clang  7.0.0svn
Driver.cpp
Go to the documentation of this file.
1 //===--- Driver.cpp - Clang GCC Compatible Driver -------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "clang/Driver/Driver.h"
11 #include "InputInfo.h"
12 #include "ToolChains/AMDGPU.h"
13 #include "ToolChains/AVR.h"
14 #include "ToolChains/Ananas.h"
15 #include "ToolChains/BareMetal.h"
16 #include "ToolChains/Clang.h"
17 #include "ToolChains/CloudABI.h"
18 #include "ToolChains/Contiki.h"
20 #include "ToolChains/Cuda.h"
21 #include "ToolChains/Darwin.h"
22 #include "ToolChains/DragonFly.h"
23 #include "ToolChains/FreeBSD.h"
24 #include "ToolChains/Fuchsia.h"
25 #include "ToolChains/Gnu.h"
26 #include "ToolChains/HIP.h"
27 #include "ToolChains/Haiku.h"
28 #include "ToolChains/Hexagon.h"
29 #include "ToolChains/Lanai.h"
30 #include "ToolChains/Linux.h"
31 #include "ToolChains/MSVC.h"
32 #include "ToolChains/MinGW.h"
33 #include "ToolChains/Minix.h"
34 #include "ToolChains/MipsLinux.h"
35 #include "ToolChains/Myriad.h"
36 #include "ToolChains/NaCl.h"
37 #include "ToolChains/NetBSD.h"
38 #include "ToolChains/OpenBSD.h"
39 #include "ToolChains/PS4CPU.h"
40 #include "ToolChains/Solaris.h"
41 #include "ToolChains/TCE.h"
42 #include "ToolChains/WebAssembly.h"
43 #include "ToolChains/XCore.h"
44 #include "clang/Basic/Version.h"
46 #include "clang/Config/config.h"
47 #include "clang/Driver/Action.h"
50 #include "clang/Driver/Job.h"
51 #include "clang/Driver/Options.h"
53 #include "clang/Driver/Tool.h"
54 #include "clang/Driver/ToolChain.h"
55 #include "llvm/ADT/ArrayRef.h"
56 #include "llvm/ADT/STLExtras.h"
57 #include "llvm/ADT/SmallSet.h"
58 #include "llvm/ADT/StringExtras.h"
59 #include "llvm/ADT/StringSet.h"
60 #include "llvm/ADT/StringSwitch.h"
61 #include "llvm/Config/llvm-config.h"
62 #include "llvm/Option/Arg.h"
63 #include "llvm/Option/ArgList.h"
64 #include "llvm/Option/OptSpecifier.h"
65 #include "llvm/Option/OptTable.h"
66 #include "llvm/Option/Option.h"
67 #include "llvm/Support/CommandLine.h"
68 #include "llvm/Support/ErrorHandling.h"
69 #include "llvm/Support/FileSystem.h"
70 #include "llvm/Support/Path.h"
71 #include "llvm/Support/PrettyStackTrace.h"
72 #include "llvm/Support/Process.h"
73 #include "llvm/Support/Program.h"
74 #include "llvm/Support/StringSaver.h"
75 #include "llvm/Support/TargetRegistry.h"
76 #include "llvm/Support/raw_ostream.h"
77 #include <map>
78 #include <memory>
79 #include <utility>
80 #if LLVM_ON_UNIX
81 #include <unistd.h> // getpid
82 #endif
83 
84 using namespace clang::driver;
85 using namespace clang;
86 using namespace llvm::opt;
87 
88 Driver::Driver(StringRef ClangExecutable, StringRef TargetTriple,
89  DiagnosticsEngine &Diags,
91  : Opts(createDriverOptTable()), Diags(Diags), VFS(std::move(VFS)),
92  Mode(GCCMode), SaveTemps(SaveTempsNone), BitcodeEmbed(EmbedNone),
93  LTOMode(LTOK_None), ClangExecutable(ClangExecutable),
94  SysRoot(DEFAULT_SYSROOT), DriverTitle("clang LLVM compiler"),
95  CCPrintOptionsFilename(nullptr), CCPrintHeadersFilename(nullptr),
96  CCLogDiagnosticsFilename(nullptr), CCCPrintBindings(false),
97  CCPrintOptions(false), CCPrintHeaders(false), CCLogDiagnostics(false),
98  CCGenDiagnostics(false), TargetTriple(TargetTriple),
99  CCCGenericGCCName(""), Saver(Alloc), CheckInputsExist(true),
100  CCCUsePCH(true), GenReproducer(false),
101  SuppressMissingInputWarning(false) {
102 
103  // Provide a sane fallback if no VFS is specified.
104  if (!this->VFS)
105  this->VFS = vfs::getRealFileSystem();
106 
107  Name = llvm::sys::path::filename(ClangExecutable);
108  Dir = llvm::sys::path::parent_path(ClangExecutable);
109  InstalledDir = Dir; // Provide a sensible default installed dir.
110 
111 #if defined(CLANG_CONFIG_FILE_SYSTEM_DIR)
112  SystemConfigDir = CLANG_CONFIG_FILE_SYSTEM_DIR;
113 #endif
114 #if defined(CLANG_CONFIG_FILE_USER_DIR)
115  UserConfigDir = CLANG_CONFIG_FILE_USER_DIR;
116 #endif
117 
118  // Compute the path to the resource directory.
