOp(op.getLoc(), dtorFunc, ggopResult);
785
786 // Add a yield after the call.
787 auto finalYield = cir::YieldOp::create(builder, op.getLoc());
788
789 // Erase everything after the yield.
790 dtorBlock.getOperations().erase(std::next(mlir::Block::iterator(finalYield)),
791 dtorBlock.end());
792 dtorRegion.getBlocks().erase(std::next(dtorRegion.begin()), dtorRegion.end());
793
794 return dtorFunc;
795}
796
797cir::FuncOp
798LoweringPreparePass::buildCXXGlobalVarDeclInitFunc(cir::GlobalOp op) {
799 // TODO(cir): Store this in the GlobalOp.
800 // This should come from the MangleContext, but for now I'm hardcoding it.
801 SmallString<256> fnName("__cxx_global_var_init");
802 // Get a unique name
803 uint32_t cnt = dynamicInitializerNames[fnName]++;
804 if (cnt)
805 fnName += "." + std::to_string(cnt);
806
807 // Create a variable initialization function.
808 CIRBaseBuilderTy builder(getContext());
809 builder.setInsertionPointAfter(op);
810 cir::VoidType voidTy = builder.getVoidTy();
811 auto fnType = cir::FuncType::get({}, voidTy);
812 FuncOp f = buildRuntimeFunction(builder, fnName, op.getLoc(), fnType,
813 cir::GlobalLinkageKind::InternalLinkage);
814
815 // Move over the initialzation code of the ctor region.
816 mlir::Block *entryBB = f.addEntryBlock();
817 if (!op.getCtorRegion().empty()) {
818 mlir::Block &block = op.getCtorRegion().front();
819 entryBB->getOperations().splice(entryBB->begin(), block.getOperations(),
820 block.begin(), std::prev(block.end()));
821 }
822
823 // Register the destructor call with __cxa_atexit
824 mlir::Region &dtorRegion = op.getDtorRegion();
825 if (!dtorRegion.empty()) {
828
829 // Create a variable that binds the atexit to this shared object.
830 builder.setInsertionPointToStart(&mlirModule.getBodyRegion().front());
831 cir::GlobalOp handle = buildRuntimeVariable(
832 builder, "__dso_handle", op.getLoc(), builder.getI8Type(),
833 cir::GlobalLinkageKind::ExternalLinkage, cir::VisibilityKind::Hidden);
834
835 // If this is a simple call to a destructor, get the called function.
836 // Otherwise, create a helper function for the entire dtor region,
837 // replacing the current dtor region body with a call to the helper
838 // function.
839 cir::CallOp dtorCall;
840 cir::FuncOp dtorFunc =
841 getOrCreateDtorFunc(builder, op, dtorRegion, dtorCall);
842
843 // Create a runtime helper function:
844 // extern "C" int __cxa_atexit(void (*f)(void *), void *p, void *d);
845 auto voidPtrTy = cir::PointerType::get(voidTy);
846 auto voidFnTy = cir::FuncType::get({voidPtrTy}, voidTy);
847 auto voidFnPtrTy = cir::PointerType::get(voidFnTy);
848 auto handlePtrTy = cir::PointerType::get(handle.getSymType());
849 auto fnAtExitType =
850 cir::FuncType::get({voidFnPtrTy, voidPtrTy, handlePtrTy}, voidTy);
851 const char *nameAtExit = "__cxa_atexit";
852 cir::FuncOp fnAtExit =
853 buildRuntimeFunction(builder, nameAtExit, op.getLoc(), fnAtExitType);
854
855 // Replace the dtor (or helper) call with a call to
856 // __cxa_atexit(&dtor, &var, &__dso_handle)
857 builder.setInsertionPointAfter(dtorCall);
858 mlir::Value args[3];
859 auto dtorPtrTy = cir::PointerType::get(dtorFunc.getFunctionType());
860 // dtorPtrTy
