clang 20.0.0git
Index.h
Go to the documentation of this file.
1/*===-- clang-c/Index.h - Indexing Public C Interface -------------*- C -*-===*\
2|* *|
3|* Part of the LLVM Project, under the Apache License v2.0 with LLVM *|
4|* Exceptions. *|
5|* See https://llvm.org/LICENSE.txt for license information. *|
6|* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception *|
7|* *|
8|*===----------------------------------------------------------------------===*|
9|* *|
10|* This header provides a public interface to a Clang library for extracting *|
11|* high-level symbol information from source files without exposing the full *|
12|* Clang C++ API. *|
13|* *|
14\*===----------------------------------------------------------------------===*/
15
16#ifndef LLVM_CLANG_C_INDEX_H
17#define LLVM_CLANG_C_INDEX_H
18
19#include "clang-c/BuildSystem.h"
21#include "clang-c/CXErrorCode.h"
22#include "clang-c/CXFile.h"
24#include "clang-c/CXString.h"
25#include "clang-c/ExternC.h"
26#include "clang-c/Platform.h"
27
28/**
29 * The version constants for the libclang API.
30 * CINDEX_VERSION_MINOR should increase when there are API additions.
31 * CINDEX_VERSION_MAJOR is intended for "major" source/ABI breaking changes.
32 *
33 * The policy about the libclang API was always to keep it source and ABI
34 * compatible, thus CINDEX_VERSION_MAJOR is expected to remain stable.
35 */
36#define CINDEX_VERSION_MAJOR 0
37#define CINDEX_VERSION_MINOR 64
38
39#define CINDEX_VERSION_ENCODE(major, minor) (((major)*10000) + ((minor)*1))
40
41#define CINDEX_VERSION \
42 CINDEX_VERSION_ENCODE(CINDEX_VERSION_MAJOR, CINDEX_VERSION_MINOR)
43
44#define CINDEX_VERSION_STRINGIZE_(major, minor) #major "." #minor
45#define CINDEX_VERSION_STRINGIZE(major, minor) \
46 CINDEX_VERSION_STRINGIZE_(major, minor)
47
48#define CINDEX_VERSION_STRING \
49 CINDEX_VERSION_STRINGIZE(CINDEX_VERSION_MAJOR, CINDEX_VERSION_MINOR)
50
51#ifndef __has_feature
52#define __has_feature(feature) 0
53#endif
54
56
57/** \defgroup CINDEX libclang: C Interface to Clang
58 *
59 * The C Interface to Clang provides a relatively small API that exposes
60 * facilities for parsing source code into an abstract syntax tree (AST),
61 * loading already-parsed ASTs, traversing the AST, associating
62 * physical source locations with elements within the AST, and other
63 * facilities that support Clang-based development tools.
64 *
65 * This C interface to Clang will never provide all of the information
66 * representation stored in Clang's C++ AST, nor should it: the intent is to
67 * maintain an API that is relatively stable from one release to the next,
68 * providing only the basic functionality needed to support development tools.
69 *
70 * To avoid namespace pollution, data types are prefixed with "CX" and
71 * functions are prefixed with "clang_".
72 *
73 * @{
74 */
75
76/**
77 * An "index" that consists of a set of translation units that would
78 * typically be linked together into an executable or library.
79 */
80typedef void *CXIndex;
81
82/**
83 * An opaque type representing target information for a given translation
84 * unit.
85 */
86typedef struct CXTargetInfoImpl *CXTargetInfo;
87
88/**
89 * A single translation unit, which resides in an index.
90 */
91typedef struct CXTranslationUnitImpl *CXTranslationUnit;
92
93/**
94 * Opaque pointer representing client data that will be passed through
95 * to various callbacks and visitors.
96 */
97typedef void *CXClientData;
98
99/**
100 * Provides the contents of a file that has not yet been saved to disk.
101 *
102 * Each CXUnsavedFile instance provides the name of a file on the
103 * system along with the current contents of that file that have not
104 * yet been saved to disk.
105 */
107 /**
108 * The file whose contents have not yet been saved.
109 *
110 * This file must already exist in the file system.
111 */
112 const char *Filename;
113
114 /**
115 * A buffer containing the unsaved contents of this file.
116 */
117 const char *Contents;
118
119 /**
120 * The length of the unsaved contents of this buffer.
121 */
122 unsigned long Length;
123};
124
125/**
126 * Describes the availability of a particular entity, which indicates
127 * whether the use of this entity will result in a warning or error due to
128 * it being deprecated or unavailable.
129 */
131 /**
132 * The entity is available.
133 */
135 /**
136 * The entity is available, but has been deprecated (and its use is
137 * not recommended).
138 */
140 /**
141 * The entity is not available; any use of it will be an error.
142 */
144 /**
145 * The entity is available, but not accessible; any use of it will be
146 * an error.
147 */
150
151/**
152 * Describes a version number of the form major.minor.subminor.
153 */
154typedef struct CXVersion {
155 /**
156 * The major version number, e.g., the '10' in '10.7.3'. A negative
157 * value indicates that there is no version number at all.
158 */
159 int Major;
160 /**
161 * The minor version number, e.g., the '7' in '10.7.3'. This value
162 * will be negative if no minor version number was provided, e.g., for
163 * version '10'.
164 */
165 int Minor;
166 /**
167 * The subminor version number, e.g., the '3' in '10.7.3'. This value
168 * will be negative if no minor or subminor version number was provided,
169 * e.g., in version '10' or '10.7'.
170 */
173
174/**
175 * Describes the exception specification of a cursor.
176 *
177 * A negative value indicates that the cursor is not a function declaration.
178 */
180 /**
181 * The cursor has no exception specification.
182 */
184
185 /**
186 * The cursor has exception specification throw()
187 */
189
190 /**
191 * The cursor has exception specification throw(T1, T2)
192 */
194
195 /**
196 * The cursor has exception specification throw(...).
197 */
199
200 /**
201 * The cursor has exception specification basic noexcept.
202 */
204
205 /**
206 * The cursor has exception specification computed noexcept.
207 */
209
210 /**
211 * The exception specification has not yet been evaluated.
212 */
214
215 /**
216 * The exception specification has not yet been instantiated.
217 */
219
220 /**
221 * The exception specification has not been parsed yet.
222 */
224
225 /**
226 * The cursor has a __declspec(nothrow) exception specification.
227 */
230
231/**
232 * Provides a shared context for creating translation units.
233 *
234 * It provides two options:
235 *
236 * - excludeDeclarationsFromPCH: When non-zero, allows enumeration of "local"
237 * declarations (when loading any new translation units). A "local" declaration
238 * is one that belongs in the translation unit itself and not in a precompiled
239 * header that was used by the translation unit. If zero, all declarations
240 * will be enumerated.
241 *
242 * Here is an example:
243 *
244 * \code
245 * // excludeDeclsFromPCH = 1, displayDiagnostics=1
246 * Idx = clang_createIndex(1, 1);
247 *
248 * // IndexTest.pch was produced with the following command:
249 * // "clang -x c IndexTest.h -emit-ast -o IndexTest.pch"
250 * TU = clang_createTranslationUnit(Idx, "IndexTest.pch");
251 *
252 * // This will load all the symbols from 'IndexTest.pch'
253 * clang_visitChildren(clang_getTranslationUnitCursor(TU),
254 * TranslationUnitVisitor, 0);
255 * clang_disposeTranslationUnit(TU);
256 *
257 * // This will load all the symbols from 'IndexTest.c', excluding symbols
258 * // from 'IndexTest.pch'.
259 * char *args[] = { "-Xclang", "-include-pch=IndexTest.pch" };
260 * TU = clang_createTranslationUnitFromSourceFile(Idx, "IndexTest.c", 2, args,
261 * 0, 0);
262 * clang_visitChildren(clang_getTranslationUnitCursor(TU),
263 * TranslationUnitVisitor, 0);
264 * clang_disposeTranslationUnit(TU);
265 * \endcode
266 *
267 * This process of creating the 'pch', loading it separately, and using it (via
268 * -include-pch) allows 'excludeDeclsFromPCH' to remove redundant callbacks
269 * (which gives the indexer the same performance benefit as the compiler).
270 */
271CINDEX_LINKAGE CXIndex clang_createIndex(int excludeDeclarationsFromPCH,
272 int displayDiagnostics);
273
274/**
275 * Destroy the given index.
276 *
277 * The index must not be destroyed until all of the translation units created
278 * within that index have been destroyed.
279 */
281
282typedef enum {
283 /**
284 * Use the default value of an option that may depend on the process
285 * environment.
286 */
288 /**
289 * Enable the option.
290 */
292 /**
293 * Disable the option.
294 */
297
298typedef enum {
299 /**
300 * Used to indicate that no special CXIndex options are needed.
301 */
303
304 /**
305 * Used to indicate that threads that libclang creates for indexing
306 * purposes should use background priority.
307 *
308 * Affects #clang_indexSourceFile, #clang_indexTranslationUnit,
309 * #clang_parseTranslationUnit, #clang_saveTranslationUnit.
310 */
312
313 /**
314 * Used to indicate that threads that libclang creates for editing
315 * purposes should use background priority.
316 *
317 * Affects #clang_reparseTranslationUnit, #clang_codeCompleteAt,
318 * #clang_annotateTokens
319 */
321
322 /**
323 * Used to indicate that all threads that libclang creates should use
324 * background priority.
325 */
329
331
332/**
333 * Index initialization options.
334 *
335 * 0 is the default value of each member of this struct except for Size.
336 * Initialize the struct in one of the following three ways to avoid adapting
337 * code each time a new member is added to it:
338 * \code
339 * CXIndexOptions Opts;
340 * memset(&Opts, 0, sizeof(Opts));
341 * Opts.Size = sizeof(CXIndexOptions);
342 * \endcode
343 * or explicitly initialize the first data member and zero-initialize the rest:
344 * \code
345 * CXIndexOptions Opts = { sizeof(CXIndexOptions) };
346 * \endcode
347 * or to prevent the -Wmissing-field-initializers warning for the above version:
348 * \code
349 * CXIndexOptions Opts{};
350 * Opts.Size = sizeof(CXIndexOptions);
351 * \endcode
352 */
353typedef struct CXIndexOptions {
354 /**
355 * The size of struct CXIndexOptions used for option versioning.
356 *
357 * Always initialize this member to sizeof(CXIndexOptions), or assign
358 * sizeof(CXIndexOptions) to it right after creating a CXIndexOptions object.
359 */
360 unsigned Size;
361 /**
362 * A CXChoice enumerator that specifies the indexing priority policy.
363 * \sa CXGlobalOpt_ThreadBackgroundPriorityForIndexing
364 */
366 /**
367 * A CXChoice enumerator that specifies the editing priority policy.
368 * \sa CXGlobalOpt_ThreadBackgroundPriorityForEditing
369 */
371 /**
372 * \see clang_createIndex()
373 */
375 /**
376 * \see clang_createIndex()
377 */
378 unsigned DisplayDiagnostics : 1;
379 /**
380 * Store PCH in memory. If zero, PCH are stored in temporary files.
381 */
383 unsigned /*Reserved*/ : 13;
384
385 /**
386 * The path to a directory, in which to store temporary PCH files. If null or
387 * empty, the default system temporary directory is used. These PCH files are
388 * deleted on clean exit but stay on disk if the program crashes or is killed.
389 *
390 * This option is ignored if \a StorePreamblesInMemory is non-zero.
391 *
392 * Libclang does not create the directory at the specified path in the file
393 * system. Therefore it must exist, or storing PCH files will fail.
394 */
396 /**
397 * Specifies a path which will contain log files for certain libclang
398 * invocations. A null value implies that libclang invocations are not logged.
399 */
402
403/**
404 * Provides a shared context for creating translation units.
405 *
406 * Call this function instead of clang_createIndex() if you need to configure
407 * the additional options in CXIndexOptions.
408 *
409 * \returns The created index or null in case of error, such as an unsupported
410 * value of options->Size.
411 *
412 * For example:
413 * \code
414 * CXIndex createIndex(const char *ApplicationTemporaryPath) {
415 * const int ExcludeDeclarationsFromPCH = 1;
416 * const int DisplayDiagnostics = 1;
417 * CXIndex Idx;
418 * #if CINDEX_VERSION_MINOR >= 64
419 * CXIndexOptions Opts;
420 * memset(&Opts, 0, sizeof(Opts));
421 * Opts.Size = sizeof(CXIndexOptions);
422 * Opts.ThreadBackgroundPriorityForIndexing = 1;
423 * Opts.ExcludeDeclarationsFromPCH = ExcludeDeclarationsFromPCH;
424 * Opts.DisplayDiagnostics = DisplayDiagnostics;
425 * Opts.PreambleStoragePath = ApplicationTemporaryPath;
426 * Idx = clang_createIndexWithOptions(&Opts);
427 * if (Idx)
428 * return Idx;
429 * fprintf(stderr,
430 * "clang_createIndexWithOptions() failed. "
431 * "CINDEX_VERSION_MINOR = %d, sizeof(CXIndexOptions) = %u\n",
432 * CINDEX_VERSION_MINOR, Opts.Size);
433 * #else
434 * (void)ApplicationTemporaryPath;
435 * #endif
436 * Idx = clang_createIndex(ExcludeDeclarationsFromPCH, DisplayDiagnostics);
437 * clang_CXIndex_setGlobalOptions(
438 * Idx, clang_CXIndex_getGlobalOptions(Idx) |
439 * CXGlobalOpt_ThreadBackgroundPriorityForIndexing);
440 * return Idx;
441 * }
442 * \endcode
443 *
444 * \sa clang_createIndex()
445 */
448
449/**
450 * Sets general options associated with a CXIndex.
451 *
452 * This function is DEPRECATED. Set
453 * CXIndexOptions::ThreadBackgroundPriorityForIndexing and/or
454 * CXIndexOptions::ThreadBackgroundPriorityForEditing and call
455 * clang_createIndexWithOptions() instead.
456 *
457 * For example:
458 * \code
459 * CXIndex idx = ...;
460 * clang_CXIndex_setGlobalOptions(idx,
461 * clang_CXIndex_getGlobalOptions(idx) |
462 * CXGlobalOpt_ThreadBackgroundPriorityForIndexing);
463 * \endcode
464 *
465 * \param options A bitmask of options, a bitwise OR of CXGlobalOpt_XXX flags.
466 */
468
469/**
470 * Gets the general options associated with a CXIndex.
471 *
472 * This function allows to obtain the final option values used by libclang after
473 * specifying the option policies via CXChoice enumerators.
474 *
475 * \returns A bitmask of options, a bitwise OR of CXGlobalOpt_XXX flags that
476 * are associated with the given CXIndex object.
477 */
479
480/**
481 * Sets the invocation emission path option in a CXIndex.
482 *
483 * This function is DEPRECATED. Set CXIndexOptions::InvocationEmissionPath and
484 * call clang_createIndexWithOptions() instead.
485 *
486 * The invocation emission path specifies a path which will contain log
487 * files for certain libclang invocations. A null value (default) implies that
488 * libclang invocations are not logged..
489 */
492
493/**
494 * Determine whether the given header is guarded against
495 * multiple inclusions, either with the conventional
496 * \#ifndef/\#define/\#endif macro guards or with \#pragma once.
497 */
499 CXFile file);
500
501/**
502 * Retrieve a file handle within the given translation unit.
503 *
504 * \param tu the translation unit
505 *
506 * \param file_name the name of the file.
507 *
508 * \returns the file handle for the named file in the translation unit \p tu,
509 * or a NULL file handle if the file was not a part of this translation unit.
510 */
512 const char *file_name);
513
514/**
515 * Retrieve the buffer associated with the given file.
516 *
517 * \param tu the translation unit
518 *
519 * \param file the file for which to retrieve the buffer.
520 *
521 * \param size [out] if non-NULL, will be set to the size of the buffer.
522 *
523 * \returns a pointer to the buffer in memory that holds the contents of
524 * \p file, or a NULL pointer when the file is not loaded.
525 */
527 CXFile file, size_t *size);
528
529/**
530 * Retrieves the source location associated with a given file/line/column
531 * in a particular translation unit.
532 */
534 CXFile file, unsigned line,
535 unsigned column);
536/**
537 * Retrieves the source location associated with a given character offset
538 * in a particular translation unit.