119  StringRef ClangResourceDir(CLANG_RESOURCE_DIR);
121  if (ClangResourceDir != "") {
122  llvm::sys::path::append(P, ClangResourceDir);
123  } else {
124  StringRef ClangLibdirSuffix(CLANG_LIBDIR_SUFFIX);
125  P = llvm::sys::path::parent_path(Dir);
126  llvm::sys::path::append(P, Twine("lib") + ClangLibdirSuffix, "clang",
127  CLANG_VERSION_STRING);
128  }
129  ResourceDir = P.str();
130 }
131 
132 void Driver::ParseDriverMode(StringRef ProgramName,
133  ArrayRef<const char *> Args) {
134  if (ClangNameParts.isEmpty())
136  setDriverModeFromOption(ClangNameParts.DriverMode);
137 
138  for (const char *ArgPtr : Args) {
139  // Ignore nullptrs, they are the response file's EOL markers.
140  if (ArgPtr == nullptr)
141  continue;
142  const StringRef Arg = ArgPtr;
143  setDriverModeFromOption(Arg);
144  }
145 }
146 
147 void Driver::setDriverModeFromOption(StringRef Opt) {
148  const std::string OptName =
149  getOpts().getOption(options::OPT_driver_mode).getPrefixedName();
150  if (!Opt.startswith(OptName))
151  return;
152  StringRef Value = Opt.drop_front(OptName.size());
153 
154  if (auto M = llvm::StringSwitch<llvm::Optional<DriverMode>>(Value)
155  .Case("gcc", GCCMode)
156  .Case("g++", GXXMode)
157  .Case("cpp", CPPMode)
158  .Case("cl", CLMode)
159  .Default(None))
160  Mode = *M;
161  else
162  Diag(diag::err_drv_unsupported_option_argument) << OptName << Value;
163 }
164 
166  bool &ContainsError) {
167  llvm::PrettyStackTraceString CrashInfo("Command line argument parsing");
168  ContainsError = false;
169 
170  unsigned IncludedFlagsBitmask;
171  unsigned ExcludedFlagsBitmask;
172  std::tie(IncludedFlagsBitmask, ExcludedFlagsBitmask) =
173  getIncludeExcludeOptionFlagMasks();
174 
175  unsigned MissingArgIndex, MissingArgCount;
176  InputArgList Args =
177  getOpts().ParseArgs(ArgStrings, MissingArgIndex, MissingArgCount,
178  IncludedFlagsBitmask, ExcludedFlagsBitmask);
179 
180  // Check for missing argument error.
181  if (MissingArgCount) {
182  Diag(diag::err_drv_missing_argument)
183  << Args.getArgString(MissingArgIndex) << MissingArgCount;
184  ContainsError |=
185  Diags.getDiagnosticLevel(diag::err_drv_missing_argument,
187  }
188 
189  // Check for unsupported options.
190  for (const Arg *A : Args) {
191  if (A->getOption().hasFlag(options::Unsupported)) {
192  unsigned DiagID;
193  auto ArgString = A->getAsString(Args);
194  std::string Nearest;
195  if (getOpts().findNearest(
196  ArgString, Nearest, IncludedFlagsBitmask,
197  ExcludedFlagsBitmask | options::Unsupported) > 1) {
198  DiagID = diag::err_drv_unsupported_opt;
199  Diag(DiagID) << ArgString;
200  } else {
201  DiagID = diag::err_drv_unsupported_opt_with_suggestion;
202  Diag(DiagID) << ArgString << Nearest;
203  }
204  ContainsError |= Diags.getDiagnosticLevel(DiagID, SourceLocation()) >
206  continue;
207  }
208 
209  // Warn about -mcpu= without an argument.
210  if (A->getOption().matches(options::OPT_mcpu_EQ) && A->containsValue("")) {
211  Diag(diag::warn_drv_empty_joined_argument) << A->getAsString(Args);
212  ContainsError |= Diags.getDiagnosticLevel(
213  diag::warn_drv_empty_joined_argument,
215  }
216  }
217 
218  for (const Arg *A : Args.filtered(options::OPT_UNKNOWN)) {
219  unsigned DiagID;
220  auto ArgString = A->getAsString(Args);
221  std::string Nearest;
222  if (getOpts().findNearest(
223  ArgString, Nearest, IncludedFlagsBitmask, ExcludedFlagsBitmask) > 1) {
224  DiagID = IsCLMode() ? diag::warn_drv_unknown_argument_clang_cl
225  : diag::err_drv_unknown_argument;
226  Diags.Report(DiagID) << ArgString;
227  } else {
228  DiagID = IsCLMode() ? diag::warn_drv_unknown_argument_clang_cl_with_suggestion
229  : diag::err_drv_unknown_argument_with_suggestion;
230  Diags.Report(DiagID) << ArgString << Nearest;
231  }
232  ContainsError |= Diags.getDiagnosticLevel(DiagID, SourceLocation()) >
234  }
235 
236  return Args;
237 }
238 
239 // Determine which compilation mode we are in. We look for options which
240 // affect the phase, starting with the earliest phases, and record which
241 // option we used to determine the final phase.