861 args[0] = cir::GetGlobalOp::create(builder, dtorCall.getLoc(), dtorPtrTy,
862 dtorFunc.getSymName());
863 args[0] = cir::CastOp::create(builder, dtorCall.getLoc(), voidFnPtrTy,
864 cir::CastKind::bitcast, args[0]);
865 args[1] =
866 cir::CastOp::create(builder, dtorCall.getLoc(), voidPtrTy,
867 cir::CastKind::bitcast, dtorCall.getArgOperand(0));
868 args[2] = cir::GetGlobalOp::create(builder, handle.getLoc(), handlePtrTy,
869 handle.getSymName());
870 builder.createCallOp(dtorCall.getLoc(), fnAtExit, args);
871 dtorCall->erase();
872 mlir::Block &dtorBlock = dtorRegion.front();
873 entryBB->getOperations().splice(entryBB->end(), dtorBlock.getOperations(),
874 dtorBlock.begin(),
875 std::prev(dtorBlock.end()));
876 }
877
878 // Replace cir.yield with cir.return
879 builder.setInsertionPointToEnd(entryBB);
880 mlir::Operation *yieldOp = nullptr;
881 if (!op.getCtorRegion().empty()) {
882 mlir::Block &block = op.getCtorRegion().front();
883 yieldOp = &block.getOperations().back();
884 } else {
885 assert(!dtorRegion.empty());
886 mlir::Block &block = dtorRegion.front();
887 yieldOp = &block.getOperations().back();
888 }
889
890 assert(isa<cir::YieldOp>(*yieldOp));
891 cir::ReturnOp::create(builder, yieldOp->getLoc());
892 return f;
893}
894
895void LoweringPreparePass::lowerGlobalOp(GlobalOp op) {
896 mlir::Region &ctorRegion = op.getCtorRegion();
897 mlir::Region &dtorRegion = op.getDtorRegion();
898
899 if (!ctorRegion.empty() || !dtorRegion.empty()) {
900 // Build a variable initialization function and move the initialzation code
901 // in the ctor region over.
902 cir::FuncOp f = buildCXXGlobalVarDeclInitFunc(op);
903
904 // Clear the ctor and dtor region
905 ctorRegion.getBlocks().clear();
906 dtorRegion.getBlocks().clear();
907
909 dynamicInitializers.push_back(f);
910 }
911
913}
914
915template <typename AttributeTy>
916static llvm::SmallVector<mlir::Attribute>
917prepareCtorDtorAttrList(mlir::MLIRContext *context,
918 llvm::ArrayRef<std::pair<std::string, uint32_t>> list) {
920 for (const auto &[name, priority] : list)
921 attrs.push_back(AttributeTy::get(context, name, priority));
922 return attrs;
923}
924
925void LoweringPreparePass::buildGlobalCtorDtorList() {
926 if (!globalCtorList.empty()) {
927 llvm::SmallVector<mlir::Attribute> globalCtors =
929 globalCtorList);
930
931 mlirModule->setAttr(cir::CIRDialect::getGlobalCtorsAttrName(),
932 mlir::ArrayAttr::get(&getContext(), globalCtors));
933 }
934
935 if (!globalDtorList.empty()) {
936 llvm::SmallVector<mlir::Attribute> globalDtors =
938 globalDtorList);
939 mlirModule->setAttr(cir::CIRDialect::getGlobalDtorsAttrName(),
940 mlir::ArrayAttr::get(&getContext(), globalDtors));
941 }
942}
943
944void LoweringPreparePass::buildCXXGlobalInitFunc() {
945 if (dynamicInitializers.empty())
946 return;
947
948 // TODO: handle globals with a user-specified initialzation priority.
949 // TODO: handle default priority more nicely.
951
952 SmallString<256> fnName;
953 // Include the filename in the symbol name. Including "sub_" matches gcc
954 // and makes sure these symbols appear lexicographically behind the symbols
955 // with priority (TBD). Module implementation units behave the same
956 // way as a non-modular TU with imports.