539 */
541 CXFile file,
542 unsigned offset);
543
544/**
545 * Retrieve all ranges that were skipped by the preprocessor.
546 *
547 * The preprocessor will skip lines when they are surrounded by an
548 * if/ifdef/ifndef directive whose condition does not evaluate to true.
549 */
551 CXFile file);
552
553/**
554 * Retrieve all ranges from all files that were skipped by the
555 * preprocessor.
556 *
557 * The preprocessor will skip lines when they are surrounded by an
558 * if/ifdef/ifndef directive whose condition does not evaluate to true.
559 */
562
563/**
564 * Determine the number of diagnostics produced for the given
565 * translation unit.
566 */
568
569/**
570 * Retrieve a diagnostic associated with the given translation unit.
571 *
572 * \param Unit the translation unit to query.
573 * \param Index the zero-based diagnostic number to retrieve.
574 *
575 * \returns the requested diagnostic. This diagnostic must be freed
576 * via a call to \c clang_disposeDiagnostic().
577 */
579 unsigned Index);
580
581/**
582 * Retrieve the complete set of diagnostics associated with a
583 * translation unit.
584 *
585 * \param Unit the translation unit to query.
586 */
589
590/**
591 * \defgroup CINDEX_TRANSLATION_UNIT Translation unit manipulation
592 *
593 * The routines in this group provide the ability to create and destroy
594 * translation units from files, either by parsing the contents of the files or
595 * by reading in a serialized representation of a translation unit.
596 *
597 * @{
598 */
599
600/**
601 * Get the original translation unit source file name.
602 */
605
606/**
607 * Return the CXTranslationUnit for a given source file and the provided
608 * command line arguments one would pass to the compiler.
609 *
610 * Note: The 'source_filename' argument is optional. If the caller provides a
611 * NULL pointer, the name of the source file is expected to reside in the
612 * specified command line arguments.
613 *
614 * Note: When encountered in 'clang_command_line_args', the following options
615 * are ignored:
616 *
617 * '-c'
618 * '-emit-ast'
619 * '-fsyntax-only'
620 * '-o <output file>' (both '-o' and '<output file>' are ignored)
621 *
622 * \param CIdx The index object with which the translation unit will be
623 * associated.
624 *
625 * \param source_filename The name of the source file to load, or NULL if the
626 * source file is included in \p clang_command_line_args.
627 *
628 * \param num_clang_command_line_args The number of command-line arguments in
629 * \p clang_command_line_args.
630 *
631 * \param clang_command_line_args The command-line arguments that would be
632 * passed to the \c clang executable if it were being invoked out-of-process.
633 * These command-line options will be parsed and will affect how the translation
634 * unit is parsed. Note that the following options are ignored: '-c',
635 * '-emit-ast', '-fsyntax-only' (which is the default), and '-o <output file>'.
636 *
637 * \param num_unsaved_files the number of unsaved file entries in \p
638 * unsaved_files.
639 *
640 * \param unsaved_files the files that have not yet been saved to disk
641 * but may be required for code completion, including the contents of
642 * those files. The contents and name of these files (as specified by
643 * CXUnsavedFile) are copied when necessary, so the client only needs to
644 * guarantee their validity until the call to this function returns.
645 */
647 CXIndex CIdx, const char *source_filename, int num_clang_command_line_args,
648 const char *const *clang_command_line_args, unsigned num_unsaved_files,
649 struct CXUnsavedFile *unsaved_files);
650
651/**
652 * Same as \c clang_createTranslationUnit2, but returns
653 * the \c CXTranslationUnit instead of an error code. In case of an error this
654 * routine returns a \c NULL \c CXTranslationUnit, without further detailed
655 * error codes.
656 */
658clang_createTranslationUnit(CXIndex CIdx, const char *ast_filename);
659
660/**
661 * Create a translation unit from an AST file (\c -emit-ast).
662 *
663 * \param[out] out_TU A non-NULL pointer to store the created
664 * \c CXTranslationUnit.
665 *
666 * \returns Zero on success, otherwise returns an error code.
667 */
669clang_createTranslationUnit2(CXIndex CIdx, const char *ast_filename,
670 CXTranslationUnit *out_TU);
671
672/**
673 * Flags that control the creation of translation units.
674 *
675 * The enumerators in this enumeration type are meant to be bitwise
676 * ORed together to specify which options should be used when
677 * constructing the translation unit.
678 */
680 /**
681 * Used to indicate that no special translation-unit options are
682 * needed.
683 */
685
686 /**
687 * Used to indicate that the parser should construct a "detailed"
688 * preprocessing record, including all macro definitions and instantiations.
689 *
690 * Constructing a detailed preprocessing record requires more memory
691 * and time to parse, since the information contained in the record
692 * is usually not retained. However, it can be useful for
693 * applications that require more detailed information about the
694 * behavior of the preprocessor.
695 */
697
698 /**
699 * Used to indicate that the translation unit is incomplete.
700 *
701 * When a translation unit is considered "incomplete", semantic
702 * analysis that is typically performed at the end of the
703 * translation unit will be suppressed. For example, this suppresses
704 * the completion of tentative declarations in C and of
705 * instantiation of implicitly-instantiation function templates in
706 * C++. This option is typically used when parsing a header with the
707 * intent of producing a precompiled header.
708 */
710
711 /**
712 * Used to indicate that the translation unit should be built with an
713 * implicit precompiled header for the preamble.
714 *
715 * An implicit precompiled header is used as an optimization when a
716 * particular translation unit is likely to be reparsed many times
717 * when the sources aren't changing that often. In this case, an
718 * implicit precompiled header will be built containing all of the
719 * initial includes at the top of the main file (what we refer to as
720 * the "preamble" of the file). In subsequent parses, if the
721 * preamble or the files in it have not changed, \c
722 * clang_reparseTranslationUnit() will re-use the implicit
723 * precompiled header to improve parsing performance.
724 */
726
727 /**
728 * Used to indicate that the translation unit should cache some
729 * code-completion results with each reparse of the source file.
730 *
731 * Caching of code-completion results is a performance optimization that
732 * introduces some overhead to reparsing but improves the performance of
733 * code-completion operations.
734 */
736
737 /**
738 * Used to indicate that the translation unit will be serialized with
739 * \c clang_saveTranslationUnit.
740 *
741 * This option is typically used when parsing a header with the intent of
742 * producing a precompiled header.
743 */
745
746 /**
747 * DEPRECATED: Enabled chained precompiled preambles in C++.
748 *
749 * Note: this is a *temporary* option that is available only while
750 * we are testing C++ precompiled preamble support. It is deprecated.
751 */
753
754 /**
755 * Used to indicate that function/method bodies should be skipped while
756 * parsing.
757 *
758 * This option can be used to search for declarations/definitions while
759 * ignoring the usages.
760 */
762
763 /**
764 * Used to indicate that brief documentation comments should be
765 * included into the set of code completions returned from this translation
766 * unit.
767 */
769
770 /**
771 * Used to indicate that the precompiled preamble should be created on
772 * the first parse. Otherwise it will be created on the first reparse. This
773 * trades runtime on the first parse (serializing the preamble takes time) for
774 * reduced runtime on the second parse (can now reuse the preamble).
775 */
777
778 /**
779 * Do not stop processing when fatal errors are encountered.
780 *
781 * When fatal errors are encountered while parsing a translation unit,
782 * semantic analysis is typically stopped early when compiling code. A common
783 * source for fatal errors are unresolvable include files. For the
784 * purposes of an IDE, this is undesirable behavior and as much information
785 * as possible should be reported. Use this flag to enable this behavior.
786 */
788
789 /**
790 * Sets the preprocessor in a mode for parsing a single file only.
791 */
793
794 /**
795 * Used in combination with CXTranslationUnit_SkipFunctionBodies to
796 * constrain the skipping of function bodies to the preamble.
797 *
798 * The function bodies of the main file are not skipped.
799 */
801
802 /**
803 * Used to indicate that attributed types should be included in CXType.
804 */
806
807 /**
808 * Used to indicate that implicit attributes should be visited.
809 */
811
812 /**
813 * Used to indicate that non-errors from included files should be ignored.
814 *
815 * If set, clang_getDiagnosticSetFromTU() will not report e.g. warnings from
816 * included files anymore. This speeds up clang_getDiagnosticSetFromTU() for
817 * the case where these warnings are not of interest, as for an IDE for
818 * example, which typically shows only the diagnostics in the main file.
819 */
821
822 /**
823 * Tells the preprocessor not to skip excluded conditional blocks.
824 */
827
828/**
829 * Returns the set of flags that is suitable for parsing a translation
830 * unit that is being edited.
831 *
832 * The set of flags returned provide options for \c clang_parseTranslationUnit()
833 * to indicate that the translation unit is likely to be reparsed many times,
834 * either explicitly (via \c clang_reparseTranslationUnit()) or implicitly
835 * (e.g., by code completion (\c clang_codeCompletionAt())). The returned flag
836 * set contains an unspecified set of optimizations (e.g., the precompiled
837 * preamble) geared toward improving the performance of these routines. The
838 * set of optimizations enabled may change from one version to the next.
839 */
841
842/**
843 * Same as \c clang_parseTranslationUnit2, but returns
844 * the \c CXTranslationUnit instead of an error code. In case of an error this
845 * routine returns a \c NULL \c CXTranslationUnit, without further detailed
846 * error codes.
847 */
849 CXIndex CIdx, const char *source_filename,
850 const char *const *command_line_args, int num_command_line_args,
851 struct CXUnsavedFile *unsaved_files, unsigned num_unsaved_files,
852 unsigned options);
853
854/**
855 * Parse the given source file and the translation unit corresponding
856 * to that file.
857 *
858 * This routine is the main entry point for the Clang C API, providing the
859 * ability to parse a source file into a translation unit that can then be
860 * queried by other functions in the API. This routine accepts a set of
861 * command-line arguments so that the compilation can be configured in the same
862 * way that the compiler is configured on the command line.
863 *
864 * \param CIdx The index object with which the translation unit will be
865 * associated.
866 *
867 * \param source_filename The name of the source file to load, or NULL if the
868 * source file is included in \c command_line_args.
869 *
870 * \param command_line_args The command-line arguments that would be
871 * passed to the \c clang executable if it were being invoked out-of-process.
872 * These command-line options will be parsed and will affect how the translation
873 * unit is parsed. Note that the following options are ignored: '-c',
874 * '-emit-ast', '-fsyntax-only' (which is the default), and '-o <output file>'.
875 *
876 * \param num_command_line_args The number of command-line arguments in
877 * \c command_line_args.
878 *
879 * \param unsaved_files the files that have not yet been saved to disk
880 * but may be required for parsing, including the contents of
881 * those files. The contents and name of these files (as specified by
882 * CXUnsavedFile) are copied when necessary, so the client only needs to
883 * guarantee their validity until the call to this function returns.
884 *
885 * \param num_unsaved_files the number of unsaved file entries in \p
886 * unsaved_files.
887 *
888 * \param options A bitmask of options that affects how the translation unit
889 * is managed but not its compilation. This should be a bitwise OR of the
890 * CXTranslationUnit_XXX flags.
891 *
892 * \param[out] out_TU A non-NULL pointer to store the created
893 * \c CXTranslationUnit, describing the parsed code and containing any
894 * diagnostics produced by the compiler.
895 *
896 * \returns Zero on success, otherwise returns an error code.
897 */
899 CXIndex CIdx, const char *source_filename,
900 const char *const *command_line_args, int num_command_line_args,
901 struct CXUnsavedFile *unsaved_files, unsigned num_unsaved_files,
902 unsigned options, CXTranslationUnit *out_TU);
903
904/**
905 * Same as clang_parseTranslationUnit2 but requires a full command line
906 * for \c command_line_args including argv[0]. This is useful if the standard
907 * library paths are relative to the binary.
908 */
910 CXIndex CIdx, const char *source_filename,
911 const char *const *command_line_args, int num_command_line_args,
912 struct CXUnsavedFile *unsaved_files, unsigned num_unsaved_files,
913 unsigned options, CXTranslationUnit *out_TU);
914
915/**
916 * Flags that control how translation units are saved.
917 *
918 * The enumerators in this enumeration type are meant to be bitwise
919 * ORed together to specify which options should be used when
920 * saving the translation unit.
921 */
923 /**
924 * Used to indicate that no special saving options are needed.
925 */
928
929/**
930 * Returns the set of flags that is suitable for saving a translation
931 * unit.
932 *
933 * The set of flags returned provide options for
934 * \c clang_saveTranslationUnit() by default. The returned flag
935 * set contains an unspecified set of options that save translation units with
936 * the most commonly-requested data.
937 */
939
940/**
941 * Describes the kind of error that occurred (if any) in a call to
942 * \c clang_saveTranslationUnit().
943 */
945 /**
946 * Indicates that no error occurred while saving a translation unit.
947 */
949
950 /**
951 * Indicates that an unknown error occurred while attempting to save
952 * the file.
953 *
954 * This error typically indicates that file I/O failed when attempting to
955 * write the file.
956 */
958
959 /**
960 * Indicates that errors during translation prevented this attempt
961 * to save the translation unit.
962 *
963 * Errors that prevent the translation unit from being saved can be
964 * extracted using \c clang_getNumDiagnostics() and \c clang_getDiagnostic().
965 */
967
968 /**
969 * Indicates that the translation unit to be saved was somehow
970 * invalid (e.g., NULL).
971 */
974
975/**
976 * Saves a translation unit into a serialized representation of
977 * that translation unit on disk.
978 *
979 * Any translation unit that was parsed without error can be saved
980 * into a file. The translation unit can then be deserialized into a
981 * new \c CXTranslationUnit with \c clang_createTranslationUnit() or,
982 * if it is an incomplete translation unit that corresponds to a
983 * header, used as a precompiled header when parsing other translation
984 * units.
985 *
986 * \param TU The translation unit to save.
987 *
988 * \param FileName The file to which the translation unit will be saved.
989 *
990 * \param options A bitmask of options that affects how the translation unit
991 * is saved. This should be a bitwise OR of the
992 * CXSaveTranslationUnit_XXX flags.
993 *
994 * \returns A value that will match one of the enumerators of the CXSaveError
995 * enumeration. Zero (CXSaveError_None) indicates that the translation unit was
996 * saved successfully, while a non-zero value indicates that a problem occurred.
997 */
999 const char *FileName,
1000 unsigned options);
1001
1002/**
1003 * Suspend a translation unit in order to free memory associated with it.
1004 *
1005 * A suspended translation unit uses significantly less memory but on the other
1006 * side does not support any other calls than \c clang_reparseTranslationUnit
1007 * to resume it or \c clang_disposeTranslationUnit to dispose it completely.
1008 */
1010
1011/**
1012 * Destroy the specified CXTranslationUnit object.
1013 */
1015
1016/**
1017 * Flags that control the reparsing of translation units.
1018 *
1019 * The enumerators in this enumeration type are meant to be bitwise
1020 * ORed together to specify which options should be used when
1021 * reparsing the translation unit.
1022 */
1024 /**
1025 * Used to indicate that no special reparsing options are needed.
1026 */
1027 CXReparse_None = 0x0
1029
1030/**
1031 * Returns the set of flags that is suitable for reparsing a translation
1032 * unit.
1033 *
1034 * The set of flags returned provide options for
1035 * \c clang_reparseTranslationUnit() by default. The returned flag
1036 * set contains an unspecified set of optimizations geared toward common uses
1037 * of reparsing. The set of optimizations enabled may change from one version
1038 * to the next.
1039 */
1041
1042/**
1043 * Reparse the source files that produced this translation unit.
1044 *
1045 * This routine can be used to re-parse the source files that originally
1046 * created the given translation unit, for example because those source files
1047 * have changed (either on disk or as passed via \p unsaved_files). The
1048 * source code will be reparsed with the same command-line options as it
1049 * was originally parsed.
1050 *
1051 * Reparsing a translation unit invalidates all cursors and source locations
1052 * that refer into that translation unit. This makes reparsing a translation
1053 * unit semantically equivalent to destroying the translation unit and then
1054 * creating a new translation unit with the same command-line arguments.
1055 * However, it may be more efficient to reparse a translation
1056 * unit using this routine.