242 phases::ID Driver::getFinalPhase(const DerivedArgList &DAL,
243  Arg **FinalPhaseArg) const {
244  Arg *PhaseArg = nullptr;
245  phases::ID FinalPhase;
246 
247  // -{E,EP,P,M,MM} only run the preprocessor.
248  if (CCCIsCPP() || (PhaseArg = DAL.getLastArg(options::OPT_E)) ||
249  (PhaseArg = DAL.getLastArg(options::OPT__SLASH_EP)) ||
250  (PhaseArg = DAL.getLastArg(options::OPT_M, options::OPT_MM)) ||
251  (PhaseArg = DAL.getLastArg(options::OPT__SLASH_P))) {
252  FinalPhase = phases::Preprocess;
253 
254  // --precompile only runs up to precompilation.
255  } else if ((PhaseArg = DAL.getLastArg(options::OPT__precompile))) {
256  FinalPhase = phases::Precompile;
257 
258  // -{fsyntax-only,-analyze,emit-ast} only run up to the compiler.
259  } else if ((PhaseArg = DAL.getLastArg(options::OPT_fsyntax_only)) ||
260  (PhaseArg = DAL.getLastArg(options::OPT_module_file_info)) ||
261  (PhaseArg = DAL.getLastArg(options::OPT_verify_pch)) ||
262  (PhaseArg = DAL.getLastArg(options::OPT_rewrite_objc)) ||
263  (PhaseArg = DAL.getLastArg(options::OPT_rewrite_legacy_objc)) ||
264  (PhaseArg = DAL.getLastArg(options::OPT__migrate)) ||
265  (PhaseArg = DAL.getLastArg(options::OPT__analyze,
266  options::OPT__analyze_auto)) ||
267  (PhaseArg = DAL.getLastArg(options::OPT_emit_ast))) {
268  FinalPhase = phases::Compile;
269 
270  // -S only runs up to the backend.
271  } else if ((PhaseArg = DAL.getLastArg(options::OPT_S))) {
272  FinalPhase = phases::Backend;
273 
274  // -c compilation only runs up to the assembler.
275  } else if ((PhaseArg = DAL.getLastArg(options::OPT_c))) {
276  FinalPhase = phases::Assemble;
277 
278  // Otherwise do everything.
279  } else
280  FinalPhase = phases::Link;
281 
282  if (FinalPhaseArg)
283  *FinalPhaseArg = PhaseArg;
284 
285  return FinalPhase;
286 }
287 
288 static Arg *MakeInputArg(DerivedArgList &Args, OptTable &Opts,
289  StringRef Value, bool Claim = true) {
290  Arg *A = new Arg(Opts.getOption(options::OPT_INPUT), Value,
291  Args.getBaseArgs().MakeIndex(Value), Value.data());
292  Args.AddSynthesizedArg(A);
293  if (Claim)
294  A->claim();
295  return A;
296 }
297 
298 DerivedArgList *Driver::TranslateInputArgs(const InputArgList &Args) const {
299  DerivedArgList *DAL = new DerivedArgList(Args);
300 
301  bool HasNostdlib = Args.hasArg(options::OPT_nostdlib);
302  bool HasNodefaultlib = Args.hasArg(options::OPT_nodefaultlibs);
303  for (Arg *A : Args) {
304  // Unfortunately, we have to parse some forwarding options (-Xassembler,
305  // -Xlinker, -Xpreprocessor) because we either integrate their functionality
306  // (assembler and preprocessor), or bypass a previous driver ('collect2').
307 
308  // Rewrite linker options, to replace --no-demangle with a custom internal
309  // option.
310  if ((A->getOption().matches(options::OPT_Wl_COMMA) ||
311  A->getOption().matches(options::OPT_Xlinker)) &&
312  A->containsValue("--no-demangle")) {
313  // Add the rewritten no-demangle argument.
314  DAL->AddFlagArg(A, Opts->getOption(options::OPT_Z_Xlinker__no_demangle));
315 
316  // Add the remaining values as Xlinker arguments.
317  for (StringRef Val : A->getValues())
318  if (Val != "--no-demangle")
319  DAL->AddSeparateArg(A, Opts->getOption(options::OPT_Xlinker), Val);
320 
321  continue;
322  }
323 
324  // Rewrite preprocessor options, to replace -Wp,-MD,FOO which is used by
325  // some build systems. We don't try to be complete here because we don't
326  // care to encourage this usage model.
327  if (A->getOption().matches(options::OPT_Wp_COMMA) &&
328  (A->getValue(0) == StringRef("-MD") ||
329  A->getValue(0) == StringRef("-MMD"))) {
330  // Rewrite to -MD/-MMD along with -MF.
331  if (A->getValue(0) == StringRef("-MD"))
332  DAL->AddFlagArg(A, Opts->getOption(options::OPT_MD));
333  else
334  DAL->AddFlagArg(A, Opts->getOption(options::OPT_MMD));
335  if (A->getNumValues() == 2)
336  DAL->AddSeparateArg(A, Opts->getOption(options::OPT_MF),
337  A->getValue(1));
338  continue;
339  }
340 
341  // Rewrite reserved library names.