957 // TODO: check CXX20ModuleInits
958 if (astCtx->getCurrentNamedModule() &&
960 llvm::raw_svector_ostream out(fnName);
961 std::unique_ptr<clang::MangleContext> mangleCtx(
962 astCtx->createMangleContext());
963 cast<clang::ItaniumMangleContext>(*mangleCtx)
964 .mangleModuleInitializer(astCtx->getCurrentNamedModule(), out);
965 } else {
966 fnName += "_GLOBAL__sub_I_";
967 fnName += getTransformedFileName(mlirModule);
968 }
969
970 CIRBaseBuilderTy builder(getContext());
971 builder.setInsertionPointToEnd(&mlirModule.getBodyRegion().back());
972 auto fnType = cir::FuncType::get({}, builder.getVoidTy());
973 cir::FuncOp f =
974 buildRuntimeFunction(builder, fnName, mlirModule.getLoc(), fnType,
975 cir::GlobalLinkageKind::ExternalLinkage);
976 builder.setInsertionPointToStart(f.addEntryBlock());
977 for (cir::FuncOp &f : dynamicInitializers)
978 builder.createCallOp(f.getLoc(), f, {});
979 // Add the global init function (not the individual ctor functions) to the
980 // global ctor list.
981 globalCtorList.emplace_back(fnName,
982 cir::GlobalCtorAttr::getDefaultPriority());
983
984 cir::ReturnOp::create(builder, f.getLoc());
985}
986
987void LoweringPreparePass::lowerDynamicCastOp(DynamicCastOp op) {
988 CIRBaseBuilderTy builder(getContext());
989 builder.setInsertionPointAfter(op);
990
991 assert(astCtx && "AST context is not available during lowering prepare");
992 auto loweredValue = cxxABI->lowerDynamicCast(builder, *astCtx, op);
993
994 op.replaceAllUsesWith(loweredValue);
995 op.erase();
996}
997
999 clang::ASTContext *astCtx,
1000 mlir::Operation *op, mlir::Type eltTy,
1001 mlir::Value arrayAddr, uint64_t arrayLen,
1002 bool isCtor) {
1003 // Generate loop to call into ctor/dtor for every element.
1004 mlir::Location loc = op->getLoc();
1005
1006 // TODO: instead of getting the size from the AST context, create alias for
1007 // PtrDiffTy and unify with CIRGen stuff.
1008 const unsigned sizeTypeSize =
1009 astCtx->getTypeSize(astCtx->getSignedSizeType());
1010 uint64_t endOffset = isCtor ? arrayLen : arrayLen - 1;
1011 mlir::Value endOffsetVal =
1012 builder.getUnsignedInt(loc, endOffset, sizeTypeSize);
1013
1014 auto begin = cir::CastOp::create(builder, loc, eltTy,
1015 cir::CastKind::array_to_ptrdecay, arrayAddr);
1016 mlir::Value end =
1017 cir::PtrStrideOp::create(builder, loc, eltTy, begin, endOffsetVal);
1018 mlir::Value start = isCtor ? begin : end;
1019 mlir::Value stop = isCtor ? end : begin;
1020
1021 mlir::Value tmpAddr = builder.createAlloca(
1022 loc, /*addr type*/ builder.getPointerTo(eltTy),
1023 /*var type*/ eltTy, "__array_idx", builder.getAlignmentAttr(1));
1024 builder.createStore(loc, start, tmpAddr);
1025
1026 cir::DoWhileOp loop = builder.createDoWhile(
1027 loc,
1028 /*condBuilder=*/
1029 [&](mlir::OpBuilder &b, mlir::Location loc) {
1030 auto currentElement = cir::LoadOp::create(b, loc, eltTy, tmpAddr);
1031 mlir::Type boolTy = cir::BoolType::get(b.getContext());
1032 auto cmp = cir::CmpOp::create(builder, loc, boolTy, cir::CmpOpKind::ne,
1033 currentElement, stop);
1034 builder.createCondition(cmp);
1035 },
1036 /*bodyBuilder=*/
1037 [&](mlir::OpBuilder &b, mlir::Location loc) {
1038 auto currentElement = cir::LoadOp::create(b, loc, eltTy, tmpAddr);
1039
1040 cir::CallOp ctorCall;
1041 op->walk([&](cir::CallOp c) { ctorCall = c; });
1042 assert(ctorCall && "expected ctor call");
1043
1044 // Array elements get constructed in order but destructed in reverse.