1057 *
1058 * \param TU The translation unit whose contents will be re-parsed. The
1059 * translation unit must originally have been built with
1060 * \c clang_createTranslationUnitFromSourceFile().
1061 *
1062 * \param num_unsaved_files The number of unsaved file entries in \p
1063 * unsaved_files.
1064 *
1065 * \param unsaved_files The files that have not yet been saved to disk
1066 * but may be required for parsing, including the contents of
1067 * those files. The contents and name of these files (as specified by
1068 * CXUnsavedFile) are copied when necessary, so the client only needs to
1069 * guarantee their validity until the call to this function returns.
1070 *
1071 * \param options A bitset of options composed of the flags in CXReparse_Flags.
1072 * The function \c clang_defaultReparseOptions() produces a default set of
1073 * options recommended for most uses, based on the translation unit.
1074 *
1075 * \returns 0 if the sources could be reparsed. A non-zero error code will be
1076 * returned if reparsing was impossible, such that the translation unit is
1077 * invalid. In such cases, the only valid call for \c TU is
1078 * \c clang_disposeTranslationUnit(TU). The error codes returned by this
1079 * routine are described by the \c CXErrorCode enum.
1080 */
1083 struct CXUnsavedFile *unsaved_files,
1084 unsigned options);
1085
1086/**
1087 * Categorizes how memory is being used by a translation unit.
1088 */
1107
1111
1112/**
1113 * Returns the human-readable null-terminated C string that represents
1114 * the name of the memory category. This string should never be freed.
1115 */
1118
1120 /* The memory usage category. */
1122 /* Amount of resources used.
1123 The units will depend on the resource kind. */
1124 unsigned long amount;
1126
1127/**
1128 * The memory usage of a CXTranslationUnit, broken into categories.
1129 */
1130typedef struct CXTUResourceUsage {
1131 /* Private data member, used for queries. */
1132 void *data;
1133
1134 /* The number of entries in the 'entries' array. */
1135 unsigned numEntries;
1136
1137 /* An array of key-value pairs, representing the breakdown of memory
1138 usage. */
1140
1142
1143/**
1144 * Return the memory usage of a translation unit. This object
1145 * should be released with clang_disposeCXTUResourceUsage().
1146 */
1149
1151
1152/**
1153 * Get target information for this translation unit.
1154 *
1155 * The CXTargetInfo object cannot outlive the CXTranslationUnit object.
1156 */
1159
1160/**
1161 * Destroy the CXTargetInfo object.
1162 */
1164
1165/**
1166 * Get the normalized target triple as a string.
1167 *
1168 * Returns the empty string in case of any error.
1169 */
1171
1172/**
1173 * Get the pointer width of the target in bits.
1174 *
1175 * Returns -1 in case of error.
1176 */
1178
1179/**
1180 * @}
1181 */
1182
1183/**
1184 * Describes the kind of entity that a cursor refers to.
1185 */
1187 /* Declarations */
1188 /**
1189 * A declaration whose specific kind is not exposed via this
1190 * interface.
1191 *
1192 * Unexposed declarations have the same operations as any other kind
1193 * of declaration; one can extract their location information,
1194 * spelling, find their definitions, etc. However, the specific kind
1195 * of the declaration is not reported.
1196 */
1198 /** A C or C++ struct. */
1200 /** A C or C++ union. */
1202 /** A C++ class. */
1204 /** An enumeration. */
1206 /**
1207 * A field (in C) or non-static data member (in C++) in a
1208 * struct, union, or C++ class.
1209 */
1211 /** An enumerator constant. */
1213 /** A function. */
1215 /** A variable. */
1217 /** A function or method parameter. */
1219 /** An Objective-C \@interface. */
1221 /** An Objective-C \@interface for a category. */
1223 /** An Objective-C \@protocol declaration. */
1225 /** An Objective-C \@property declaration. */
1227 /** An Objective-C instance variable. */
1229 /** An Objective-C instance method. */
1231 /** An Objective-C class method. */
1233 /** An Objective-C \@implementation. */
1235 /** An Objective-C \@implementation for a category. */
1237 /** A typedef. */
1239 /** A C++ class method. */
1241 /** A C++ namespace. */
1243 /** A linkage specification, e.g. 'extern "C"'. */
1245 /** A C++ constructor. */
1247 /** A C++ destructor. */
1249 /** A C++ conversion function. */
1251 /** A C++ template type parameter. */
1253 /** A C++ non-type template parameter. */
1255 /** A C++ template template parameter. */
1257 /** A C++ function template. */
1259 /** A C++ class template. */
1261 /** A C++ class template partial specialization. */
1263 /** A C++ namespace alias declaration. */
1265 /** A C++ using directive. */
1267 /** A C++ using declaration. */
1269 /** A C++ alias declaration */
1271 /** An Objective-C \@synthesize definition. */
1273 /** An Objective-C \@dynamic definition. */
1275 /** An access specifier. */
1277
1280
1281 /* References */
1282 CXCursor_FirstRef = 40, /* Decl references */
1286 /**
1287 * A reference to a type declaration.
1288 *
1289 * A type reference occurs anywhere where a type is named but not
1290 * declared. For example, given:
1291 *
1292 * \code
1293 * typedef unsigned size_type;
1294 * size_type size;
1295 * \endcode
1296 *
1297 * The typedef is a declaration of size_type (CXCursor_TypedefDecl),
1298 * while the type of the variable "size" is referenced. The cursor
1299 * referenced by the type of size is the typedef for size_type.
1300 */
1303 /**
1304 * A reference to a class template, function template, template
1305 * template parameter, or class template partial specialization.
1306 */
1308 /**
1309 * A reference to a namespace or namespace alias.
1310 */
1312 /**
1313 * A reference to a member of a struct, union, or class that occurs in
1314 * some non-expression context, e.g., a designated initializer.
1315 */
1317 /**
1318 * A reference to a labeled statement.
1319 *
1320 * This cursor kind is used to describe the jump to "start_over" in the
1321 * goto statement in the following example:
1322 *
1323 * \code
1324 * start_over:
1325 * ++counter;
1326 *
1327 * goto start_over;
1328 * \endcode
1329 *
1330 * A label reference cursor refers to a label statement.
1331 */
1333
1334 /**
1335 * A reference to a set of overloaded functions or function templates
1336 * that has not yet been resolved to a specific function or function template.
1337 *
1338 * An overloaded declaration reference cursor occurs in C++ templates where
1339 * a dependent name refers to a function. For example:
1340 *
1341 * \code
1342 * template<typename T> void swap(T&, T&);
1343 *
1344 * struct X { ... };
1345 * void swap(X&, X&);
1346 *
1347 * template<typename T>
1348 * void reverse(T* first, T* last) {
1349 * while (first < last - 1) {
1350 * swap(*first, *--last);
1351 * ++first;
1352 * }
1353 * }
1354 *
1355 * struct Y { };
1356 * void swap(Y&, Y&);
1357 * \endcode
1358 *
1359 * Here, the identifier "swap" is associated with an overloaded declaration
1360 * reference. In the template definition, "swap" refers to either of the two
1361 * "swap" functions declared above, so both results will be available. At
1362 * instantiation time, "swap" may also refer to other functions found via
1363 * argument-dependent lookup (e.g., the "swap" function at the end of the
1364 * example).
1365 *
1366 * The functions \c clang_getNumOverloadedDecls() and
1367 * \c clang_getOverloadedDecl() can be used to retrieve the definitions
1368 * referenced by this cursor.
1369 */
1371
1372 /**
1373 * A reference to a variable that occurs in some non-expression
1374 * context, e.g., a C++ lambda capture list.
1375 */
1377
1379
1380 /* Error conditions */
1387
1388 /* Expressions */
1390
1391 /**
1392 * An expression whose specific kind is not exposed via this
1393 * interface.
1394 *
1395 * Unexposed expressions have the same operations as any other kind
1396 * of expression; one can extract their location information,
1397 * spelling, children, etc. However, the specific kind of the
1398 * expression is not reported.
1399 */
1401
1402 /**
1403 * An expression that refers to some value declaration, such
1404 * as a function, variable, or enumerator.
1405 */
1407
1408 /**
1409 * An expression that refers to a member of a struct, union,
1410 * class, Objective-C class, etc.
1411 */
1413
1414 /** An expression that calls a function. */
1416
1417 /** An expression that sends a message to an Objective-C
1418 object or class. */
1420
1421 /** An expression that represents a block literal. */
1423
1424 /** An integer literal.
1425 */
1427
1428 /** A floating point number literal.
1429 */
1431
1432 /** An imaginary number literal.
1433 */
1435
1436 /** A string literal.
1437 */
1439
1440 /** A character literal.
1441 */
1443
1444 /** A parenthesized expression, e.g. "(1)".
1445 *
1446 * This AST node is only formed if full location information is requested.
1447 */
1449
1450 /** This represents the unary-expression's (except sizeof and
1451 * alignof).
1452 */
1454
1455 /** [C99 6.5.2.1] Array Subscripting.
1456 */
1458
1459 /** A builtin binary operation expression such as "x + y" or
1460 * "x <= y".
1461 */
1463
1464 /** Compound assignment such as "+=".
1465 */
1467
1468 /** The ?: ternary operator.
1469 */
1471
1472 /** An explicit cast in C (C99 6.5.4) or a C-style cast in C++
1473 * (C++ [expr.cast]), which uses the syntax (Type)expr.
1474 *
1475 * For example: (int)f.
1476 */
1478
1479 /** [C99 6.5.2.5]
1480 */
1482
1483 /** Describes an C or C++ initializer list.
1484 */
1486
1487 /** The GNU address of label extension, representing &&label.
1488 */
1490
1491 /** This is the GNU Statement Expression extension: ({int X=4; X;})
1492 */
1494
1495 /** Represents a C11 generic selection.
1496 */
1498
1499 /** Implements the GNU __null extension, which is a name for a null
1500 * pointer constant that has integral type (e.g., int or long) and is the same
1501 * size and alignment as a pointer.
1502 *
1503 * The __null extension is typically only used by system headers, which define
1504 * NULL as __null in C++ rather than using 0 (which is an integer that may not
1505 * match the size of a pointer).
1506 */
1508
1509 /** C++'s static_cast<> expression.
1510 */
1512
1513 /** C++'s dynamic_cast<> expression.
1514 */
1516
1517 /** C++'s reinterpret_cast<> expression.
1518 */
1520
1521 /** C++'s const_cast<> expression.
1522 */
1524
1525 /** Represents an explicit C++ type conversion that uses "functional"
1526 * notion (C++ [expr.type.conv]).
1527 *
1528 * Example:
1529 * \code
1530 * x = int(0.5);
1531 * \endcode
1532 */
1534
1535 /** A C++ typeid expression (C++ [expr.typeid]).
1536 */
1538
1539 /** [C++ 2.13.5] C++ Boolean Literal.
1540 */
1542
1543 /** [C++0x 2.14.7] C++ Pointer Literal.
1544 */
1546
1547 /** Represents the "this" expression in C++
1548 */
1550
1551 /** [C++ 15] C++ Throw Expression.
1552 *
1553 * This handles 'throw' and 'throw' assignment-expression. When
1554 * assignment-expression isn't present, Op will be null.
1555 */
1557
1558 /** A new expression for memory allocation and constructor calls, e.g:
1559 * "new CXXNewExpr(foo)".
1560 */
1562
1563 /** A delete expression for memory deallocation and destructor calls,
1564 * e.g. "delete[] pArray".
1565 */
1567
1568 /** A unary expression. (noexcept, sizeof, or other traits)
1569 */
1571
1572 /** An Objective-C string literal i.e. @"foo".
1573 */
1575
1576 /** An Objective-C \@encode expression.
1577 */
1579
1580 /** An Objective-C \@selector expression.
1581 */
1583
1584 /** An Objective-C \@protocol expression.
1585 */
1587
1588 /** An Objective-C "bridged" cast expression, which casts between
1589 * Objective-C pointers and C pointers, transferring ownership in the process.
1590 *
1591 * \code
1592 * NSString *str = (__bridge_transfer NSString *)CFCreateString();
1593 * \endcode
1594 */
1596
1597 /** Represents a C++0x pack expansion that produces a sequence of
1598 * expressions.
1599 *
1600 * A pack expansion expression contains a pattern (which itself is an
1601 * expression) followed by an ellipsis. For example:
1602 *
1603 * \code
1604 * template<typename F, typename ...Types>
1605 * void forward(F f, Types &&...args) {
1606 * f(static_cast<Types&&>(args)...);
1607 * }
1608 * \endcode
1609 */
1611
1612 /** Represents an expression that computes the length of a parameter
1613 * pack.
1614 *
1615 * \code
1616 * template<typename ...Types>
1617 * struct count {
1618 * static const unsigned value = sizeof...(Types);
1619 * };
1620 * \endcode
1621 */
1623
1624 /* Represents a C++ lambda expression that produces a local function
1625 * object.
1626 *
1627 * \code
1628 * void abssort(float *x, unsigned N) {
1629 * std::sort(x, x + N,
1630 * [](float a, float b) {
1631 * return std::abs(a) < std::abs(b);
1632 * });
1633 * }
1634 * \endcode
1635 */
1637
1638 /** Objective-c Boolean Literal.
1639 */
1641
1642 /** Represents the "self" expression in an Objective-C method.
1643 */
1645
1646 /** OpenMP 5.0 [2.1.5, Array Section].
1647 * OpenACC 3.3 [2.7.1, Data Specification for Data Clauses (Sub Arrays)]
1648 */
1650
1651 /** Represents an @available(...) check.
1652 */
1654
1655 /**
1656 * Fixed point literal
1657 */
1659
1660 /** OpenMP 5.0 [2.1.4, Array Shaping].
1661 */
1663
1664 /**
1665 * OpenMP 5.0 [2.1.6 Iterators]
1666 */
1668
1669 /** OpenCL's addrspace_cast<> expression.
1670 */
1672
1673 /**
1674 * Expression that references a C++20 concept.
1675 */
1677
1678 /**
1679 * Expression that references a C++20 requires expression.
1680 */
1682
1683 /**
1684 * Expression that references a C++20 parenthesized list aggregate
1685 * initializer.
1686 */
1688
1689 /**
1690 * Represents a C++26 pack indexing expression.
1691 */
1693
1695
1696 /* Statements */
1698 /**
1699 * A statement whose specific kind is not exposed via this
1700 * interface.
1701 *
1702 * Unexposed statements have the same operations as any other kind of
1703 * statement; one can extract their location information, spelling,
1704 * children, etc. However, the specific kind of the statement is not
1705 * reported.
1706 */
1708
1709 /** A labelled statement in a function.
1710 *
1711 * This cursor kind is used to describe the "start_over:" label statement in
1712 * the following example:
1713 *
1714 * \code
1715 * start_over:
1716 * ++counter;
1717 * \endcode
1718 *
1719 */
1721
1722 /** A group of statements like { stmt stmt }.
1723 *
1724 * This cursor kind is used to describe compound statements, e.g. function
1725 * bodies.
1726 */
1728
1729 /** A case statement.
1730 */
1732
1733 /** A default statement.
1734 */
1736
1737 /** An if statement
1738 */
1740
1741 /** A switch statement.
1742 */
1744
1745 /** A while statement.
1746 */
1748
1749 /** A do statement.
1750 */
1752
1753 /** A for statement.
1754 */
1756
1757 /** A goto statement.
1758 */
1760
1761 /** An indirect goto statement.
1762 */
1764
1765 /** A continue statement.
1766 */
1768
1769 /** A break statement.
1770 */
1772
1773 /** A return statement.
1774 */
1776
1777 /** A GCC inline assembly statement extension.
1778 */
1781
1782 /** Objective-C's overall \@try-\@catch-\@finally statement.
1783 */
1785
1786 /** Objective-C's \@catch statement.
1787 */
1789
1790 /** Objective-C's \@finally statement.
1791 */
1793
1794 /** Objective-C's \@throw statement.
1795 */
1797
1798 /** Objective-C's \@synchronized statement.
1799 */
1801
1802 /** Objective-C's autorelease pool statement.
1803 */
1805
1806 /** Objective-C's collection statement.
1807 */
1809
1810 /** C++'s catch statement.
1811 */
1813
1814 /** C++'s try statement.
1815 */
1817
1818 /** C++'s for (* : *) statement.