342  if (A->getOption().matches(options::OPT_l)) {
343  StringRef Value = A->getValue();
344 
345  // Rewrite unless -nostdlib is present.
346  if (!HasNostdlib && !HasNodefaultlib && Value == "stdc++") {
347  DAL->AddFlagArg(A, Opts->getOption(options::OPT_Z_reserved_lib_stdcxx));
348  continue;
349  }
350 
351  // Rewrite unconditionally.
352  if (Value == "cc_kext") {
353  DAL->AddFlagArg(A, Opts->getOption(options::OPT_Z_reserved_lib_cckext));
354  continue;
355  }
356  }
357 
358  // Pick up inputs via the -- option.
359  if (A->getOption().matches(options::OPT__DASH_DASH)) {
360  A->claim();
361  for (StringRef Val : A->getValues())
362  DAL->append(MakeInputArg(*DAL, *Opts, Val, false));
363  continue;
364  }
365 
366  DAL->append(A);
367  }
368 
369  // Enforce -static if -miamcu is present.
370  if (Args.hasFlag(options::OPT_miamcu, options::OPT_mno_iamcu, false))
371  DAL->AddFlagArg(0, Opts->getOption(options::OPT_static));
372 
373 // Add a default value of -mlinker-version=, if one was given and the user
374 // didn't specify one.
375 #if defined(HOST_LINK_VERSION)
376  if (!Args.hasArg(options::OPT_mlinker_version_EQ) &&
377  strlen(HOST_LINK_VERSION) > 0) {
378  DAL->AddJoinedArg(0, Opts->getOption(options::OPT_mlinker_version_EQ),
379  HOST_LINK_VERSION);
380  DAL->getLastArg(options::OPT_mlinker_version_EQ)->claim();
381  }
382 #endif
383 
384  return DAL;
385 }
386 
387 /// Compute target triple from args.
388 ///
389 /// This routine provides the logic to compute a target triple from various
390 /// args passed to the driver and the default triple string.
391 static llvm::Triple computeTargetTriple(const Driver &D,
392  StringRef TargetTriple,
393  const ArgList &Args,
394  StringRef DarwinArchName = "") {
395  // FIXME: Already done in Compilation *Driver::BuildCompilation
396  if (const Arg *A = Args.getLastArg(options::OPT_target))
397  TargetTriple = A->getValue();
398 
399  llvm::Triple Target(llvm::Triple::normalize(TargetTriple));
400 
401  // Handle Apple-specific options available here.
402  if (Target.isOSBinFormatMachO()) {
403  // If an explicit Darwin arch name is given, that trumps all.
404  if (!DarwinArchName.empty()) {
405  tools::darwin::setTripleTypeForMachOArchName(Target, DarwinArchName);
406  return Target;
407  }
408 
409  // Handle the Darwin '-arch' flag.
410  if (Arg *A = Args.getLastArg(options::OPT_arch)) {
411  StringRef ArchName = A->getValue();
413  }
414  }
415 
416  // Handle pseudo-target flags '-mlittle-endian'/'-EL' and
417  // '-mbig-endian'/'-EB'.
418  if (Arg *A = Args.getLastArg(options::OPT_mlittle_endian,
419  options::OPT_mbig_endian)) {
420  if (A->getOption().matches(options::OPT_mlittle_endian)) {
421  llvm::Triple LE = Target.getLittleEndianArchVariant();
422  if (LE.getArch() != llvm::Triple::UnknownArch)
423  Target = std::move(LE);
424  } else {
425  llvm::Triple BE = Target.getBigEndianArchVariant();
426  if (BE.getArch() != llvm::Triple::UnknownArch)
427  Target = std::move(BE);
428  }
429  }
430 
431  // Skip further flag support on OSes which don't support '-m32' or '-m64'.
432  if (Target.getArch() == llvm::Triple::tce ||
433  Target.getOS() == llvm::Triple::Minix)
434  return Target;
435 
436  // Handle pseudo-target flags '-m64', '-mx32', '-m32' and '-m16'.
437  Arg *A = Args.getLastArg(options::OPT_m64, options::OPT_mx32,
438  options::OPT_m32, options::OPT_m16);
439  if (A) {
440  llvm::Triple::ArchType AT = llvm::Triple::UnknownArch;
441 
442  if (A->getOption().matches(options::OPT_m64)) {
443  AT = Target.get64BitArchVariant().getArch();
444  if (Target.getEnvironment() == llvm::Triple::GNUX32)
445  Target.setEnvironment(llvm::Triple::GNU);
446  } else if (A->getOption().matches(options::OPT_mx32) &&
447  Target.get64BitArchVariant().getArch() == llvm::Triple::x86_64) {
448  AT = llvm::Triple::x86_64;
449  Target.setEnvironment(llvm::Triple::GNUX32);
450  } else if (A->getOption().matches(options::OPT_m32)) {
451  AT = Target.get32BitArchVariant().getArch();
452  if (Target.getEnvironment() == llvm::Triple::GNUX32)
453  Target.setEnvironment(llvm::Triple::GNU);
454  } else if (A->getOption().matches(options::OPT_m16) &&
455  Target.get32BitArchVariant().getArch() == llvm::Triple::x86) {
456  AT = llvm::Triple::x86;
457  Target.setEnvironment(llvm::Triple::CODE16);
458  }
459 
460  if (AT != llvm::Triple::UnknownArch && AT != Target.getArch())
461  Target.setArch(AT);
462  }
463 
464  // Handle -miamcu flag.