1045 mlir::Value stride;
1046 if (isCtor)
1047 stride = builder.getUnsignedInt(loc, 1, sizeTypeSize);
1048 else
1049 stride = builder.getSignedInt(loc, -1, sizeTypeSize);
1050
1051 ctorCall->moveBefore(stride.getDefiningOp());
1052 ctorCall->setOperand(0, currentElement);
1053 auto nextElement = cir::PtrStrideOp::create(builder, loc, eltTy,
1054 currentElement, stride);
1055
1056 // Store the element pointer to the temporary variable
1057 builder.createStore(loc, nextElement, tmpAddr);
1058 builder.createYield(loc);
1059 });
1060
1061 op->replaceAllUsesWith(loop);
1062 op->erase();
1063}
1064
1065void LoweringPreparePass::lowerArrayDtor(cir::ArrayDtor op) {
1066 CIRBaseBuilderTy builder(getContext());
1067 builder.setInsertionPointAfter(op.getOperation());
1068
1069 mlir::Type eltTy = op->getRegion(0).getArgument(0).getType();
1070 assert(!cir::MissingFeatures::vlas());
1071 auto arrayLen =
1072 mlir::cast<cir::ArrayType>(op.getAddr().getType().getPointee()).getSize();
1073 lowerArrayDtorCtorIntoLoop(builder, astCtx, op, eltTy, op.getAddr(), arrayLen,
1074 false);
1075}
1076
1077void LoweringPreparePass::lowerArrayCtor(cir::ArrayCtor op) {
1078 cir::CIRBaseBuilderTy builder(getContext());
1079 builder.setInsertionPointAfter(op.getOperation());
1080
1081 mlir::Type eltTy = op->getRegion(0).getArgument(0).getType();
1082 assert(!cir::MissingFeatures::vlas());
1083 auto arrayLen =
1084 mlir::cast<cir::ArrayType>(op.getAddr().getType().getPointee()).getSize();
1085 lowerArrayDtorCtorIntoLoop(builder, astCtx, op, eltTy, op.getAddr(), arrayLen,
1086 true);
1087}
1088
1089void LoweringPreparePass::runOnOp(mlir::Operation *op) {
1090 if (auto arrayCtor = dyn_cast<cir::ArrayCtor>(op)) {
1091 lowerArrayCtor(arrayCtor);
1092 } else if (auto arrayDtor = dyn_cast<cir::ArrayDtor>(op)) {
1093 lowerArrayDtor(arrayDtor);
1094 } else if (auto cast = mlir::dyn_cast<cir::CastOp>(op)) {
1095 lowerCastOp(cast);
1096 } else if (auto complexDiv = mlir::dyn_cast<cir::ComplexDivOp>(op)) {
1097 lowerComplexDivOp(complexDiv);
1098 } else if (auto complexMul = mlir::dyn_cast<cir::ComplexMulOp>(op)) {
1099 lowerComplexMulOp(complexMul);
1100 } else if (auto glob = mlir::dyn_cast<cir::GlobalOp>(op)) {
1101 lowerGlobalOp(glob);
1102 } else if (auto dynamicCast = mlir::dyn_cast<cir::DynamicCastOp>(op)) {
1103 lowerDynamicCastOp(dynamicCast);
1104 } else if (auto unary = mlir::dyn_cast<cir::UnaryOp>(op)) {
1105 lowerUnaryOp(unary);
1106 } else if (auto fnOp = dyn_cast<cir::FuncOp>(op)) {
1107 if (auto globalCtor = fnOp.getGlobalCtorPriority())
1108 globalCtorList.emplace_back(fnOp.getName(), globalCtor.value());
1109 else if (auto globalDtor = fnOp.getGlobalDtorPriority())
1110 globalDtorList.emplace_back(fnOp.getName(), globalDtor.value());
1111 }
1112}
1113
1114void LoweringPreparePass::runOnOperation() {
1115 mlir::Operation *op = getOperation();
1116 if (isa<::mlir::ModuleOp>(op))
1117 mlirModule = cast<::mlir::ModuleOp>(op);
1118
1119 llvm::SmallVector<mlir::Operation *> opsToTransform;
1120
1121 op->walk([&](mlir::Operation *op) {
1122 if (mlir::isa<cir::ArrayCtor, cir::ArrayDtor, cir::CastOp,
1123 cir::ComplexMulOp, cir::ComplexDivOp, cir::DynamicCastOp,
1124 cir::FuncOp, cir::GlobalOp, cir::UnaryOp>(op))
1125 opsToTransform.push_back(op);
1126 });
1127
1128 for (mlir::Operation *o : opsToTransform)
1129 runOnOp(o);
1130
1131 buildCXXGlobalInitFunc();
1132 buildGlobalCtorDtorList();
1133}
1134
1135std::unique_ptr<Pass> mlir::createLoweringPreparePass() {
1136 return std::make_unique<LoweringPreparePass>();
1137}
1138
1139std::unique_ptr<Pass>
1141 auto pass = std::make_unique<LoweringPreparePass>();
1142 pass->setASTContext(astCtx);
1143 return std::move(pass);
1144}
Defines the clang::ASTContext interface.
