clang-tools 20.0.0git
ExprSequence.cpp
Go to the documentation of this file.
1//===---------- ExprSequence.cpp - clang-tidy -----------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "ExprSequence.h"
10#include "clang/AST/ParentMapContext.h"
11#include "llvm/ADT/SmallVector.h"
12#include <optional>
13
14namespace clang::tidy::utils {
15
16// Returns the Stmt nodes that are parents of 'S', skipping any potential
17// intermediate non-Stmt nodes.
18//
19// In almost all cases, this function returns a single parent or no parents at
20// all.
21//
22// The case that a Stmt has multiple parents is rare but does actually occur in
23// the parts of the AST that we're interested in. Specifically, InitListExpr
24// nodes cause ASTContext::getParent() to return multiple parents for certain
25// nodes in their subtree because RecursiveASTVisitor visits both the syntactic
26// and semantic forms of InitListExpr, and the parent-child relationships are
27// different between the two forms.
28static SmallVector<const Stmt *, 1> getParentStmts(const Stmt *S,
29 ASTContext *Context) {
30 SmallVector<const Stmt *, 1> Result;
31
32 TraversalKindScope RAII(*Context, TK_AsIs);
33 DynTypedNodeList Parents = Context->getParents(*S);
34
35 SmallVector<DynTypedNode, 1> NodesToProcess(Parents.begin(), Parents.end());
36
37 while (!NodesToProcess.empty()) {
38 DynTypedNode Node = NodesToProcess.back();
39 NodesToProcess.pop_back();
40
41 if (const auto *S = Node.get<Stmt>()) {
42 Result.push_back(S);
43 } else {
44 Parents = Context->getParents(Node);
45 NodesToProcess.append(Parents.begin(), Parents.end());
46 }
47 }
48
49 return Result;
50}
51
52namespace {
53
54bool isDescendantOrEqual(const Stmt *Descendant, const Stmt *Ancestor,
55 ASTContext *Context) {
56 if (Descendant == Ancestor)
57 return true;
58 return llvm::any_of(getParentStmts(Descendant, Context),
59 [Ancestor, Context](const Stmt *Parent) {
60 return isDescendantOrEqual(Parent, Ancestor, Context);
61 });
62}
63
64bool isDescendantOfArgs(const Stmt *Descendant, const CallExpr *Call,
65 ASTContext *Context) {
66 return llvm::any_of(Call->arguments(),
67 [Descendant, Context](const Expr *Arg) {
68 return isDescendantOrEqual(Descendant, Arg, Context);
69 });
70}
71
72llvm::SmallVector<const InitListExpr *>
73getAllInitListForms(const InitListExpr *InitList) {
74 llvm::SmallVector<const InitListExpr *> result = {InitList};
75 if (const InitListExpr *AltForm = InitList->getSyntacticForm())
76 result.push_back(AltForm);
77 if (const InitListExpr *AltForm = InitList->getSemanticForm())
78 result.push_back(AltForm);
79 return result;
80}
81
82} // namespace
83
84ExprSequence::ExprSequence(const CFG *TheCFG, const Stmt *Root,
85 ASTContext *TheContext)
86 : Context(TheContext), Root(Root) {
87 for (const auto &SyntheticStmt : TheCFG->synthetic_stmts()) {
88 SyntheticStmtSourceMap[SyntheticStmt.first] = SyntheticStmt.second;
89 }
90}
91
92bool ExprSequence::inSequence(const Stmt *Before, const Stmt *After) const {
93 Before = resolveSyntheticStmt(Before);
94 After = resolveSyntheticStmt(After);
95
96 // If 'After' is in the subtree of the siblings that follow 'Before' in the
97 // chain of successors, we know that 'After' is sequenced after 'Before'.
98 for (const Stmt *Successor = getSequenceSuccessor(Before); Successor;
99 Successor = getSequenceSuccessor(Successor)) {
100 if (isDescendantOrEqual(After, Successor, Context))
101 return true;
102 }
103
104 SmallVector<const Stmt *, 1> BeforeParents = getParentStmts(Before, Context);
105
106 // Since C++17, the callee of a call expression is guaranteed to be sequenced
107 // before all of the arguments.
108 // We handle this as a special case rather than using the general
109 // `getSequenceSuccessor` logic above because the callee expression doesn't
110 // have an unambiguous successor; the order in which arguments are evaluated
111 // is indeterminate.