465  if (Args.hasFlag(options::OPT_miamcu, options::OPT_mno_iamcu, false)) {
466  if (Target.get32BitArchVariant().getArch() != llvm::Triple::x86)
467  D.Diag(diag::err_drv_unsupported_opt_for_target) << "-miamcu"
468  << Target.str();
469 
470  if (A && !A->getOption().matches(options::OPT_m32))
471  D.Diag(diag::err_drv_argument_not_allowed_with)
472  << "-miamcu" << A->getBaseArg().getAsString(Args);
473 
474  Target.setArch(llvm::Triple::x86);
475  Target.setArchName("i586");
476  Target.setEnvironment(llvm::Triple::UnknownEnvironment);
477  Target.setEnvironmentName("");
478  Target.setOS(llvm::Triple::ELFIAMCU);
479  Target.setVendor(llvm::Triple::UnknownVendor);
480  Target.setVendorName("intel");
481  }
482 
483  return Target;
484 }
485 
486 // Parse the LTO options and record the type of LTO compilation
487 // based on which -f(no-)?lto(=.*)? option occurs last.
488 void Driver::setLTOMode(const llvm::opt::ArgList &Args) {
489  LTOMode = LTOK_None;
490  if (!Args.hasFlag(options::OPT_flto, options::OPT_flto_EQ,
491  options::OPT_fno_lto, false))
492  return;
493 
494  StringRef LTOName("full");
495 
496  const Arg *A = Args.getLastArg(options::OPT_flto_EQ);
497  if (A)
498  LTOName = A->getValue();
499 
500  LTOMode = llvm::StringSwitch<LTOKind>(LTOName)
501  .Case("full", LTOK_Full)
502  .Case("thin", LTOK_Thin)
503  .Default(LTOK_Unknown);
504 
505  if (LTOMode == LTOK_Unknown) {
506  assert(A);
507  Diag(diag::err_drv_unsupported_option_argument) << A->getOption().getName()
508  << A->getValue();
509  }
510 }
511 
512 /// Compute the desired OpenMP runtime from the flags provided.
514  StringRef RuntimeName(CLANG_DEFAULT_OPENMP_RUNTIME);
515 
516  const Arg *A = Args.getLastArg(options::OPT_fopenmp_EQ);
517  if (A)
518  RuntimeName = A->getValue();
519 
520  auto RT = llvm::StringSwitch<OpenMPRuntimeKind>(RuntimeName)
521  .Case("libomp", OMPRT_OMP)
522  .Case("libgomp", OMPRT_GOMP)
523  .Case("libiomp5", OMPRT_IOMP5)
524  .Default(OMPRT_Unknown);
525 
526  if (RT == OMPRT_Unknown) {
527  if (A)
528  Diag(diag::err_drv_unsupported_option_argument)
529  << A->getOption().getName() << A->getValue();
530  else
531  // FIXME: We could use a nicer diagnostic here.
532  Diag(diag::err_drv_unsupported_opt) << "-fopenmp";
533  }
534 
535  return RT;
536 }
537 
539  InputList &Inputs) {
540 
541  //
542  // CUDA/HIP
543  //
544  // We need to generate a CUDA/HIP toolchain if any of the inputs has a CUDA
545  // or HIP type. However, mixed CUDA/HIP compilation is not supported.
546  bool IsCuda =
547  llvm::any_of(Inputs, [](std::pair<types::ID, const llvm::opt::Arg *> &I) {
548  return types::isCuda(I.first);
549  });
550  bool IsHIP =
551  llvm::any_of(Inputs,
552  [](std::pair<types::ID, const llvm::opt::Arg *> &I) {
553  return types::isHIP(I.first);
554  }) ||
555  C.getInputArgs().hasArg(options::OPT_hip_link);
556  if (IsCuda && IsHIP) {
557  Diag(clang::diag::err_drv_mix_cuda_hip);
558  return;
559  }
560  if (IsCuda) {
562  const llvm::Triple &HostTriple = HostTC->getTriple();
563  StringRef DeviceTripleStr;
564  auto OFK = Action::OFK_Cuda;
565  DeviceTripleStr =
566  HostTriple.isArch64Bit() ? "nvptx64-nvidia-cuda" : "nvptx-nvidia-cuda";
567  llvm::Triple CudaTriple(DeviceTripleStr);
568  // Use the CUDA and host triples as the key into the ToolChains map,
569  // because the device toolchain we create depends on both.
570  auto &CudaTC = ToolChains[CudaTriple.str() + "/" + HostTriple.str()];
571  if (!CudaTC) {
572  CudaTC = llvm::make_unique<toolchains::CudaToolChain>(
573  *this, CudaTriple, *HostTC, C.getInputArgs(), OFK);
574  }
575  C.addOffloadDeviceToolChain(CudaTC.get(), OFK);
576  } else if (IsHIP) {
578  const llvm::Triple &HostTriple = HostTC->getTriple();
579  StringRef DeviceTripleStr;
580  auto OFK = Action::OFK_HIP;
581  DeviceTripleStr = "amdgcn-amd-amdhsa";
582  llvm::Triple HIPTriple(DeviceTripleStr);
583  // Use the HIP and host triples as the key into the ToolChains map,
584  // because the device toolchain we create depends on both.