static mlir::Value buildRangeReductionComplexDiv(CIRBaseBuilderTy &builder, mlir::Location loc, mlir::Value lhsReal, mlir::Value lhsImag, mlir::Value rhsReal, mlir::Value rhsImag)
static void lowerArrayDtorCtorIntoLoop(cir::CIRBaseBuilderTy &builder, clang::ASTContext *astCtx, mlir::Operation *op, mlir::Type eltTy, mlir::Value arrayAddr, uint64_t arrayLen, bool isCtor)
static llvm::StringRef getComplexDivLibCallName(llvm::APFloat::Semantics semantics)
static llvm::SmallVector< mlir::Attribute > prepareCtorDtorAttrList(mlir::MLIRContext *context, llvm::ArrayRef< std::pair< std::string, uint32_t > > list)
static llvm::StringRef getComplexMulLibCallName(llvm::APFloat::Semantics semantics)
static mlir::Value buildComplexBinOpLibCall(LoweringPreparePass &pass, CIRBaseBuilderTy &builder, llvm::StringRef(*libFuncNameGetter)(llvm::APFloat::Semantics), mlir::Location loc, cir::ComplexType ty, mlir::Value lhsReal, mlir::Value lhsImag, mlir::Value rhsReal, mlir::Value rhsImag)
static mlir::Value lowerComplexMul(LoweringPreparePass &pass, CIRBaseBuilderTy &builder, mlir::Location loc, cir::ComplexMulOp op, mlir::Value lhsReal, mlir::Value lhsImag, mlir::Value rhsReal, mlir::Value rhsImag)
static SmallString< 128 > getTransformedFileName(mlir::ModuleOp mlirModule)
static mlir::Value lowerComplexToComplexCast(mlir::MLIRContext &ctx, cir::CastOp op, cir::CastKind scalarCastKind)
static mlir::Value lowerComplexToScalarCast(mlir::MLIRContext &ctx, cir::CastOp op, cir::CastKind elemToBoolKind)
static mlir::Value buildAlgebraicComplexDiv(CIRBaseBuilderTy &builder, mlir::Location loc, mlir::Value lhsReal, mlir::Value lhsImag, mlir::Value rhsReal, mlir::Value rhsImag)
static cir::FuncOp getCalledFunction(cir::CallOp callOp)
Return the FuncOp called by callOp.
static mlir::Type higherPrecisionElementTypeForComplexArithmetic(mlir::MLIRContext &context, clang::ASTContext &cc, CIRBaseBuilderTy &builder, mlir::Type elementType)
static mlir::Value lowerScalarToComplexCast(mlir::MLIRContext &ctx, cir::CastOp op)
static mlir::Value lowerComplexDiv(LoweringPreparePass &pass, CIRBaseBuilderTy &builder, mlir::Location loc, cir::ComplexDivOp op, mlir::Value lhsReal, mlir::Value lhsImag, mlir::Value rhsReal, mlir::Value rhsImag, mlir::MLIRContext &mlirCx, clang::ASTContext &cc)
Defines the clang::Module class, which describes a module in the source code.