1819 */
1821
1822 /** Windows Structured Exception Handling's try statement.
1823 */
1825
1826 /** Windows Structured Exception Handling's except statement.
1827 */
1829
1830 /** Windows Structured Exception Handling's finally statement.
1831 */
1833
1834 /** A MS inline assembly statement extension.
1835 */
1837
1838 /** The null statement ";": C99 6.8.3p3.
1839 *
1840 * This cursor kind is used to describe the null statement.
1841 */
1843
1844 /** Adaptor class for mixing declarations with statements and
1845 * expressions.
1846 */
1848
1849 /** OpenMP parallel directive.
1850 */
1852
1853 /** OpenMP SIMD directive.
1854 */
1856
1857 /** OpenMP for directive.
1858 */
1860
1861 /** OpenMP sections directive.
1862 */
1864
1865 /** OpenMP section directive.
1866 */
1868
1869 /** OpenMP single directive.
1870 */
1872
1873 /** OpenMP parallel for directive.
1874 */
1876
1877 /** OpenMP parallel sections directive.
1878 */
1880
1881 /** OpenMP task directive.
1882 */
1884
1885 /** OpenMP master directive.
1886 */
1888
1889 /** OpenMP critical directive.
1890 */
1892
1893 /** OpenMP taskyield directive.
1894 */
1896
1897 /** OpenMP barrier directive.
1898 */
1900
1901 /** OpenMP taskwait directive.
1902 */
1904
1905 /** OpenMP flush directive.
1906 */
1908
1909 /** Windows Structured Exception Handling's leave statement.
1910 */
1912
1913 /** OpenMP ordered directive.
1914 */
1916
1917 /** OpenMP atomic directive.
1918 */
1920
1921 /** OpenMP for SIMD directive.
1922 */
1924
1925 /** OpenMP parallel for SIMD directive.
1926 */
1928
1929 /** OpenMP target directive.
1930 */
1932
1933 /** OpenMP teams directive.
1934 */
1936
1937 /** OpenMP taskgroup directive.
1938 */
1940
1941 /** OpenMP cancellation point directive.
1942 */
1944
1945 /** OpenMP cancel directive.
1946 */
1948
1949 /** OpenMP target data directive.
1950 */
1952
1953 /** OpenMP taskloop directive.
1954 */
1956
1957 /** OpenMP taskloop simd directive.
1958 */
1960
1961 /** OpenMP distribute directive.
1962 */
1964
1965 /** OpenMP target enter data directive.
1966 */
1968
1969 /** OpenMP target exit data directive.
1970 */
1972
1973 /** OpenMP target parallel directive.
1974 */
1976
1977 /** OpenMP target parallel for directive.
1978 */
1980
1981 /** OpenMP target update directive.
1982 */
1984
1985 /** OpenMP distribute parallel for directive.
1986 */
1988
1989 /** OpenMP distribute parallel for simd directive.
1990 */
1992
1993 /** OpenMP distribute simd directive.
1994 */
1996
1997 /** OpenMP target parallel for simd directive.
1998 */
2000
2001 /** OpenMP target simd directive.
2002 */
2004
2005 /** OpenMP teams distribute directive.
2006 */
2008
2009 /** OpenMP teams distribute simd directive.
2010 */
2012
2013 /** OpenMP teams distribute parallel for simd directive.
2014 */
2016
2017 /** OpenMP teams distribute parallel for directive.
2018 */
2020
2021 /** OpenMP target teams directive.
2022 */
2024
2025 /** OpenMP target teams distribute directive.
2026 */
2028
2029 /** OpenMP target teams distribute parallel for directive.
2030 */
2032
2033 /** OpenMP target teams distribute parallel for simd directive.
2034 */
2036
2037 /** OpenMP target teams distribute simd directive.
2038 */
2040
2041 /** C++2a std::bit_cast expression.
2042 */
2044
2045 /** OpenMP master taskloop directive.
2046 */
2048
2049 /** OpenMP parallel master taskloop directive.
2050 */
2052
2053 /** OpenMP master taskloop simd directive.
2054 */
2056
2057 /** OpenMP parallel master taskloop simd directive.
2058 */
2060
2061 /** OpenMP parallel master directive.
2062 */
2064
2065 /** OpenMP depobj directive.
2066 */
2068
2069 /** OpenMP scan directive.
2070 */
2072
2073 /** OpenMP tile directive.
2074 */
2076
2077 /** OpenMP canonical loop.
2078 */
2080
2081 /** OpenMP interop directive.
2082 */
2084
2085 /** OpenMP dispatch directive.
2086 */
2088
2089 /** OpenMP masked directive.
2090 */
2092
2093 /** OpenMP unroll directive.
2094 */
2096
2097 /** OpenMP metadirective directive.
2098 */
2100
2101 /** OpenMP loop directive.
2102 */
2104
2105 /** OpenMP teams loop directive.
2106 */
2108
2109 /** OpenMP target teams loop directive.
2110 */
2112
2113 /** OpenMP parallel loop directive.
2114 */
2116
2117 /** OpenMP target parallel loop directive.
2118 */
2120
2121 /** OpenMP parallel masked directive.
2122 */
2124
2125 /** OpenMP masked taskloop directive.
2126 */
2128
2129 /** OpenMP masked taskloop simd directive.
2130 */
2132
2133 /** OpenMP parallel masked taskloop directive.
2134 */
2136
2137 /** OpenMP parallel masked taskloop simd directive.
2138 */
2140
2141 /** OpenMP error directive.
2142 */
2144
2145 /** OpenMP scope directive.
2146 */
2148
2149 /** OpenMP reverse directive.
2150 */
2152
2153 /** OpenMP interchange directive.
2154 */
2156
2157 /** OpenMP assume directive.
2158 */
2160
2161 /** OpenACC Compute Construct.
2162 */
2164
2165 /** OpenACC Loop Construct.
2166 */
2168
2170
2171 /**
2172 * Cursor that represents the translation unit itself.
2173 *
2174 * The translation unit cursor exists primarily to act as the root
2175 * cursor for traversing the contents of a translation unit.
2176 */
2178
2179 /* Attributes */
2181 /**
2182 * An attribute whose specific kind is not exposed via this
2183 * interface.
2184 */
2186
2229
2230 /* Preprocessing */
2238
2239 /* Extra Declarations */
2240 /**
2241 * A module import declaration.
2242 */
2245 /**
2246 * A static_assert or _Static_assert node
2247 */
2249 /**
2250 * a friend declaration.
2251 */
2253 /**
2254 * a concept declaration.
2255 */
2257
2260
2261 /**
2262 * A code completion overload candidate.
2263 */
2266
2267/**
2268 * A cursor representing some element in the abstract syntax tree for
2269 * a translation unit.
2270 *
2271 * The cursor abstraction unifies the different kinds of entities in a
2272 * program--declaration, statements, expressions, references to declarations,
2273 * etc.--under a single "cursor" abstraction with a common set of operations.
2274 * Common operation for a cursor include: getting the physical location in
2275 * a source file where the cursor points, getting the name associated with a
2276 * cursor, and retrieving cursors for any child nodes of a particular cursor.
2277 *
2278 * Cursors can be produced in two specific ways.
2279 * clang_getTranslationUnitCursor() produces a cursor for a translation unit,
2280 * from which one can use clang_visitChildren() to explore the rest of the
2281 * translation unit. clang_getCursor() maps from a physical source location
2282 * to the entity that resides at that location, allowing one to map from the
2283 * source code into the AST.
2284 */
2285typedef struct {
2288 const void *data[3];
2289} CXCursor;
2290
2291/**
2292 * \defgroup CINDEX_CURSOR_MANIP Cursor manipulations
2293 *
2294 * @{
2295 */
2296
2297/**
2298 * Retrieve the NULL cursor, which represents no entity.
2299 */
2301
2302/**
2303 * Retrieve the cursor that represents the given translation unit.
2304 *
2305 * The translation unit cursor can be used to start traversing the
2306 * various declarations within the given translation unit.
2307 */
2309
2310/**
2311 * Determine whether two cursors are equivalent.
2312 */
2314
2315/**
2316 * Returns non-zero if \p cursor is null.
2317 */
2319
2320/**
2321 * Compute a hash value for the given cursor.
2322 */
2324
2325/**
2326 * Retrieve the kind of the given cursor.
2327 */
2329
2330/**
2331 * Determine whether the given cursor kind represents a declaration.
2332 */
2334
2335/**
2336 * Determine whether the given declaration is invalid.
2337 *
2338 * A declaration is invalid if it could not be parsed successfully.
2339 *
2340 * \returns non-zero if the cursor represents a declaration and it is
2341 * invalid, otherwise NULL.
2342 */
2344
2345/**
2346 * Determine whether the given cursor kind represents a simple
2347 * reference.
2348 *
2349 * Note that other kinds of cursors (such as expressions) can also refer to
2350 * other cursors. Use clang_getCursorReferenced() to determine whether a
2351 * particular cursor refers to another entity.
2352 */
2354
2355/**
2356 * Determine whether the given cursor kind represents an expression.
2357 */
2359
2360/**
2361 * Determine whether the given cursor kind represents a statement.
2362 */
2364
2365/**
2366 * Determine whether the given cursor kind represents an attribute.
2367 */
2369
2370/**
2371 * Determine whether the given cursor has any attributes.
2372 */
2374
2375/**
2376 * Determine whether the given cursor kind represents an invalid
2377 * cursor.
2378 */
2380
2381/**
2382 * Determine whether the given cursor kind represents a translation
2383 * unit.
2384 */
2386
2387/***
2388 * Determine whether the given cursor represents a preprocessing
2389 * element, such as a preprocessor directive or macro instantiation.
2390 */
2392
2393/***
2394 * Determine whether the given cursor represents a currently
2395 * unexposed piece of the AST (e.g., CXCursor_UnexposedStmt).
2396 */
2398
2399/**
2400 * Describe the linkage of the entity referred to by a cursor.
2401 */
2403 /** This value indicates that no linkage information is available
2404 * for a provided CXCursor. */
2406 /**
2407 * This is the linkage for variables, parameters, and so on that
2408 * have automatic storage. This covers normal (non-extern) local variables.
2409 */
2411 /** This is the linkage for static variables and static functions. */
2413 /** This is the linkage for entities with external linkage that live
2414 * in C++ anonymous namespaces.*/
2416 /** This is the linkage for entities with true, external linkage. */
2419
2420/**
2421 * Determine the linkage of the entity referred to by a given cursor.
2422 */
2424
2426 /** This value indicates that no visibility information is available
2427 * for a provided CXCursor. */
2429
2430 /** Symbol not seen by the linker. */
2432 /** Symbol seen by the linker but resolves to a symbol inside this object. */
2434 /** Symbol seen by the linker and acts like a normal symbol. */
2437
2438/**
2439 * Describe the visibility of the entity referred to by a cursor.
2440 *
2441 * This returns the default visibility if not explicitly specified by
2442 * a visibility attribute. The default visibility may be changed by
2443 * commandline arguments.
2444 *
2445 * \param cursor The cursor to query.
2446 *
2447 * \returns The visibility of the cursor.
2448 */
2450
2451/**
2452 * Determine the availability of the entity that this cursor refers to,
2453 * taking the current target platform into account.
2454 *
2455 * \param cursor The cursor to query.
2456 *
2457 * \returns The availability of the cursor.
2458 */
2461
2462/**
2463 * Describes the availability of a given entity on a particular platform, e.g.,
2464 * a particular class might only be available on Mac OS 10.7 or newer.
2465 */
2467 /**
2468 * A string that describes the platform for which this structure
2469 * provides availability information.
2470 *
2471 * Possible values are "ios" or "macos".
2472 */
2474 /**
2475 * The version number in which this entity was introduced.
2476 */
2478 /**
2479 * The version number in which this entity was deprecated (but is
2480 * still available).
2481 */
2483 /**
2484 * The version number in which this entity was obsoleted, and therefore
2485 * is no longer available.
2486 */
2488 /**
2489 * Whether the entity is unconditionally unavailable on this platform.
2490 */
2492 /**
2493 * An optional message to provide to a user of this API, e.g., to
2494 * suggest replacement APIs.
2495 */
2498
2499/**
2500 * Determine the availability of the entity that this cursor refers to
2501 * on any platforms for which availability information is known.
2502 *
2503 * \param cursor The cursor to query.
2504 *
2505 * \param always_deprecated If non-NULL, will be set to indicate whether the
2506 * entity is deprecated on all platforms.
2507 *
2508 * \param deprecated_message If non-NULL, will be set to the message text
2509 * provided along with the unconditional deprecation of this entity. The client
2510 * is responsible for deallocating this string.
2511 *
2512 * \param always_unavailable If non-NULL, will be set to indicate whether the
2513 * entity is unavailable on all platforms.
2514 *
2515 * \param unavailable_message If non-NULL, will be set to the message text
2516 * provided along with the unconditional unavailability of this entity. The
2517 * client is responsible for deallocating this string.
2518 *
2519 * \param availability If non-NULL, an array of CXPlatformAvailability instances
2520 * that will be populated with platform availability information, up to either
2521 * the number of platforms for which availability information is available (as
2522 * returned by this function) or \c availability_size, whichever is smaller.
2523 *
2524 * \param availability_size The number of elements available in the
2525 * \c availability array.
2526 *
2527 * \returns The number of platforms (N) for which availability information is
2528 * available (which is unrelated to \c availability_size).
2529 *
2530 * Note that the client is responsible for calling
2531 * \c clang_disposeCXPlatformAvailability to free each of the
2532 * platform-availability structures returned. There are
2533 * \c min(N, availability_size) such structures.
2534 */
2536 CXCursor cursor, int *always_deprecated, CXString *deprecated_message,
2537 int *always_unavailable, CXString *unavailable_message,
2538 CXPlatformAvailability *availability, int availability_size);
2539
2540/**
2541 * Free the memory associated with a \c CXPlatformAvailability structure.
2542 */
2543CINDEX_LINKAGE void
2545
2546/**
2547 * If cursor refers to a variable declaration and it has initializer returns
2548 * cursor referring to the initializer otherwise return null cursor.
2549 */
2551
2552/**
2553 * If cursor refers to a variable declaration that has global storage returns 1.
2554 * If cursor refers to a variable declaration that doesn't have global storage
2555 * returns 0. Otherwise returns -1.
2556 */
2558
2559/**
2560 * If cursor refers to a variable declaration that has external storage
2561 * returns 1. If cursor refers to a variable declaration that doesn't have
2562 * external storage returns 0. Otherwise returns -1.
2563 */
2565
2566/**
2567 * Describe the "language" of the entity referred to by a cursor.
2568 */
2575
2576/**
2577 * Determine the "language" of the entity referred to by a given cursor.
2578 */
2580
2581/**
2582 * Describe the "thread-local storage (TLS) kind" of the declaration
2583 * referred to by a cursor.
2584 */
2586
2587/**
2588 * Determine the "thread-local storage (TLS) kind" of the declaration
2589 * referred to by a cursor.
2590 */
2592
2593/**
2594 * Returns the translation unit that a cursor originated from.
2595 */
2597
2598/**
2599 * A fast container representing a set of CXCursors.
2600 */
2601typedef struct CXCursorSetImpl *CXCursorSet;
2602
2603/**
2604 * Creates an empty CXCursorSet.
2605 */
2607
2608/**
2609 * Disposes a CXCursorSet and releases its associated memory.
2610 */
2612
2613/**
2614 * Queries a CXCursorSet to see if it contains a specific CXCursor.
2615 *
2616 * \returns non-zero if the set contains the specified cursor.
2617 */
2619 CXCursor cursor);
2620
2621/**
2622 * Inserts a CXCursor into a CXCursorSet.
2623 *
2624 * \returns zero if the CXCursor was already in the set, and non-zero otherwise.
2625 */
2627 CXCursor cursor);
2628
2629/**
2630 * Determine the semantic parent of the given cursor.