585  auto &HIPTC = ToolChains[HIPTriple.str() + "/" + HostTriple.str()];
586  if (!HIPTC) {
587  HIPTC = llvm::make_unique<toolchains::HIPToolChain>(
588  *this, HIPTriple, *HostTC, C.getInputArgs());
589  }
590  C.addOffloadDeviceToolChain(HIPTC.get(), OFK);
591  }
592 
593  //
594  // OpenMP
595  //
596  // We need to generate an OpenMP toolchain if the user specified targets with
597  // the -fopenmp-targets option.
598  if (Arg *OpenMPTargets =
599  C.getInputArgs().getLastArg(options::OPT_fopenmp_targets_EQ)) {
600  if (OpenMPTargets->getNumValues()) {
601  // We expect that -fopenmp-targets is always used in conjunction with the
602  // option -fopenmp specifying a valid runtime with offloading support,
603  // i.e. libomp or libiomp.
604  bool HasValidOpenMPRuntime = C.getInputArgs().hasFlag(
605  options::OPT_fopenmp, options::OPT_fopenmp_EQ,
606  options::OPT_fno_openmp, false);
607  if (HasValidOpenMPRuntime) {
609  HasValidOpenMPRuntime =
610  OpenMPKind == OMPRT_OMP || OpenMPKind == OMPRT_IOMP5;
611  }
612 
613  if (HasValidOpenMPRuntime) {
614  llvm::StringMap<const char *> FoundNormalizedTriples;
615  for (const char *Val : OpenMPTargets->getValues()) {
616  llvm::Triple TT(Val);
617  std::string NormalizedName = TT.normalize();
618 
619  // Make sure we don't have a duplicate triple.
620  auto Duplicate = FoundNormalizedTriples.find(NormalizedName);
621  if (Duplicate != FoundNormalizedTriples.end()) {
622  Diag(clang::diag::warn_drv_omp_offload_target_duplicate)
623  << Val << Duplicate->second;
624  continue;
625  }
626 
627  // Store the current triple so that we can check for duplicates in the
628  // following iterations.
629  FoundNormalizedTriples[NormalizedName] = Val;
630 
631  // If the specified target is invalid, emit a diagnostic.
632  if (TT.getArch() == llvm::Triple::UnknownArch)
633  Diag(clang::diag::err_drv_invalid_omp_target) << Val;
634  else {
635  const ToolChain *TC;
636  // CUDA toolchains have to be selected differently. They pair host
637  // and device in their implementation.
638  if (TT.isNVPTX()) {
639  const ToolChain *HostTC =
641  assert(HostTC && "Host toolchain should be always defined.");
642  auto &CudaTC =
643  ToolChains[TT.str() + "/" + HostTC->getTriple().normalize()];
644  if (!CudaTC)
645  CudaTC = llvm::make_unique<toolchains::CudaToolChain>(
646  *this, TT, *HostTC, C.getInputArgs(), Action::OFK_OpenMP);
647  TC = CudaTC.get();
648  } else
649  TC = &getToolChain(C.getInputArgs(), TT);
651  }
652  }
653  } else
654  Diag(clang::diag::err_drv_expecting_fopenmp_with_fopenmp_targets);
655  } else
656  Diag(clang::diag::warn_drv_empty_joined_argument)
657  << OpenMPTargets->getAsString(C.getInputArgs());
658  }
659 
660  //
661  // TODO: Add support for other offloading programming models here.
662  //
663 }
664 
665 /// Looks the given directories for the specified file.
666 ///
667 /// \param[out] FilePath File path, if the file was found.
668 /// \param[in] Dirs Directories used for the search.
669 /// \param[in] FileName Name of the file to search for.
670 /// \return True if file was found.
671 ///
672 /// Looks for file specified by FileName sequentially in directories specified
673 /// by Dirs.
674 ///
675 static bool searchForFile(SmallVectorImpl<char> &FilePath,
677  StringRef FileName) {
678  SmallString<128> WPath;
679  for (const StringRef &Dir : Dirs) {
680  if (Dir.empty())
681  continue;
682  WPath.clear();
683  llvm::sys::path::append(WPath, Dir, FileName);
684  llvm::sys::path::native(WPath);
685  if (llvm::sys::fs::is_regular_file(WPath)) {
686  FilePath = std::move(WPath);
687  return true;
688  }
689  }
690  return false;
691 }
692 
693 bool Driver::readConfigFile(StringRef FileName) {
694  // Try reading the given file.
696  if (!llvm::cl::readConfigFile(FileName, Saver, NewCfgArgs)) {
697  Diag(diag::err_drv_cannot_read_config_file) << FileName;
698  return true;
699  }
700 
701  // Read options from config file.