112 for (const Stmt *Parent : BeforeParents) {
113 // Special case: If the callee is a `MemberExpr` with a `DeclRefExpr` as its
114 // base, we consider it to be sequenced _after_ the arguments. This is
115 // because the variable referenced in the base will only actually be
116 // accessed when the call happens, i.e. once all of the arguments have been
117 // evaluated. This has no basis in the C++ standard, but it reflects actual
118 // behavior that is relevant to a use-after-move scenario:
119 //
120 // ```
121 // a.bar(consumeA(std::move(a));
122 // ```
123 //
124 // In this example, we end up accessing `a` after it has been moved from,
125 // even though nominally the callee `a.bar` is evaluated before the argument
126 // `consumeA(std::move(a))`. Note that this is not specific to C++17, so
127 // we implement this logic unconditionally.
128 if (const auto *Call = dyn_cast<CXXMemberCallExpr>(Parent)) {
129 if (is_contained(Call->arguments(), Before) &&
130 isa<DeclRefExpr>(
131 Call->getImplicitObjectArgument()->IgnoreParenImpCasts()) &&
132 isDescendantOrEqual(After, Call->getImplicitObjectArgument(),
133 Context))
134 return true;
135
136 // We need this additional early exit so that we don't fall through to the
137 // more general logic below.
138 if (const auto *Member = dyn_cast<MemberExpr>(Before);
139 Member && Call->getCallee() == Member &&
140 isa<DeclRefExpr>(Member->getBase()->IgnoreParenImpCasts()) &&
141 isDescendantOfArgs(After, Call, Context))
142 return false;
143 }
144
145 if (!Context->getLangOpts().CPlusPlus17)
146 continue;
147
148 if (const auto *Call = dyn_cast<CallExpr>(Parent);
149 Call && Call->getCallee() == Before &&
150 isDescendantOfArgs(After, Call, Context))
151 return true;
152 }
153
154 // If 'After' is a parent of 'Before' or is sequenced after one of these
155 // parents, we know that it is sequenced after 'Before'.
156 for (const Stmt *Parent : BeforeParents) {
157 if (Parent == After || inSequence(Parent, After))
158 return true;
159 }
160
161 return false;
162}
163
164bool ExprSequence::potentiallyAfter(const Stmt *After,
165 const Stmt *Before) const {
166 return !inSequence(After, Before);
167}
168
169const Stmt *ExprSequence::getSequenceSuccessor(const Stmt *S) const {
170 for (const Stmt *Parent : getParentStmts(S, Context)) {
171 // If a statement has multiple parents, make sure we're using the parent
172 // that lies within the sub-tree under Root.
173 if (!isDescendantOrEqual(Parent, Root, Context))
174 continue;
175
176 if (const auto *BO = dyn_cast<BinaryOperator>(Parent)) {
177 // Comma operator: Right-hand side is sequenced after the left-hand side.
178 if (BO->getLHS() == S && BO->getOpcode() == BO_Comma)
179 return BO->getRHS();
180 } else if (const auto *InitList = dyn_cast<InitListExpr>(Parent)) {
181 // Initializer list: Each initializer clause is sequenced after the
182 // clauses that precede it.
183 for (const InitListExpr *Form : getAllInitListForms(InitList)) {
184 for (unsigned I = 1; I < Form->getNumInits(); ++I) {
185 if (Form->getInit(I - 1) == S) {
186 return Form->getInit(I);
187 }
188 }
189 }
190 } else if (const auto *ConstructExpr = dyn_cast<CXXConstructExpr>(Parent)) {
191 // Constructor arguments are sequenced if the constructor call is written
192 // as list-initialization.
193 if (ConstructExpr->isListInitialization()) {
194 for (unsigned I = 1; I < ConstructExpr->getNumArgs(); ++I) {
195 if (ConstructExpr->getArg(I - 1) == S) {
196 return ConstructExpr->getArg(I);
197 }
198 }
199 }
200 } else if (const auto *Compound = dyn_cast<CompoundStmt>(Parent)) {
201 // Compound statement: Each sub-statement is sequenced after the
202 // statements that precede it.
203 const Stmt *Previous = nullptr;
204 for (const auto *Child : Compound->body()) {
205 if (Previous == S)
206 return Child;
207 Previous = Child;
208 }
209 } else if (const auto *TheDeclStmt = dyn_cast<DeclStmt>(Parent)) {
210 // Declaration: Every initializer expression is sequenced after the
211 // initializer expressions that precede it.