2631 *
2632 * The semantic parent of a cursor is the cursor that semantically contains
2633 * the given \p cursor. For many declarations, the lexical and semantic parents
2634 * are equivalent (the lexical parent is returned by
2635 * \c clang_getCursorLexicalParent()). They diverge when declarations or
2636 * definitions are provided out-of-line. For example:
2637 *
2638 * \code
2639 * class C {
2640 * void f();
2641 * };
2642 *
2643 * void C::f() { }
2644 * \endcode
2645 *
2646 * In the out-of-line definition of \c C::f, the semantic parent is
2647 * the class \c C, of which this function is a member. The lexical parent is
2648 * the place where the declaration actually occurs in the source code; in this
2649 * case, the definition occurs in the translation unit. In general, the
2650 * lexical parent for a given entity can change without affecting the semantics
2651 * of the program, and the lexical parent of different declarations of the
2652 * same entity may be different. Changing the semantic parent of a declaration,
2653 * on the other hand, can have a major impact on semantics, and redeclarations
2654 * of a particular entity should all have the same semantic context.
2655 *
2656 * In the example above, both declarations of \c C::f have \c C as their
2657 * semantic context, while the lexical context of the first \c C::f is \c C
2658 * and the lexical context of the second \c C::f is the translation unit.
2659 *
2660 * For global declarations, the semantic parent is the translation unit.
2661 */
2663
2664/**
2665 * Determine the lexical parent of the given cursor.
2666 *
2667 * The lexical parent of a cursor is the cursor in which the given \p cursor
2668 * was actually written. For many declarations, the lexical and semantic parents
2669 * are equivalent (the semantic parent is returned by
2670 * \c clang_getCursorSemanticParent()). They diverge when declarations or
2671 * definitions are provided out-of-line. For example:
2672 *
2673 * \code
2674 * class C {
2675 * void f();
2676 * };
2677 *
2678 * void C::f() { }
2679 * \endcode
2680 *
2681 * In the out-of-line definition of \c C::f, the semantic parent is
2682 * the class \c C, of which this function is a member. The lexical parent is
2683 * the place where the declaration actually occurs in the source code; in this
2684 * case, the definition occurs in the translation unit. In general, the
2685 * lexical parent for a given entity can change without affecting the semantics
2686 * of the program, and the lexical parent of different declarations of the
2687 * same entity may be different. Changing the semantic parent of a declaration,
2688 * on the other hand, can have a major impact on semantics, and redeclarations
2689 * of a particular entity should all have the same semantic context.
2690 *
2691 * In the example above, both declarations of \c C::f have \c C as their
2692 * semantic context, while the lexical context of the first \c C::f is \c C
2693 * and the lexical context of the second \c C::f is the translation unit.
2694 *
2695 * For declarations written in the global scope, the lexical parent is
2696 * the translation unit.
2697 */
2699
2700/**
2701 * Determine the set of methods that are overridden by the given
2702 * method.
2703 *
2704 * In both Objective-C and C++, a method (aka virtual member function,
2705 * in C++) can override a virtual method in a base class. For
2706 * Objective-C, a method is said to override any method in the class's
2707 * base class, its protocols, or its categories' protocols, that has the same
2708 * selector and is of the same kind (class or instance).
2709 * If no such method exists, the search continues to the class's superclass,
2710 * its protocols, and its categories, and so on. A method from an Objective-C
2711 * implementation is considered to override the same methods as its
2712 * corresponding method in the interface.
2713 *
2714 * For C++, a virtual member function overrides any virtual member
2715 * function with the same signature that occurs in its base
2716 * classes. With multiple inheritance, a virtual member function can
2717 * override several virtual member functions coming from different
2718 * base classes.
2719 *
2720 * In all cases, this function determines the immediate overridden
2721 * method, rather than all of the overridden methods. For example, if
2722 * a method is originally declared in a class A, then overridden in B
2723 * (which in inherits from A) and also in C (which inherited from B),
2724 * then the only overridden method returned from this function when
2725 * invoked on C's method will be B's method. The client may then
2726 * invoke this function again, given the previously-found overridden
2727 * methods, to map out the complete method-override set.
2728 *
2729 * \param cursor A cursor representing an Objective-C or C++
2730 * method. This routine will compute the set of methods that this
2731 * method overrides.
2732 *
2733 * \param overridden A pointer whose pointee will be replaced with a
2734 * pointer to an array of cursors, representing the set of overridden
2735 * methods. If there are no overridden methods, the pointee will be
2736 * set to NULL. The pointee must be freed via a call to
2737 * \c clang_disposeOverriddenCursors().
2738 *
2739 * \param num_overridden A pointer to the number of overridden
2740 * functions, will be set to the number of overridden functions in the
2741 * array pointed to by \p overridden.
2742 */
2744 CXCursor **overridden,
2745 unsigned *num_overridden);
2746
2747/**
2748 * Free the set of overridden cursors returned by \c
2749 * clang_getOverriddenCursors().
2750 */
2752
2753/**
2754 * Retrieve the file that is included by the given inclusion directive
2755 * cursor.
2756 */
2758
2759/**
2760 * @}
2761 */
2762
2763/**
2764 * \defgroup CINDEX_CURSOR_SOURCE Mapping between cursors and source code
2765 *
2766 * Cursors represent a location within the Abstract Syntax Tree (AST). These
2767 * routines help map between cursors and the physical locations where the
2768 * described entities occur in the source code. The mapping is provided in
2769 * both directions, so one can map from source code to the AST and back.
2770 *
2771 * @{
2772 */
2773
2774/**
2775 * Map a source location to the cursor that describes the entity at that
2776 * location in the source code.
2777 *
2778 * clang_getCursor() maps an arbitrary source location within a translation
2779 * unit down to the most specific cursor that describes the entity at that
2780 * location. For example, given an expression \c x + y, invoking
2781 * clang_getCursor() with a source location pointing to "x" will return the
2782 * cursor for "x"; similarly for "y". If the cursor points anywhere between
2783 * "x" or "y" (e.g., on the + or the whitespace around it), clang_getCursor()
2784 * will return a cursor referring to the "+" expression.
2785 *
2786 * \returns a cursor representing the entity at the given source location, or
2787 * a NULL cursor if no such entity can be found.
2788 */
2790
2791/**
2792 * Retrieve the physical location of the source constructor referenced
2793 * by the given cursor.
2794 *
2795 * The location of a declaration is typically the location of the name of that
2796 * declaration, where the name of that declaration would occur if it is
2797 * unnamed, or some keyword that introduces that particular declaration.
2798 * The location of a reference is where that reference occurs within the
2799 * source code.
2800 */
2802
2803/**
2804 * Retrieve the physical extent of the source construct referenced by
2805 * the given cursor.
2806 *
2807 * The extent of a cursor starts with the file/line/column pointing at the
2808 * first character within the source construct that the cursor refers to and
2809 * ends with the last character within that source construct. For a
2810 * declaration, the extent covers the declaration itself. For a reference,
2811 * the extent covers the location of the reference (e.g., where the referenced
2812 * entity was actually used).
2813 */
2815
2816/**
2817 * @}
2818 */
2819
2820/**
2821 * \defgroup CINDEX_TYPES Type information for CXCursors
2822 *
2823 * @{
2824 */
2825
2826/**
2827 * Describes the kind of type
2828 */
2830 /**
2831 * Represents an invalid type (e.g., where no type is available).
2832 */
2834
2835 /**
2836 * A type whose specific kind is not exposed via this
2837 * interface.
2838 */
2840
2841 /* Builtin types */
2883
2903
2904 /**
2905 * Represents a type that was referred to using an elaborated type keyword.
2906 *
2907 * E.g., struct S, or via a qualified name, e.g., N::M::type, or both.
2908 */
2910
2911 /* OpenCL PipeType. */
2913
2914 /* OpenCL builtin types. */
2955
2959
2972
2973 /* Old aliases for AVC OpenCL extension types. */
2978
2982
2983 // HLSL Intangible Types
2986
2987/**
2988 * Describes the calling convention of a function type
2989 */
3002 /* Alias for compatibility with older versions of API. */
3015
3019
3020/**
3021 * The type of an element in the abstract syntax tree.
3022 *
3023 */
3024typedef struct {
3026 void *data[2];
3027} CXType;
3028
3029/**
3030 * Retrieve the type of a CXCursor (if any).
3031 */
3033
3034/**
3035 * Pretty-print the underlying type using the rules of the
3036 * language of the translation unit from which it came.
3037 *
3038 * If the type is invalid, an empty string is returned.
3039 */
3041
3042/**
3043 * Retrieve the underlying type of a typedef declaration.
3044 *
3045 * If the cursor does not reference a typedef declaration, an invalid type is
3046 * returned.
3047 */
3049
3050/**
3051 * Retrieve the integer type of an enum declaration.
3052 *
3053 * If the cursor does not reference an enum declaration, an invalid type is
3054 * returned.
3055 */
3057
3058/**
3059 * Retrieve the integer value of an enum constant declaration as a signed
3060 * long long.
3061 *
3062 * If the cursor does not reference an enum constant declaration, LLONG_MIN is
3063 * returned. Since this is also potentially a valid constant value, the kind of
3064 * the cursor must be verified before calling this function.
3065 */
3067
3068/**
3069 * Retrieve the integer value of an enum constant declaration as an unsigned
3070 * long long.
3071 *
3072 * If the cursor does not reference an enum constant declaration, ULLONG_MAX is
3073 * returned. Since this is also potentially a valid constant value, the kind of
3074 * the cursor must be verified before calling this function.
3075 */
3076CINDEX_LINKAGE unsigned long long
3078
3079/**
3080 * Returns non-zero if the cursor specifies a Record member that is a bit-field.
3081 */
3083
3084/**
3085 * Retrieve the bit width of a bit-field declaration as an integer.
3086 *
3087 * If the cursor does not reference a bit-field, or if the bit-field's width
3088 * expression cannot be evaluated, -1 is returned.
3089 *
3090 * For example:
3091 * \code
3092 * if (clang_Cursor_isBitField(Cursor)) {
3093 * int Width = clang_getFieldDeclBitWidth(Cursor);
3094 * if (Width != -1) {
3095 * // The bit-field width is not value-dependent.
3096 * }
3097 * }
3098 * \endcode
3099 */
3101
3102/**
3103 * Retrieve the number of non-variadic arguments associated with a given
3104 * cursor.
3105 *
3106 * The number of arguments can be determined for calls as well as for
3107 * declarations of functions or methods. For other cursors -1 is returned.
3108 */
3110
3111/**
3112 * Retrieve the argument cursor of a function or method.
3113 *
3114 * The argument cursor can be determined for calls as well as for declarations
3115 * of functions or methods. For other cursors and for invalid indices, an
3116 * invalid cursor is returned.
3117 */
3119
3120/**
3121 * Describes the kind of a template argument.
3122 *
3123 * See the definition of llvm::clang::TemplateArgument::ArgKind for full
3124 * element descriptions.
3125 */
3136 /* Indicates an error case, preventing the kind from being deduced. */
3139
3140/**
3141 * Returns the number of template args of a function, struct, or class decl
3142 * representing a template specialization.
3143 *
3144 * If the argument cursor cannot be converted into a template function
3145 * declaration, -1 is returned.
3146 *
3147 * For example, for the following declaration and specialization:
3148 * template <typename T, int kInt, bool kBool>
3149 * void foo() { ... }
3150 *
3151 * template <>
3152 * void foo<float, -7, true>();
3153 *
3154 * The value 3 would be returned from this call.
3155 */
3157
3158/**
3159 * Retrieve the kind of the I'th template argument of the CXCursor C.
3160 *
3161 * If the argument CXCursor does not represent a FunctionDecl, StructDecl, or
3162 * ClassTemplatePartialSpecialization, an invalid template argument kind is
3163 * returned.
3164 *
3165 * For example, for the following declaration and specialization:
3166 * template <typename T, int kInt, bool kBool>
3167 * void foo() { ... }
3168 *
3169 * template <>
3170 * void foo<float, -7, true>();
3171 *
3172 * For I = 0, 1, and 2, Type, Integral, and Integral will be returned,
3173 * respectively.
3174 */
3177
3178/**
3179 * Retrieve a CXType representing the type of a TemplateArgument of a
3180 * function decl representing a template specialization.
3181 *
3182 * If the argument CXCursor does not represent a FunctionDecl, StructDecl,
3183 * ClassDecl or ClassTemplatePartialSpecialization whose I'th template argument
3184 * has a kind of CXTemplateArgKind_Integral, an invalid type is returned.
3185 *
3186 * For example, for the following declaration and specialization:
3187 * template <typename T, int kInt, bool kBool>
3188 * void foo() { ... }
3189 *
3190 * template <>
3191 * void foo<float, -7, true>();
3192 *
3193 * If called with I = 0, "float", will be returned.
3194 * Invalid types will be returned for I == 1 or 2.
3195 */
3197 unsigned I);
3198
3199/**
3200 * Retrieve the value of an Integral TemplateArgument (of a function
3201 * decl representing a template specialization) as a signed long long.
3202 *
3203 * It is undefined to call this function on a CXCursor that does not represent a
3204 * FunctionDecl, StructDecl, ClassDecl or ClassTemplatePartialSpecialization
3205 * whose I'th template argument is not an integral value.
3206 *
3207 * For example, for the following declaration and specialization:
3208 * template <typename T, int kInt, bool kBool>
3209 * void foo() { ... }
3210 *
3211 * template <>
3212 * void foo<float, -7, true>();
3213 *
3214 * If called with I = 1 or 2, -7 or true will be returned, respectively.
3215 * For I == 0, this function's behavior is undefined.
3216 */
3218 unsigned I);
3219
3220/**
3221 * Retrieve the value of an Integral TemplateArgument (of a function
3222 * decl representing a template specialization) as an unsigned long long.
3223 *
3224 * It is undefined to call this function on a CXCursor that does not represent a
3225 * FunctionDecl, StructDecl, ClassDecl or ClassTemplatePartialSpecialization or
3226 * whose I'th template argument is not an integral value.
3227 *
3228 * For example, for the following declaration and specialization:
3229 * template <typename T, int kInt, bool kBool>
3230 * void foo() { ... }
3231 *
3232 * template <>
3233 * void foo<float, 2147483649, true>();
3234 *
3235 * If called with I = 1 or 2, 2147483649 or true will be returned, respectively.
3236 * For I == 0, this function's behavior is undefined.
3237 */
3238CINDEX_LINKAGE unsigned long long
3240
3241/**
3242 * Determine whether two CXTypes represent the same type.
3243 *
3244 * \returns non-zero if the CXTypes represent the same type and
3245 * zero otherwise.
3246 */
3248
3249/**
3250 * Return the canonical type for a CXType.
3251 *
3252 * Clang's type system explicitly models typedefs and all the ways
3253 * a specific type can be represented. The canonical type is the underlying
3254 * type with all the "sugar" removed. For example, if 'T' is a typedef
3255 * for 'int', the canonical type for 'T' would be 'int'.
3256 */
3258
3259/**
3260 * Determine whether a CXType has the "const" qualifier set,
3261 * without looking through typedefs that may have added "const" at a
3262 * different level.
3263 */
3265
3266/**
3267 * Determine whether a CXCursor that is a macro, is
3268 * function like.
3269 */
3271
3272/**
3273 * Determine whether a CXCursor that is a macro, is a
3274 * builtin one.
3275 */
3277
3278/**
3279 * Determine whether a CXCursor that is a function declaration, is an
3280 * inline declaration.
3281 */
3283
3284/**
3285 * Determine whether a CXType has the "volatile" qualifier set,
3286 * without looking through typedefs that may have added "volatile" at
3287 * a different level.
3288 */
3290
3291/**
3292 * Determine whether a CXType has the "restrict" qualifier set,
3293 * without looking through typedefs that may have added "restrict" at a
3294 * different level.
3295 */
3297
3298/**
3299 * Returns the address space of the given type.
3300 */
3302
3303/**
3304 * Returns the typedef name of the given type.
3305 */
3307
3308/**
3309 * For pointer types, returns the type of the pointee.
3310 */
3312
3313/**
3314 * Retrieve the unqualified variant of the given type, removing as
3315 * little sugar as possible.
3316 *
3317 * For example, given the following series of typedefs:
3318 *
3319 * \code
3320 * typedef int Integer;
3321 * typedef const Integer CInteger;
3322 * typedef CInteger DifferenceType;
3323 * \endcode
3324 *
3325 * Executing \c clang_getUnqualifiedType() on a \c CXType that
3326 * represents \c DifferenceType, will desugar to a type representing
3327 * \c Integer, that has no qualifiers.