702  llvm::SmallString<128> CfgFileName(FileName);
703  llvm::sys::path::native(CfgFileName);
704  ConfigFile = CfgFileName.str();
705  bool ContainErrors;
706  CfgOptions = llvm::make_unique<InputArgList>(
707  ParseArgStrings(NewCfgArgs, ContainErrors));
708  if (ContainErrors) {
709  CfgOptions.reset();
710  return true;
711  }
712 
713  if (CfgOptions->hasArg(options::OPT_config)) {
714  CfgOptions.reset();
715  Diag(diag::err_drv_nested_config_file);
716  return true;
717  }
718 
719  // Claim all arguments that come from a configuration file so that the driver
720  // does not warn on any that is unused.
721  for (Arg *A : *CfgOptions)
722  A->claim();
723  return false;
724 }
725 
726 bool Driver::loadConfigFile() {
727  std::string CfgFileName;
728  bool FileSpecifiedExplicitly = false;
729 
730  // Process options that change search path for config files.
731  if (CLOptions) {
732  if (CLOptions->hasArg(options::OPT_config_system_dir_EQ)) {
733  SmallString<128> CfgDir;
734  CfgDir.append(
735  CLOptions->getLastArgValue(options::OPT_config_system_dir_EQ));
736  if (!CfgDir.empty()) {
737  if (llvm::sys::fs::make_absolute(CfgDir).value() != 0)
738  SystemConfigDir.clear();
739  else
740  SystemConfigDir = std::string(CfgDir.begin(), CfgDir.end());
741  }
742  }
743  if (CLOptions->hasArg(options::OPT_config_user_dir_EQ)) {
744  SmallString<128> CfgDir;
745  CfgDir.append(
746  CLOptions->getLastArgValue(options::OPT_config_user_dir_EQ));
747  if (!CfgDir.empty()) {
748  if (llvm::sys::fs::make_absolute(CfgDir).value() != 0)
749  UserConfigDir.clear();
750  else
751  UserConfigDir = std::string(CfgDir.begin(), CfgDir.end());
752  }
753  }
754  }
755 
756  // First try to find config file specified in command line.
757  if (CLOptions) {
758  std::vector<std::string> ConfigFiles =
759  CLOptions->getAllArgValues(options::OPT_config);
760  if (ConfigFiles.size() > 1) {
761  Diag(diag::err_drv_duplicate_config);
762  return true;
763  }
764 
765  if (!ConfigFiles.empty()) {
766  CfgFileName = ConfigFiles.front();
767  assert(!CfgFileName.empty());
768 
769  // If argument contains directory separator, treat it as a path to
770  // configuration file.
771  if (llvm::sys::path::has_parent_path(CfgFileName)) {
772  SmallString<128> CfgFilePath;
773  if (llvm::sys::path::is_relative(CfgFileName))
774  llvm::sys::fs::current_path(CfgFilePath);
775  llvm::sys::path::append(CfgFilePath, CfgFileName);
776  if (!llvm::sys::fs::is_regular_file(CfgFilePath)) {
777  Diag(diag::err_drv_config_file_not_exist) << CfgFilePath;
778  return true;
779  }
780  return readConfigFile(CfgFilePath);
781  }
782 
783  FileSpecifiedExplicitly = true;
784  }
785  }
786 
787  // If config file is not specified explicitly, try to deduce configuration
788  // from executable name. For instance, an executable 'armv7l-clang' will
789  // search for config file 'armv7l-clang.cfg'.
790  if (CfgFileName.empty() && !ClangNameParts.TargetPrefix.empty())
792 
793  if (CfgFileName.empty())
794  return false;
795 
796  // Determine architecture part of the file name, if it is present.
797  StringRef CfgFileArch = CfgFileName;
798  size_t ArchPrefixLen = CfgFileArch.find('-');
799  if (ArchPrefixLen == StringRef::npos)
800  ArchPrefixLen = CfgFileArch.size();
801  llvm::Triple CfgTriple;
802  CfgFileArch = CfgFileArch.take_front(ArchPrefixLen);
803  CfgTriple = llvm::Triple(llvm::Triple::normalize(CfgFileArch));
804  if (CfgTriple.getArch() == llvm::Triple::ArchType::UnknownArch)
805  ArchPrefixLen = 0;
806 
807  if (!StringRef(CfgFileName).endswith(".cfg"))
808  CfgFileName += ".cfg";
809 
810  // If config file starts with architecture name and command line options
811  // redefine architecture (with options like -m32 -LE etc), try finding new
812  // config file with that architecture.
813  SmallString<128> FixedConfigFile;
814  size_t FixedArchPrefixLen = 0;
815  if (ArchPrefixLen) {
816  // Get architecture name from config file name like 'i386.cfg' or
817  // 'armv7l-clang.cfg'.
818  // Check if command line options changes effective triple.
819  llvm::Triple EffectiveTriple = computeTargetTriple(*this,
820  CfgTriple.getTriple(), *CLOptions);
821  if (CfgTriple.getArch() != EffectiveTriple.getArch()) {
822  FixedConfigFile = EffectiveTriple.getArchName();
823  FixedArchPrefixLen = FixedConfigFile.size();
824  // Append the rest of original file name so that file name transforms
825  // like: i386-clang.cfg -> x86_64-clang.cfg.