212 const Expr *PreviousInit = nullptr;
213 for (const Decl *TheDecl : TheDeclStmt->decls()) {
214 if (const auto *TheVarDecl = dyn_cast<VarDecl>(TheDecl)) {
215 if (const Expr *Init = TheVarDecl->getInit()) {
216 if (PreviousInit == S)
217 return Init;
218 PreviousInit = Init;
219 }
220 }
221 }
222 } else if (const auto *ForRange = dyn_cast<CXXForRangeStmt>(Parent)) {
223 // Range-based for: Loop variable declaration is sequenced before the
224 // body. (We need this rule because these get placed in the same
225 // CFGBlock.)
226 if (S == ForRange->getLoopVarStmt())
227 return ForRange->getBody();
228 } else if (const auto *TheIfStmt = dyn_cast<IfStmt>(Parent)) {
229 // If statement:
230 // - Sequence init statement before variable declaration, if present;
231 // before condition evaluation, otherwise.
232 // - Sequence variable declaration (along with the expression used to
233 // initialize it) before the evaluation of the condition.
234 if (S == TheIfStmt->getInit()) {
235 if (TheIfStmt->getConditionVariableDeclStmt() != nullptr)
236 return TheIfStmt->getConditionVariableDeclStmt();
237 return TheIfStmt->getCond();
238 }
239 if (S == TheIfStmt->getConditionVariableDeclStmt())
240 return TheIfStmt->getCond();
241 } else if (const auto *TheSwitchStmt = dyn_cast<SwitchStmt>(Parent)) {
242 // Ditto for switch statements.
243 if (S == TheSwitchStmt->getInit()) {
244 if (TheSwitchStmt->getConditionVariableDeclStmt() != nullptr)
245 return TheSwitchStmt->getConditionVariableDeclStmt();
246 return TheSwitchStmt->getCond();
247 }
248 if (S == TheSwitchStmt->getConditionVariableDeclStmt())
249 return TheSwitchStmt->getCond();
250 } else if (const auto *TheWhileStmt = dyn_cast<WhileStmt>(Parent)) {
251 // While statement: Sequence variable declaration (along with the
252 // expression used to initialize it) before the evaluation of the
253 // condition.
254 if (S == TheWhileStmt->getConditionVariableDeclStmt())
255 return TheWhileStmt->getCond();
256 }
257 }
258
259 return nullptr;
260}
261
262const Stmt *ExprSequence::resolveSyntheticStmt(const Stmt *S) const {
263 if (SyntheticStmtSourceMap.count(S))
264 return SyntheticStmtSourceMap.lookup(S);
265 return S;
266}
267
268StmtToBlockMap::StmtToBlockMap(const CFG *TheCFG, ASTContext *TheContext)
269 : Context(TheContext) {
270 for (const auto *B : *TheCFG) {
271 for (const auto &Elem : *B) {
272 if (std::optional<CFGStmt> S = Elem.getAs<CFGStmt>())
273 Map[S->getStmt()] = B;
274 }
275 }
276}
277
278const CFGBlock *StmtToBlockMap::blockContainingStmt(const Stmt *S) const {
279 while (!Map.count(S)) {
280 SmallVector<const Stmt *, 1> Parents = getParentStmts(S, Context);
281 if (Parents.empty())
282 return nullptr;
283 S = Parents[0];
284 }
285
286 return Map.lookup(S);
287}
288
289} // namespace clang::tidy::utils
const FunctionDecl * Decl
ASTNode Root
Definition: DumpAST.cpp:343
const Decl * TheDecl
const Node * Parent
::clang::DynTypedNode Node
bool potentiallyAfter(const Stmt *After, const Stmt *Before) const
Returns whether After can potentially be evaluated after Before.
ExprSequence(const CFG *TheCFG, const Stmt *Root, ASTContext *TheContext)
Initializes this ExprSequence with sequence information for the given CFG.
bool inSequence(const Stmt *Before, const Stmt *After) const
Returns whether Before is sequenced before After.
StmtToBlockMap(const CFG *TheCFG, ASTContext *TheContext)
Initializes the map for the given CFG.
const CFGBlock * blockContainingStmt(const Stmt *S) const
Returns the block that S is contained in.
static SmallVector< const Stmt *, 1 > getParentStmts(const Stmt *S, ASTContext *Context)