3328 *
3329 * And, executing \c clang_getUnqualifiedType() on the type of the
3330 * first argument of the following function declaration:
3331 *
3332 * \code
3333 * void foo(const int);
3334 * \endcode
3335 *
3336 * Will return a type representing \c int, removing the \c const
3337 * qualifier.
3338 *
3339 * Sugar over array types is not desugared.
3340 *
3341 * A type can be checked for qualifiers with \c
3342 * clang_isConstQualifiedType(), \c clang_isVolatileQualifiedType()
3343 * and \c clang_isRestrictQualifiedType().
3344 *
3345 * A type that resulted from a call to \c clang_getUnqualifiedType
3346 * will return \c false for all of the above calls.
3347 */
3349
3350/**
3351 * For reference types (e.g., "const int&"), returns the type that the
3352 * reference refers to (e.g "const int").
3353 *
3354 * Otherwise, returns the type itself.
3355 *
3356 * A type that has kind \c CXType_LValueReference or
3357 * \c CXType_RValueReference is a reference type.
3358 */
3360
3361/**
3362 * Return the cursor for the declaration of the given type.
3363 */
3365
3366/**
3367 * Returns the Objective-C type encoding for the specified declaration.
3368 */
3370
3371/**
3372 * Returns the Objective-C type encoding for the specified CXType.
3373 */
3375
3376/**
3377 * Retrieve the spelling of a given CXTypeKind.
3378 */
3380
3381/**
3382 * Retrieve the calling convention associated with a function type.
3383 *
3384 * If a non-function type is passed in, CXCallingConv_Invalid is returned.
3385 */
3387
3388/**
3389 * Retrieve the return type associated with a function type.
3390 *
3391 * If a non-function type is passed in, an invalid type is returned.
3392 */
3394
3395/**
3396 * Retrieve the exception specification type associated with a function type.
3397 * This is a value of type CXCursor_ExceptionSpecificationKind.
3398 *
3399 * If a non-function type is passed in, an error code of -1 is returned.
3400 */
3402
3403/**
3404 * Retrieve the number of non-variadic parameters associated with a
3405 * function type.
3406 *
3407 * If a non-function type is passed in, -1 is returned.
3408 */
3410
3411/**
3412 * Retrieve the type of a parameter of a function type.
3413 *
3414 * If a non-function type is passed in or the function does not have enough
3415 * parameters, an invalid type is returned.
3416 */
3418
3419/**
3420 * Retrieves the base type of the ObjCObjectType.
3421 *
3422 * If the type is not an ObjC object, an invalid type is returned.
3423 */
3425
3426/**
3427 * Retrieve the number of protocol references associated with an ObjC object/id.
3428 *
3429 * If the type is not an ObjC object, 0 is returned.
3430 */
3432
3433/**
3434 * Retrieve the decl for a protocol reference for an ObjC object/id.
3435 *
3436 * If the type is not an ObjC object or there are not enough protocol
3437 * references, an invalid cursor is returned.
3438 */
3440
3441/**
3442 * Retrieve the number of type arguments associated with an ObjC object.
3443 *
3444 * If the type is not an ObjC object, 0 is returned.
3445 */
3447
3448/**
3449 * Retrieve a type argument associated with an ObjC object.
3450 *
3451 * If the type is not an ObjC or the index is not valid,
3452 * an invalid type is returned.
3453 */
3455
3456/**
3457 * Return 1 if the CXType is a variadic function type, and 0 otherwise.
3458 */
3460
3461/**
3462 * Retrieve the return type associated with a given cursor.
3463 *
3464 * This only returns a valid type if the cursor refers to a function or method.
3465 */
3467
3468/**
3469 * Retrieve the exception specification type associated with a given cursor.
3470 * This is a value of type CXCursor_ExceptionSpecificationKind.
3471 *
3472 * This only returns a valid result if the cursor refers to a function or
3473 * method.
3474 */
3476
3477/**
3478 * Return 1 if the CXType is a POD (plain old data) type, and 0
3479 * otherwise.
3480 */
3482
3483/**
3484 * Return the element type of an array, complex, or vector type.
3485 *
3486 * If a type is passed in that is not an array, complex, or vector type,
3487 * an invalid type is returned.
3488 */
3490
3491/**
3492 * Return the number of elements of an array or vector type.
3493 *
3494 * If a type is passed in that is not an array or vector type,
3495 * -1 is returned.
3496 */
3498
3499/**
3500 * Return the element type of an array type.
3501 *
3502 * If a non-array type is passed in, an invalid type is returned.
3503 */
3505
3506/**
3507 * Return the array size of a constant array.
3508 *
3509 * If a non-array type is passed in, -1 is returned.
3510 */
3512
3513/**
3514 * Retrieve the type named by the qualified-id.
3515 *
3516 * If a non-elaborated type is passed in, an invalid type is returned.
3517 */
3519
3520/**
3521 * Determine if a typedef is 'transparent' tag.
3522 *
3523 * A typedef is considered 'transparent' if it shares a name and spelling
3524 * location with its underlying tag type, as is the case with the NS_ENUM macro.
3525 *
3526 * \returns non-zero if transparent and zero otherwise.
3527 */
3529
3531 /**
3532 * Values of this type can never be null.
3533 */
3535 /**
3536 * Values of this type can be null.
3537 */
3539 /**
3540 * Whether values of this type can be null is (explicitly)
3541 * unspecified. This captures a (fairly rare) case where we
3542 * can't conclude anything about the nullability of the type even
3543 * though it has been considered.
3544 */
3546 /**
3547 * Nullability is not applicable to this type.
3548 */
3550
3551 /**
3552 * Generally behaves like Nullable, except when used in a block parameter that
3553 * was imported into a swift async method. There, swift will assume that the
3554 * parameter can get null even if no error occurred. _Nullable parameters are
3555 * assumed to only get null on error.
3556 */
3559
3560/**
3561 * Retrieve the nullability kind of a pointer type.
3562 */
3564
3565/**
3566 * List the possible error codes for \c clang_Type_getSizeOf,
3567 * \c clang_Type_getAlignOf, \c clang_Type_getOffsetOf and
3568 * \c clang_Cursor_getOffsetOf.
3569 *
3570 * A value of this enumeration type can be returned if the target type is not
3571 * a valid argument to sizeof, alignof or offsetof.
3572 */
3574 /**
3575 * Type is of kind CXType_Invalid.
3576 */
3578 /**
3579 * The type is an incomplete Type.
3580 */
3582 /**
3583 * The type is a dependent Type.
3584 */
3586 /**
3587 * The type is not a constant size type.
3588 */
3590 /**
3591 * The Field name is not valid for this record.
3592 */
3594 /**
3595 * The type is undeduced.
3596 */
3599
3600/**
3601 * Return the alignment of a type in bytes as per C++[expr.alignof]
3602 * standard.
3603 *
3604 * If the type declaration is invalid, CXTypeLayoutError_Invalid is returned.
3605 * If the type declaration is an incomplete type, CXTypeLayoutError_Incomplete
3606 * is returned.
3607 * If the type declaration is a dependent type, CXTypeLayoutError_Dependent is
3608 * returned.
3609 * If the type declaration is not a constant size type,
3610 * CXTypeLayoutError_NotConstantSize is returned.
3611 */
3613
3614/**
3615 * Return the class type of an member pointer type.
3616 *
3617 * If a non-member-pointer type is passed in, an invalid type is returned.
3618 */
3620
3621/**
3622 * Return the size of a type in bytes as per C++[expr.sizeof] standard.
3623 *
3624 * If the type declaration is invalid, CXTypeLayoutError_Invalid is returned.
3625 * If the type declaration is an incomplete type, CXTypeLayoutError_Incomplete
3626 * is returned.
3627 * If the type declaration is a dependent type, CXTypeLayoutError_Dependent is
3628 * returned.
3629 */
3631
3632/**
3633 * Return the offset of a field named S in a record of type T in bits
3634 * as it would be returned by __offsetof__ as per C++11[18.2p4]
3635 *
3636 * If the cursor is not a record field declaration, CXTypeLayoutError_Invalid
3637 * is returned.
3638 * If the field's type declaration is an incomplete type,
3639 * CXTypeLayoutError_Incomplete is returned.
3640 * If the field's type declaration is a dependent type,
3641 * CXTypeLayoutError_Dependent is returned.
3642 * If the field's name S is not found,
3643 * CXTypeLayoutError_InvalidFieldName is returned.
3644 */
3646
3647/**
3648 * Return the type that was modified by this attributed type.
3649 *
3650 * If the type is not an attributed type, an invalid type is returned.
3651 */
3653
3654/**
3655 * Gets the type contained by this atomic type.
3656 *
3657 * If a non-atomic type is passed in, an invalid type is returned.
3658 */
3660
3661/**
3662 * Return the offset of the field represented by the Cursor.
3663 *
3664 * If the cursor is not a field declaration, -1 is returned.
3665 * If the cursor semantic parent is not a record field declaration,
3666 * CXTypeLayoutError_Invalid is returned.
3667 * If the field's type declaration is an incomplete type,
3668 * CXTypeLayoutError_Incomplete is returned.
3669 * If the field's type declaration is a dependent type,
3670 * CXTypeLayoutError_Dependent is returned.
3671 * If the field's name S is not found,
3672 * CXTypeLayoutError_InvalidFieldName is returned.
3673 */
3675
3676/**
3677 * Determine whether the given cursor represents an anonymous
3678 * tag or namespace
3679 */
3681
3682/**
3683 * Determine whether the given cursor represents an anonymous record
3684 * declaration.
3685 */
3687
3688/**
3689 * Determine whether the given cursor represents an inline namespace
3690 * declaration.
3691 */
3693
3695 /** No ref-qualifier was provided. */
3697 /** An lvalue ref-qualifier was provided (\c &). */
3699 /** An rvalue ref-qualifier was provided (\c &&). */
3702
3703/**
3704 * Returns the number of template arguments for given template
3705 * specialization, or -1 if type \c T is not a template specialization.
3706 */
3708
3709/**
3710 * Returns the type template argument of a template class specialization
3711 * at given index.
3712 *
3713 * This function only returns template type arguments and does not handle
3714 * template template arguments or variadic packs.
3715 */
3717 unsigned i);
3718
3719/**
3720 * Retrieve the ref-qualifier kind of a function or method.
3721 *
3722 * The ref-qualifier is returned for C++ functions or methods. For other types
3723 * or non-C++ declarations, CXRefQualifier_None is returned.
3724 */
3726
3727/**
3728 * Returns 1 if the base class specified by the cursor with kind
3729 * CX_CXXBaseSpecifier is virtual.
3730 */
3732
3733/**
3734 * Represents the C++ access control level to a base class for a
3735 * cursor with kind CX_CXXBaseSpecifier.
3736 */
3743
3744/**
3745 * Returns the access control level for the referenced object.
3746 *
3747 * If the cursor refers to a C++ declaration, its access control level within
3748 * its parent scope is returned. Otherwise, if the cursor refers to a base
3749 * specifier or access specifier, the specifier itself is returned.
3750 */
3752
3753/**
3754 * Represents the storage classes as declared in the source. CX_SC_Invalid
3755 * was added for the case that the passed cursor in not a declaration.
3756 */
3767
3768/**
3769 * Represents a specific kind of binary operator which can appear at a cursor.
3770 */
3808
3809/**
3810 * \brief Returns the operator code for the binary operator.
3811 */
3814
3815/**
3816 * \brief Returns a string containing the spelling of the binary operator.
3817 */
3820
3821/**
3822 * Returns the storage class for a function or variable declaration.
3823 *
3824 * If the passed in Cursor is not a function or variable declaration,
3825 * CX_SC_Invalid is returned else the storage class.
3826 */
3828
3829/**
3830 * Determine the number of overloaded declarations referenced by a
3831 * \c CXCursor_OverloadedDeclRef cursor.
3832 *
3833 * \param cursor The cursor whose overloaded declarations are being queried.
3834 *
3835 * \returns The number of overloaded declarations referenced by \c cursor. If it
3836 * is not a \c CXCursor_OverloadedDeclRef cursor, returns 0.
3837 */
3839
3840/**
3841 * Retrieve a cursor for one of the overloaded declarations referenced
3842 * by a \c CXCursor_OverloadedDeclRef cursor.
3843 *
3844 * \param cursor The cursor whose overloaded declarations are being queried.
3845 *
3846 * \param index The zero-based index into the set of overloaded declarations in
3847 * the cursor.
3848 *
3849 * \returns A cursor representing the declaration referenced by the given
3850 * \c cursor at the specified \c index. If the cursor does not have an
3851 * associated set of overloaded declarations, or if the index is out of bounds,
3852 * returns \c clang_getNullCursor();
3853 */
3855 unsigned index);
3856
3857/**
3858 * @}
3859 */
3860
3861/**
3862 * \defgroup CINDEX_ATTRIBUTES Information for attributes
3863 *
3864 * @{
3865 */
3866
3867/**
3868 * For cursors representing an iboutletcollection attribute,
3869 * this function returns the collection element type.
3870 *
3871 */
3873
3874/**
3875 * @}
3876 */
3877
3878/**
3879 * \defgroup CINDEX_CURSOR_TRAVERSAL Traversing the AST with cursors
3880 *
3881 * These routines provide the ability to traverse the abstract syntax tree
3882 * using cursors.
3883 *
3884 * @{
3885 */
3886
3887/**
3888 * Describes how the traversal of the children of a particular
3889 * cursor should proceed after visiting a particular child cursor.
3890 *
3891 * A value of this enumeration type should be returned by each
3892 * \c CXCursorVisitor to indicate how clang_visitChildren() proceed.
3893 */
3895 /**
3896 * Terminates the cursor traversal.
3897 */
3899 /**
3900 * Continues the cursor traversal with the next sibling of
3901 * the cursor just visited, without visiting its children.
3902 */
3904 /**
3905 * Recursively traverse the children of this cursor, using
3906 * the same visitor and client data.
3907 */
3910
3911/**
3912 * Visitor invoked for each cursor found by a traversal.
3913 *
3914 * This visitor function will be invoked for each cursor found by
3915 * clang_visitCursorChildren(). Its first argument is the cursor being
3916 * visited, its second argument is the parent visitor for that cursor,
3917 * and its third argument is the client data provided to
3918 * clang_visitCursorChildren().
3919 *
3920 * The visitor should return one of the \c CXChildVisitResult values
3921 * to direct clang_visitCursorChildren().
3922 */
3923typedef enum CXChildVisitResult (*CXCursorVisitor)(CXCursor cursor,
3924 CXCursor parent,
3925 CXClientData client_data);
3926
3927/**
3928 * Visit the children of a particular cursor.
3929 *
3930 * This function visits all the direct children of the given cursor,
3931 * invoking the given \p visitor function with the cursors of each
3932 * visited child. The traversal may be recursive, if the visitor returns
3933 * \c CXChildVisit_Recurse. The traversal may also be ended prematurely, if
3934 * the visitor returns \c CXChildVisit_Break.
3935 *
3936 * \param parent the cursor whose child may be visited. All kinds of
3937 * cursors can be visited, including invalid cursors (which, by
3938 * definition, have no children).
3939 *
3940 * \param visitor the visitor function that will be invoked for each
3941 * child of \p parent.
3942 *
3943 * \param client_data pointer data supplied by the client, which will
3944 * be passed to the visitor each time it is invoked.
3945 *
3946 * \returns a non-zero value if the traversal was terminated
3947 * prematurely by the visitor returning \c CXChildVisit_Break.
3948 */
3950 CXCursorVisitor visitor,
3951 CXClientData client_data);
3952/**
3953 * Visitor invoked for each cursor found by a traversal.
3954 *
3955 * This visitor block will be invoked for each cursor found by
3956 * clang_visitChildrenWithBlock(). Its first argument is the cursor being
3957 * visited, its second argument is the parent visitor for that cursor.
3958 *
3959 * The visitor should return one of the \c CXChildVisitResult values
3960 * to direct clang_visitChildrenWithBlock().
3961 */
3962#if __has_feature(blocks)
3963typedef enum CXChildVisitResult (^CXCursorVisitorBlock)(CXCursor cursor,
3964 CXCursor parent);
3965#else
3966typedef struct _CXChildVisitResult *CXCursorVisitorBlock;
3967#endif
3968
3969/**
3970 * Visits the children of a cursor using the specified block. Behaves
3971 * identically to clang_visitChildren() in all other respects.