__device__ __2f16 b
__device__ __2f16 float c
mlir::Value createLogicalOr(mlir::Location loc, mlir::Value lhs, mlir::Value rhs)
cir::ConditionOp createCondition(mlir::Value condition)
Create a loop condition.
cir::VoidType getVoidTy()
cir::ConstantOp getNullValue(mlir::Type ty, mlir::Location loc)
mlir::Value createCast(mlir::Location loc, cir::CastKind kind, mlir::Value src, mlir::Type newTy)
cir::PointerType getPointerTo(mlir::Type ty)
mlir::Value createComplexImag(mlir::Location loc, mlir::Value operand)
cir::DoWhileOp createDoWhile(mlir::Location loc, llvm::function_ref< void(mlir::OpBuilder &, mlir::Location)> condBuilder, llvm::function_ref< void(mlir::OpBuilder &, mlir::Location)> bodyBuilder)
Create a do-while operation.
cir::CallOp createCallOp(mlir::Location loc, mlir::SymbolRefAttr callee, mlir::Type returnType, mlir::ValueRange operands, llvm::ArrayRef< mlir::NamedAttribute > attrs={})
mlir::Value getSignedInt(mlir::Location loc, int64_t val, unsigned numBits)
cir::StoreOp createStore(mlir::Location loc, mlir::Value val, mlir::Value dst, bool isVolatile=false, mlir::IntegerAttr align={}, cir::MemOrderAttr order={})
cir::CmpOp createCompare(mlir::Location loc, cir::CmpOpKind kind, mlir::Value lhs, mlir::Value rhs)
mlir::IntegerAttr getAlignmentAttr(clang::CharUnits alignment)
mlir::Value createBinop(mlir::Location loc, mlir::Value lhs, cir::BinOpKind kind, mlir::Value rhs)
mlir::Value createComplexCreate(mlir::Location loc, mlir::Value real, mlir::Value imag)
mlir::Value createIsNaN(mlir::Location loc, mlir::Value operand)
cir::YieldOp createYield(mlir::Location loc, mlir::ValueRange value={})
Create a yield operation.
mlir::Value createLogicalAnd(mlir::Location loc, mlir::Value lhs, mlir::Value rhs)
mlir::Value createUnaryOp(mlir::Location loc, cir::UnaryOpKind kind, mlir::Value operand)
mlir::Value createAlloca(mlir::Location loc, cir::PointerType addrType, mlir::Type type, llvm::StringRef name, mlir::IntegerAttr alignment, mlir::Value dynAllocSize)
cir::BoolType getBoolTy()
mlir::Value getUnsignedInt(mlir::Location loc, uint64_t val, unsigned numBits)
mlir::Value createComplexReal(mlir::Location loc, mlir::Value operand)
static LoweringPrepareCXXABI * createItaniumABI()
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition ASTContext.h:220
MangleContext * createMangleContext(const TargetInfo *T=nullptr)
If T is null pointer, assume the target in ASTContext.
const LangOptions & getLangOpts() const
Definition ASTContext.h:926
uint64_t getTypeSize(QualType T) const
Return the size of the specified (complete) type T, in bits.
const TargetInfo & getTargetInfo() const
Definition ASTContext.h:891
QualType getSignedSizeType() const
Return the unique signed counterpart of the integer type corresponding to size_t.
Module * getCurrentNamedModule() const
Get module under construction, nullptr if this is not a C++20 module.
bool isModuleImplementation() const
Is this a module implementation.
Definition Module.h:664
Exposes information about the current target.
Definition TargetInfo.h:226
const llvm::fltSemantics & getDoubleFormat() const
Definition TargetInfo.h:801
const llvm::fltSemantics & getHalfFormat() const
Definition TargetInfo.h:786
const llvm::fltSemantics & getBFloat16Format() const
Definition TargetInfo.h:796
const llvm::fltSemantics & getLongDoubleFormat() const
Definition TargetInfo.h:807
const llvm::fltSemantics & getFloatFormat() const
Definition TargetInfo.h:791
const llvm::fltSemantics & getFloat128Format() const
Definition TargetInfo.h:815
Defines the clang::TargetInfo interface.
LLVM_READONLY bool isPreprocessingNumberBody(unsigned char c)
Return true if this is the body character of a C preprocessing number, which is [a-zA-Z0-9_.
Definition CharInfo.h:168
unsigned int uint32_t
std::unique_ptr< Pass > createLoweringPreparePass()
static bool opGlobalThreadLocal()
static bool opGlobalAnnotations()
static bool opGlobalCtorPriority()
static bool loweringPrepareX86CXXABI()
static bool opFuncExtraAttrs()
static bool fastMathFlags()
static bool loweringPrepareAArch64XXABI()
static bool astVarDeclInterface()