3972 */
3973CINDEX_LINKAGE unsigned
3975
3976/**
3977 * @}
3978 */
3979
3980/**
3981 * \defgroup CINDEX_CURSOR_XREF Cross-referencing in the AST
3982 *
3983 * These routines provide the ability to determine references within and
3984 * across translation units, by providing the names of the entities referenced
3985 * by cursors, follow reference cursors to the declarations they reference,
3986 * and associate declarations with their definitions.
3987 *
3988 * @{
3989 */
3990
3991/**
3992 * Retrieve a Unified Symbol Resolution (USR) for the entity referenced
3993 * by the given cursor.
3994 *
3995 * A Unified Symbol Resolution (USR) is a string that identifies a particular
3996 * entity (function, class, variable, etc.) within a program. USRs can be
3997 * compared across translation units to determine, e.g., when references in
3998 * one translation refer to an entity defined in another translation unit.
3999 */
4001
4002/**
4003 * Construct a USR for a specified Objective-C class.
4004 */
4006
4007/**
4008 * Construct a USR for a specified Objective-C category.
4009 */
4011 const char *class_name, const char *category_name);
4012
4013/**
4014 * Construct a USR for a specified Objective-C protocol.
4015 */
4017clang_constructUSR_ObjCProtocol(const char *protocol_name);
4018
4019/**
4020 * Construct a USR for a specified Objective-C instance variable and
4021 * the USR for its containing class.
4022 */
4024 CXString classUSR);
4025
4026/**
4027 * Construct a USR for a specified Objective-C method and
4028 * the USR for its containing class.
4029 */
4031 unsigned isInstanceMethod,
4032 CXString classUSR);
4033
4034/**
4035 * Construct a USR for a specified Objective-C property and the USR
4036 * for its containing class.
4037 */
4039 CXString classUSR);
4040
4041/**
4042 * Retrieve a name for the entity referenced by this cursor.
4043 */
4045
4046/**
4047 * Retrieve a range for a piece that forms the cursors spelling name.
4048 * Most of the times there is only one range for the complete spelling but for
4049 * Objective-C methods and Objective-C message expressions, there are multiple
4050 * pieces for each selector identifier.
4051 *
4052 * \param pieceIndex the index of the spelling name piece. If this is greater
4053 * than the actual number of pieces, it will return a NULL (invalid) range.
4054 *
4055 * \param options Reserved.
4056 */
4058 CXCursor, unsigned pieceIndex, unsigned options);
4059
4060/**
4061 * Opaque pointer representing a policy that controls pretty printing
4062 * for \c clang_getCursorPrettyPrinted.
4063 */
4064typedef void *CXPrintingPolicy;
4065
4066/**
4067 * Properties for the printing policy.
4068 *
4069 * See \c clang::PrintingPolicy for more information.
4070 */
4098
4101
4102/**
4103 * Get a property value for the given printing policy.
4104 */
4105CINDEX_LINKAGE unsigned
4107 enum CXPrintingPolicyProperty Property);
4108
4109/**
4110 * Set a property value for the given printing policy.
4111 */
4112CINDEX_LINKAGE void
4114 enum CXPrintingPolicyProperty Property,
4115 unsigned Value);
4116
4117/**
4118 * Retrieve the default policy for the cursor.
4119 *
4120 * The policy should be released after use with \c
4121 * clang_PrintingPolicy_dispose.
4122 */
4124
4125/**
4126 * Release a printing policy.
4127 */
4129
4130/**
4131 * Pretty print declarations.
4132 *
4133 * \param Cursor The cursor representing a declaration.
4134 *
4135 * \param Policy The policy to control the entities being printed. If
4136 * NULL, a default policy is used.
4137 *
4138 * \returns The pretty printed declaration or the empty string for
4139 * other cursors.
4140 */
4142 CXPrintingPolicy Policy);
4143
4144/**
4145 * Retrieve the display name for the entity referenced by this cursor.
4146 *
4147 * The display name contains extra information that helps identify the cursor,
4148 * such as the parameters of a function or template or the arguments of a
4149 * class template specialization.
4150 */
4152
4153/** For a cursor that is a reference, retrieve a cursor representing the
4154 * entity that it references.
4155 *
4156 * Reference cursors refer to other entities in the AST. For example, an
4157 * Objective-C superclass reference cursor refers to an Objective-C class.
4158 * This function produces the cursor for the Objective-C class from the
4159 * cursor for the superclass reference. If the input cursor is a declaration or
4160 * definition, it returns that declaration or definition unchanged.
4161 * Otherwise, returns the NULL cursor.
4162 */
4164
4165/**
4166 * For a cursor that is either a reference to or a declaration
4167 * of some entity, retrieve a cursor that describes the definition of
4168 * that entity.
4169 *
4170 * Some entities can be declared multiple times within a translation
4171 * unit, but only one of those declarations can also be a
4172 * definition. For example, given:
4173 *
4174 * \code
4175 * int f(int, int);
4176 * int g(int x, int y) { return f(x, y); }
4177 * int f(int a, int b) { return a + b; }
4178 * int f(int, int);
4179 * \endcode
4180 *
4181 * there are three declarations of the function "f", but only the
4182 * second one is a definition. The clang_getCursorDefinition()
4183 * function will take any cursor pointing to a declaration of "f"
4184 * (the first or fourth lines of the example) or a cursor referenced
4185 * that uses "f" (the call to "f' inside "g") and will return a
4186 * declaration cursor pointing to the definition (the second "f"
4187 * declaration).
4188 *
4189 * If given a cursor for which there is no corresponding definition,
4190 * e.g., because there is no definition of that entity within this
4191 * translation unit, returns a NULL cursor.
4192 */
4194
4195/**
4196 * Determine whether the declaration pointed to by this cursor
4197 * is also a definition of that entity.
4198 */
4200
4201/**
4202 * Retrieve the canonical cursor corresponding to the given cursor.
4203 *
4204 * In the C family of languages, many kinds of entities can be declared several
4205 * times within a single translation unit. For example, a structure type can
4206 * be forward-declared (possibly multiple times) and later defined:
4207 *
4208 * \code
4209 * struct X;
4210 * struct X;
4211 * struct X {
4212 * int member;
4213 * };
4214 * \endcode
4215 *
4216 * The declarations and the definition of \c X are represented by three
4217 * different cursors, all of which are declarations of the same underlying
4218 * entity. One of these cursor is considered the "canonical" cursor, which
4219 * is effectively the representative for the underlying entity. One can
4220 * determine if two cursors are declarations of the same underlying entity by
4221 * comparing their canonical cursors.
4222 *
4223 * \returns The canonical cursor for the entity referred to by the given cursor.
4224 */
4226
4227/**
4228 * If the cursor points to a selector identifier in an Objective-C
4229 * method or message expression, this returns the selector index.
4230 *
4231 * After getting a cursor with #clang_getCursor, this can be called to
4232 * determine if the location points to a selector identifier.
4233 *
4234 * \returns The selector index if the cursor is an Objective-C method or message
4235 * expression and the cursor is pointing to a selector identifier, or -1
4236 * otherwise.
4237 */
4239
4240/**
4241 * Given a cursor pointing to a C++ method call or an Objective-C
4242 * message, returns non-zero if the method/message is "dynamic", meaning:
4243 *
4244 * For a C++ method: the call is virtual.
4245 * For an Objective-C message: the receiver is an object instance, not 'super'
4246 * or a specific class.
4247 *
4248 * If the method/message is "static" or the cursor does not point to a
4249 * method/message, it will return zero.
4250 */
4252
4253/**
4254 * Given a cursor pointing to an Objective-C message or property
4255 * reference, or C++ method call, returns the CXType of the receiver.
4256 */
4258
4259/**
4260 * Property attributes for a \c CXCursor_ObjCPropertyDecl.
4261 */
4262typedef enum {
4278
4279/**
4280 * Given a cursor that represents a property declaration, return the
4281 * associated property attributes. The bits are formed from
4282 * \c CXObjCPropertyAttrKind.
4283 *
4284 * \param reserved Reserved for future use, pass 0.
4285 */
4286CINDEX_LINKAGE unsigned
4288
4289/**
4290 * Given a cursor that represents a property declaration, return the
4291 * name of the method that implements the getter.
4292 */
4294
4295/**
4296 * Given a cursor that represents a property declaration, return the
4297 * name of the method that implements the setter, if any.
4298 */
4300
4301/**
4302 * 'Qualifiers' written next to the return and parameter types in
4303 * Objective-C method declarations.
4304 */
4305typedef enum {
4314
4315/**
4316 * Given a cursor that represents an Objective-C method or parameter
4317 * declaration, return the associated Objective-C qualifiers for the return
4318 * type or the parameter respectively. The bits are formed from
4319 * CXObjCDeclQualifierKind.
4320 */
4322
4323/**
4324 * Given a cursor that represents an Objective-C method or property
4325 * declaration, return non-zero if the declaration was affected by "\@optional".
4326 * Returns zero if the cursor is not such a declaration or it is "\@required".
4327 */
4329
4330/**
4331 * Returns non-zero if the given cursor is a variadic function or method.
4332 */
4334
4335/**
4336 * Returns non-zero if the given cursor points to a symbol marked with
4337 * external_source_symbol attribute.
4338 *
4339 * \param language If non-NULL, and the attribute is present, will be set to
4340 * the 'language' string from the attribute.
4341 *
4342 * \param definedIn If non-NULL, and the attribute is present, will be set to
4343 * the 'definedIn' string from the attribute.
4344 *
4345 * \param isGenerated If non-NULL, and the attribute is present, will be set to
4346 * non-zero if the 'generated_declaration' is set in the attribute.
4347 */
4349 CXString *language,
4350 CXString *definedIn,
4351 unsigned *isGenerated);
4352
4353/**
4354 * Given a cursor that represents a declaration, return the associated
4355 * comment's source range. The range may include multiple consecutive comments
4356 * with whitespace in between.
4357 */
4359
4360/**
4361 * Given a cursor that represents a declaration, return the associated
4362 * comment text, including comment markers.
4363 */
4365
4366/**
4367 * Given a cursor that represents a documentable entity (e.g.,
4368 * declaration), return the associated \paragraph; otherwise return the
4369 * first paragraph.
4370 */
4372
4373/**
4374 * @}
4375 */
4376
4377/** \defgroup CINDEX_MANGLE Name Mangling API Functions
4378 *
4379 * @{
4380 */
4381
4382/**
4383 * Retrieve the CXString representing the mangled name of the cursor.
4384 */
4386
4387/**
4388 * Retrieve the CXStrings representing the mangled symbols of the C++
4389 * constructor or destructor at the cursor.
4390 */
4392
4393/**
4394 * Retrieve the CXStrings representing the mangled symbols of the ObjC
4395 * class interface or implementation at the cursor.
4396 */
4398
4399/**
4400 * @}
4401 */
4402
4403/**
4404 * \defgroup CINDEX_MODULE Module introspection
4405 *
4406 * The functions in this group provide access to information about modules.
4407 *
4408 * @{
4409 */
4410
4411typedef void *CXModule;
4412
4413/**
4414 * Given a CXCursor_ModuleImportDecl cursor, return the associated module.
4415 */
4417
4418/**
4419 * Given a CXFile header file, return the module that contains it, if one
4420 * exists.
4421 */
4423
4424/**
4425 * \param Module a module object.
4426 *
4427 * \returns the module file where the provided module object came from.
4428 */
4430
4431/**
4432 * \param Module a module object.
4433 *
4434 * \returns the parent of a sub-module or NULL if the given module is top-level,
4435 * e.g. for 'std.vector' it will return the 'std' module.
4436 */
4438
4439/**
4440 * \param Module a module object.
4441 *
4442 * \returns the name of the module, e.g. for the 'std.vector' sub-module it
4443 * will return "vector".
4444 */
4446
4447/**
4448 * \param Module a module object.
4449 *
4450 * \returns the full name of the module, e.g. "std.vector".
4451 */
4453
4454/**
4455 * \param Module a module object.
4456 *
4457 * \returns non-zero if the module is a system one.
4458 */
4460
4461/**
4462 * \param Module a module object.
4463 *
4464 * \returns the number of top level headers associated with this module.
4465 */
4467 CXModule Module);
4468
4469/**
4470 * \param Module a module object.
4471 *
4472 * \param Index top level header index (zero-based).
4473 *
4474 * \returns the specified top level header associated with the module.
4475 */
4478 unsigned Index);
4479
4480/**
4481 * @}
4482 */
4483
4484/**
4485 * \defgroup CINDEX_CPP C++ AST introspection
4486 *
4487 * The routines in this group provide access information in the ASTs specific
4488 * to C++ language features.
4489 *
4490 * @{
4491 */
4492
4493/**
4494 * Determine if a C++ constructor is a converting constructor.
4495 */
4496CINDEX_LINKAGE unsigned
4498
4499/**
4500 * Determine if a C++ constructor is a copy constructor.
4501 */
4503
4504/**
4505 * Determine if a C++ constructor is the default constructor.
4506 */
4508
4509/**
4510 * Determine if a C++ constructor is a move constructor.
4511 */
4513
4514/**
4515 * Determine if a C++ field is declared 'mutable'.
4516 */
4518
4519/**
4520 * Determine if a C++ method is declared '= default'.
4521 */
4523
4524/**
4525 * Determine if a C++ method is declared '= delete'.
4526 */
4528
4529/**
4530 * Determine if a C++ member function or member function template is
4531 * pure virtual.
4532 */
4534
4535/**
4536 * Determine if a C++ member function or member function template is
4537 * declared 'static'.
4538 */
4540
4541/**
4542 * Determine if a C++ member function or member function template is
4543 * explicitly declared 'virtual' or if it overrides a virtual method from
4544 * one of the base classes.
4545 */
4547
4548/**
4549 * Determine if a C++ member function is a copy-assignment operator,
4550 * returning 1 if such is the case and 0 otherwise.
4551 *
4552 * > A copy-assignment operator `X::operator=` is a non-static,
4553 * > non-template member function of _class_ `X` with exactly one
4554 * > parameter of type `X`, `X&`, `const X&`, `volatile X&` or `const
4555 * > volatile X&`.
4556 *
4557 * That is, for example, the `operator=` in:
4558 *
4559 * class Foo {
4560 * bool operator=(const volatile Foo&);
4561 * };
4562 *
4563 * Is a copy-assignment operator, while the `operator=` in:
4564 *
4565 * class Bar {
4566 * bool operator=(const int&);
4567 * };
4568 *
4569 * Is not.
4570 */
4572
4573/**
4574 * Determine if a C++ member function is a move-assignment operator,
4575 * returning 1 if such is the case and 0 otherwise.
4576 *
4577 * > A move-assignment operator `X::operator=` is a non-static,
4578 * > non-template member function of _class_ `X` with exactly one
4579 * > parameter of type `X&&`, `const X&&`, `volatile X&&` or `const
4580 * > volatile X&&`.
4581 *
4582 * That is, for example, the `operator=` in:
4583 *
4584 * class Foo {
4585 * bool operator=(const volatile Foo&&);
4586 * };
4587 *
4588 * Is a move-assignment operator, while the `operator=` in:
4589 *
4590 * class Bar {
4591 * bool operator=(const int&&);
4592 * };
4593 *
4594 * Is not.
4595 */
4597
4598/**
4599 * Determines if a C++ constructor or conversion function was declared
4600 * explicit, returning 1 if such is the case and 0 otherwise.
4601 *
4602 * Constructors or conversion functions are declared explicit through
4603 * the use of the explicit specifier.
4604 *
4605 * For example, the following constructor and conversion function are
4606 * not explicit as they lack the explicit specifier:
4607 *
4608 * class Foo {
4609 * Foo();
4610 * operator int();
4611 * };
4612 *
4613 * While the following constructor and conversion function are
4614 * explicit as they are declared with the explicit specifier.
4615 *
4616 * class Foo {
4617 * explicit Foo();
4618 * explicit operator int();
4619 * };
4620 *
4621 * This function will return 0 when given a cursor pointing to one of
4622 * the former declarations and it will return 1 for a cursor pointing
4623 * to the latter declarations.
4624 *
4625 * The explicit specifier allows the user to specify a
4626 * conditional compile-time expression whose value decides
4627 * whether the marked element is explicit or not.
4628 *
4629 * For example:
4630 *
4631 * constexpr bool foo(int i) { return i % 2 == 0; }
4632 *
4633 * class Foo {
4634 * explicit(foo(1)) Foo();
4635 * explicit(foo(2)) operator int();
4636 * }
4637 *
4638 * This function will return 0 for the constructor and 1 for
4639 * the conversion function.
4640 */
4642
4643/**
4644 * Determine if a C++ record is abstract, i.e. whether a class or struct
4645 * has a pure virtual member function.
4646 */
4648
4649/**
4650 * Determine if an enum declaration refers to a scoped enum.
4651 */
4653
4654/**
4655 * Determine if a C++ member function or member function template is
4656 * declared 'const'.
4657 */
4659
4660/**
4661 * Given a cursor that represents a template, determine
4662 * the cursor kind of the specializations would be generated by instantiating
4663 * the template.
4664 *
4665 * This routine can be used to determine what flavor of function template,
4666 * class template, or class template partial specialization is stored in the
4667 * cursor. For example, it can describe whether a class template cursor is
4668 * declared with "struct", "class" or "union".
4669 *
4670 * \param C The cursor to query. This cursor should represent a template
4671 * declaration.
4672 *
4673 * \returns The cursor kind of the specializations that would be generated
4674 * by instantiating the template \p C. If \p C is not a template, returns
4675 * \c CXCursor_NoDeclFound.
4676 */
4678
4679/**
4680 * Given a cursor that may represent a specialization or instantiation
4681 * of a template, retrieve the cursor that represents the template that it
4682 * specializes or from which it was instantiated.
4683 *
4684 * This routine determines the template involved both for explicit
4685 * specializations of templates and for implicit instantiations of the template,
4686 * both of which are referred to as "specializations". For a class template
4687 * specialization (e.g., \c std::vector<bool>), this routine will return
4688 * either the primary template (\c std::vector) or, if the specialization was
4689 * instantiated from a class template partial specialization, the class template
4690 * partial specialization. For a class template partial specialization and a
4691 * function template specialization (including instantiations), this
4692 * this routine will return the specialized template.
4693 *
4694 * For members of a class template (e.g., member functions, member classes, or
4695 * static data members), returns the specialized or instantiated member.
4696 * Although not strictly "templates" in the C++ language, members of class
4697 * templates have the same notions of specializations and instantiations that
4698 * templates do, so this routine treats them similarly.
4699 *
4700 * \param C A cursor that may be a specialization of a template or a member
4701 * of a template.
4702 *
4703 * \returns If the given cursor is a specialization or instantiation of a
4704 * template or a member thereof, the template or member that it specializes or
4705 * from which it was instantiated. Otherwise, returns a NULL cursor.
4706 */
4708
4709/**
4710 * Given a cursor that references something else, return the source range
4711 * covering that reference.
4712 *
4713 * \param C A cursor pointing to a member reference, a declaration reference, or
4714 * an operator call.
4715 * \param NameFlags A bitset with three independent flags:
4716 * CXNameRange_WantQualifier, CXNameRange_WantTemplateArgs, and
4717 * CXNameRange_WantSinglePiece.
4718 * \param PieceIndex For contiguous names or when passing the flag
4719 * CXNameRange_WantSinglePiece, only one piece with index 0 is
4720 * available. When the CXNameRange_WantSinglePiece flag is not passed for a
4721 * non-contiguous names, this index can be used to retrieve the individual
4722 * pieces of the name. See also CXNameRange_WantSinglePiece.
4723 *
4724 * \returns The piece of the name pointed to by the given cursor. If there is no
4725 * name, or if the PieceIndex is out-of-range, a null-cursor will be returned.
4726 */
4728 CXCursor C, unsigned NameFlags, unsigned PieceIndex);
4729
4731 /**
4732 * Include the nested-name-specifier, e.g. Foo:: in x.Foo::y, in the
4733 * range.
4734 */
4736
4737 /**
4738 * Include the explicit template arguments, e.g. <int> in x.f<int>,
4739 * in the range.
4740 */
4742
4743 /**
4744 * If the name is non-contiguous, return the full spanning range.
4745 *
4746 * Non-contiguous names occur in Objective-C when a selector with two or more
4747 * parameters is used, or in C++ when using an operator:
4748 * \code
4749 * [object doSomething:here withValue:there]; // Objective-C
4750 * return some_vector[1]; // C++
4751 * \endcode
4752 */
4755
4756/**
4757 * @}
4758 */
4759
4760/**
4761 * \defgroup CINDEX_LEX Token extraction and manipulation
4762 *
4763 * The routines in this group provide access to the tokens within a
4764 * translation unit, along with a semantic mapping of those tokens to
4765 * their corresponding cursors.
4766 *
4767 * @{
4768 */
4769
4770/**
4771 * Describes a kind of token.
4772 */
4773typedef enum CXTokenKind {
4774 /**
4775 * A token that contains some kind of punctuation.
4776 */
4778
4779 /**
4780 * A language keyword.
4781 */
4783
4784 /**
4785 * An identifier (that is not a keyword).
4786 */
4788
4789 /**
4790 * A numeric, string, or character literal.
4791 */
4793
4794 /**
4795 * A comment.
4796 */
4799
4800/**
4801 * Describes a single preprocessing token.
4802 */
4803typedef struct {
4804 unsigned int_data[4];
4806} CXToken;
4807
4808/**
4809 * Get the raw lexical token starting with the given location.
4810 *
4811 * \param TU the translation unit whose text is being tokenized.
4812 *
4813 * \param Location the source location with which the token starts.
4814 *
4815 * \returns The token starting with the given location or NULL if no such token
4816 * exist. The returned pointer must be freed with clang_disposeTokens before the
4817 * translation unit is destroyed.
4818 */
4820 CXSourceLocation Location);
4821
4822/**
4823 * Determine the kind of the given token.
4824 */
4826
4827/**
4828 * Determine the spelling of the given token.
4829 *
4830 * The spelling of a token is the textual representation of that token, e.g.,
4831 * the text of an identifier or keyword.
4832 */
4834
4835/**
4836 * Retrieve the source location of the given token.
4837 */
4839 CXToken);
4840
4841/**
4842 * Retrieve a source range that covers the given token.
4843 */
4845
4846/**
4847 * Tokenize the source code described by the given range into raw
4848 * lexical tokens.
4849 *
4850 * \param TU the translation unit whose text is being tokenized.
4851 *
4852 * \param Range the source range in which text should be tokenized. All of the
4853 * tokens produced by tokenization will fall within this source range,
4854 *
4855 * \param Tokens this pointer will be set to point to the array of tokens
4856 * that occur within the given source range. The returned pointer must be
4857 * freed with clang_disposeTokens() before the translation unit is destroyed.
4858 *
4859 * \param NumTokens will be set to the number of tokens in the \c *Tokens
4860 * array.
4861 *
4862 */
4864 CXToken **Tokens, unsigned *NumTokens);
4865
4866/**
4867 * Annotate the given set of tokens by providing cursors for each token
4868 * that can be mapped to a specific entity within the abstract syntax tree.
4869 *
4870 * This token-annotation routine is equivalent to invoking
4871 * clang_getCursor() for the source locations of each of the
4872 * tokens. The cursors provided are filtered, so that only those
4873 * cursors that have a direct correspondence to the token are
4874 * accepted. For example, given a function call \c f(x),
4875 * clang_getCursor() would provide the following cursors:
4876 *
4877 * * when the cursor is over the 'f', a DeclRefExpr cursor referring to 'f'.
4878 * * when the cursor is over the '(' or the ')', a CallExpr referring to 'f'.
4879 * * when the cursor is over the 'x', a DeclRefExpr cursor referring to 'x'.
4880 *
4881 * Only the first and last of these cursors will occur within the
4882 * annotate, since the tokens "f" and "x' directly refer to a function
4883 * and a variable, respectively, but the parentheses are just a small
4884 * part of the full syntax of the function call expression, which is
4885 * not provided as an annotation.
4886 *
4887 * \param TU the translation unit that owns the given tokens.
4888 *
4889 * \param Tokens the set of tokens to annotate.
4890 *
4891 * \param NumTokens the number of tokens in \p Tokens.
4892 *
4893 * \param Cursors an array of \p NumTokens cursors, whose contents will be
4894 * replaced with the cursors corresponding to each token.
4895 */
4897 unsigned NumTokens, CXCursor *Cursors);
4898
4899/**
4900 * Free the given set of tokens.
4901 */
4903 unsigned NumTokens);
4904
4905/**
4906 * @}
4907 */
4908
4909/**
4910 * \defgroup CINDEX_DEBUG Debugging facilities
4911 *
4912 * These routines are used for testing and debugging, only, and should not
4913 * be relied upon.
4914 *
4915 * @{
4916 */
4917
4918/* for debug/testing */
4921 CXCursor, const char **startBuf, const char **endBuf, unsigned *startLine,
4922 unsigned *startColumn, unsigned *endLine, unsigned *endColumn);
4924CINDEX_LINKAGE void clang_executeOnThread(void (*fn)(void *), void *user_data,
4925 unsigned stack_size);
4926
4927/**
4928 * @}
4929 */
4930
4931/**
4932 * \defgroup CINDEX_CODE_COMPLET Code completion
4933 *
4934 * Code completion involves taking an (incomplete) source file, along with
4935 * knowledge of where the user is actively editing that file, and suggesting
4936 * syntactically- and semantically-valid constructs that the user might want to
4937 * use at that particular point in the source code. These data structures and
4938 * routines provide support for code completion.
4939 *
4940 * @{
4941 */
4942
4943/**
4944 * A semantic string that describes a code-completion result.
4945 *
4946 * A semantic string that describes the formatting of a code-completion
4947 * result as a single "template" of text that should be inserted into the
4948 * source buffer when a particular code-completion result is selected.
4949 * Each semantic string is made up of some number of "chunks", each of which
4950 * contains some text along with a description of what that text means, e.g.,
4951 * the name of the entity being referenced, whether the text chunk is part of
4952 * the template, or whether it is a "placeholder" that the user should replace
4953 * with actual code,of a specific kind. See \c CXCompletionChunkKind for a
4954 * description of the different kinds of chunks.
4955 */
4957
4958/**
4959 * A single result of code completion.
4960 */
4961typedef struct {
4962 /**
4963 * The kind of entity that this completion refers to.
4964 *
4965 * The cursor kind will be a macro, keyword, or a declaration (one of the
4966 * *Decl cursor kinds), describing the entity that the completion is
4967 * referring to.
4968 *
4969 * \todo In the future, we would like to provide a full cursor, to allow
4970 * the client to extract additional information from declaration.
4971 */
4973
4974 /**
4975 * The code-completion string that describes how to insert this
4976 * code-completion result into the editing buffer.
4977 */
4980
4981/**
4982 * Describes a single piece of text within a code-completion string.
4983 *
4984 * Each "chunk" within a code-completion string (\c CXCompletionString) is
4985 * either a piece of text with a specific "kind" that describes how that text
4986 * should be interpreted by the client or is another completion string.
4987 */
4989 /**
4990 * A code-completion string that describes "optional" text that
4991 * could be a part of the template (but is not required).
4992 *
4993 * The Optional chunk is the only kind of chunk that has a code-completion
4994 * string for its representation, which is accessible via
4995 * \c clang_getCompletionChunkCompletionString(). The code-completion string
4996 * describes an additional part of the template that is completely optional.
4997 * For example, optional chunks can be used to describe the placeholders for
4998 * arguments that match up with defaulted function parameters, e.g. given:
4999 *
5000 * \code
5001 * void f(int x, float y = 3.14, double z = 2.71828);
5002 * \endcode
5003 *
5004 * The code-completion string for this function would contain:
5005 * - a TypedText chunk for "f".
5006 * - a LeftParen chunk for "(".
5007 * - a Placeholder chunk for "int x"
5008 * - an Optional chunk containing the remaining defaulted arguments, e.g.,
5009 * - a Comma chunk for ","
5010 * - a Placeholder chunk for "float y"
5011 * - an Optional chunk containing the last defaulted argument:
5012 * - a Comma chunk for ","
5013 * - a Placeholder chunk for "double z"
5014 * - a RightParen chunk for ")"
5015 *
5016 * There are many ways to handle Optional chunks. Two simple approaches are:
5017 * - Completely ignore optional chunks, in which case the template for the
5018 * function "f" would only include the first parameter ("int x").
5019 * - Fully expand all optional chunks, in which case the template for the
5020 * function "f" would have all of the parameters.
5021 */
5023 /**
5024 * Text that a user would be expected to type to get this
5025 * code-completion result.
5026 *
5027 * There will be exactly one "typed text" chunk in a semantic string, which
5028 * will typically provide the spelling of a keyword or the name of a
5029 * declaration that could be used at the current code point. Clients are
5030 * expected to filter the code-completion results based on the text in this
5031 * chunk.
5032 */
5034 /**
5035 * Text that should be inserted as part of a code-completion result.
5036 *
5037 * A "text" chunk represents text that is part of the template to be
5038 * inserted into user code should this particular code-completion result
5039 * be selected.
5040 */
5042 /**
5043 * Placeholder text that should be replaced by the user.
5044 *
5045 * A "placeholder" chunk marks a place where the user should insert text
5046 * into the code-completion template. For example, placeholders might mark
5047 * the function parameters for a function declaration, to indicate that the
5048 * user should provide arguments for each of those parameters. The actual
5049 * text in a placeholder is a suggestion for the text to display before
5050 * the user replaces the placeholder with real code.
5051 */
5053 /**
5054 * Informative text that should be displayed but never inserted as
5055 * part of the template.
5056 *
5057 * An "informative" chunk contains annotations that can be displayed to
5058 * help the user decide whether a particular code-completion result is the
5059 * right option, but which is not part of the actual template to be inserted
5060 * by code completion.
5061 */
5063 /**
5064 * Text that describes the current parameter when code-completion is
5065 * referring to function call, message send, or template specialization.
5066 *
5067 * A "current parameter" chunk occurs when code-completion is providing
5068 * information about a parameter corresponding to the argument at the
5069 * code-completion point. For example, given a function
5070 *
5071 * \code
5072 * int add(int x, int y);
5073 * \endcode
5074 *
5075 * and the source code \c add(, where the code-completion point is after the
5076 * "(", the code-completion string will contain a "current parameter" chunk
5077 * for "int x", indicating that the current argument will initialize that
5078 * parameter. After typing further, to \c add(17, (where the code-completion
5079 * point is after the ","), the code-completion string will contain a
5080 * "current parameter" chunk to "int y".
5081 */
5083 /**
5084 * A left parenthesis ('('), used to initiate a function call or
5085 * signal the beginning of a function parameter list.
5086 */
5088 /**
5089 * A right parenthesis (')'), used to finish a function call or
5090 * signal the end of a function parameter list.
5091 */
5093 /**
5094 * A left bracket ('[').
5095 */
5097 /**
5098 * A right bracket (']').
5099 */
5101 /**
5102 * A left brace ('{').
5103 */
5105 /**
5106 * A right brace ('}').
5107 */
5109 /**
5110 * A left angle bracket ('<').
5111 */
5113 /**
5114 * A right angle bracket ('>').
5115 */
5117 /**
5118 * A comma separator (',').
5119 */
5121 /**
5122 * Text that specifies the result type of a given result.
5123 *
5124 * This special kind of informative chunk is not meant to be inserted into
5125 * the text buffer. Rather, it is meant to illustrate the type that an
5126 * expression using the given completion string would have.
5127 */
5129 /**
5130 * A colon (':').
5131 */
5133 /**
5134 * A semicolon (';').
5135 */
5137 /**
5138 * An '=' sign.
5139 */
5141 /**
5142 * Horizontal space (' ').
5143 */
5145 /**
5146 * Vertical space ('\\n'), after which it is generally a good idea to
5147 * perform indentation.
5148 */
5151
5152/**
5153 * Determine the kind of a particular chunk within a completion string.
5154 *
5155 * \param completion_string the completion string to query.
5156 *
5157 * \param chunk_number the 0-based index of the chunk in the completion string.
5158 *
5159 * \returns the kind of the chunk at the index \c chunk_number.
5160 */