826  if (ArchPrefixLen < CfgFileName.size())
827  FixedConfigFile += CfgFileName.substr(ArchPrefixLen);
828  }
829  }
830 
831  // Prepare list of directories where config file is searched for.
832  SmallVector<std::string, 3> CfgFileSearchDirs;
833  CfgFileSearchDirs.push_back(UserConfigDir);
834  CfgFileSearchDirs.push_back(SystemConfigDir);
835  CfgFileSearchDirs.push_back(Dir);
836 
837  // Try to find config file. First try file with corrected architecture.
838  llvm::SmallString<128> CfgFilePath;
839  if (!FixedConfigFile.empty()) {
840  if (searchForFile(CfgFilePath, CfgFileSearchDirs, FixedConfigFile))
841  return readConfigFile(CfgFilePath);
842  // If 'x86_64-clang.cfg' was not found, try 'x86_64.cfg'.
843  FixedConfigFile.resize(FixedArchPrefixLen);
844  FixedConfigFile.append(".cfg");
845  if (searchForFile(CfgFilePath, CfgFileSearchDirs, FixedConfigFile))
846  return readConfigFile(CfgFilePath);
847  }
848 
849  // Then try original file name.
850  if (searchForFile(CfgFilePath, CfgFileSearchDirs, CfgFileName))
851  return readConfigFile(CfgFilePath);
852 
853  // Finally try removing driver mode part: 'x86_64-clang.cfg' -> 'x86_64.cfg'.
854  if (!ClangNameParts.ModeSuffix.empty() &&
855  !ClangNameParts.TargetPrefix.empty()) {
856  CfgFileName.assign(ClangNameParts.TargetPrefix);
857  CfgFileName.append(".cfg");
858  if (searchForFile(CfgFilePath, CfgFileSearchDirs, CfgFileName))
859  return readConfigFile(CfgFilePath);
860  }
861 
862  // Report error but only if config file was specified explicitly, by option
863  // --config. If it was deduced from executable name, it is not an error.
864  if (FileSpecifiedExplicitly) {
865  Diag(diag::err_drv_config_file_not_found) << CfgFileName;
866  for (const std::string &SearchDir : CfgFileSearchDirs)
867  if (!SearchDir.empty())
868  Diag(diag::note_drv_config_file_searched_in) << SearchDir;
869  return true;
870  }
871 
872  return false;
873 }
874 
876  llvm::PrettyStackTraceString CrashInfo("Compilation construction");
877 
878  // FIXME: Handle environment options which affect driver behavior, somewhere
879  // (client?). GCC_EXEC_PREFIX, LPATH, CC_PRINT_OPTIONS.
880 
881  if (Optional<std::string> CompilerPathValue =
882  llvm::sys::Process::GetEnv("COMPILER_PATH")) {
883  StringRef CompilerPath = *CompilerPathValue;
884  while (!CompilerPath.empty()) {
885  std::pair<StringRef, StringRef> Split =
886  CompilerPath.split(llvm::sys::EnvPathSeparator);
887  PrefixDirs.push_back(Split.first);
888  CompilerPath = Split.second;
889  }
890  }
891 
892  // We look for the driver mode option early, because the mode can affect
893  // how other options are parsed.
894  ParseDriverMode(ClangExecutable, ArgList.slice(1));
895 
896  // FIXME: What are we going to do with -V and -b?
897 
898  // Arguments specified in command line.
899  bool ContainsError;
900  CLOptions = llvm::make_unique<InputArgList>(
901  ParseArgStrings(ArgList.slice(1), ContainsError));
902 
903  // Try parsing configuration file.
904  if (!ContainsError)
905  ContainsError = loadConfigFile();
906  bool HasConfigFile = !ContainsError && (CfgOptions.get() != nullptr);
907 
908  // All arguments, from both config file and command line.
909  InputArgList Args = std::move(HasConfigFile ? std::move(*CfgOptions)
910  : std::move(*CLOptions));
911  if (HasConfigFile)
912  for (auto *Opt : *CLOptions) {
913  if (Opt->getOption().matches(options::OPT_config))
914  continue;
915  unsigned Index = Args.MakeIndex(Opt->getSpelling());
916  const Arg *BaseArg = &Opt->getBaseArg();
917  if (BaseArg == Opt)
918  BaseArg = nullptr;
919  Arg *Copy = new llvm::opt::Arg(Opt->getOption(), Opt->getSpelling(),
920  Index, BaseArg);
921  Copy->getValues() = Opt->getValues();
922  if (Opt->isClaimed())
923  Copy->claim();
924  Args.append(Copy);
925  }
926 
927  // FIXME: This stuff needs to go into the Compilation, not the driver.
928  bool CCCPrintPhases;
929 
930  // Silence driver warnings if requested
931  Diags.setIgnoreAllWarnings(Args.hasArg(options::OPT_w));
932 
933  // -no-canonical-prefixes is used very early in main.
934  Args.ClaimAllArgs(options::OPT_no_canonical_prefixes);
935 
936  // Ignore -pipe.
937  Args.ClaimAllArgs(options::OPT_pipe);
938 
939  // Extract -ccc args.
940  //
941  // FIXME: We need to figure out where this behavior should live. Most of it
942  // should be outside in the client; the parts that aren't should have proper
943  // options, either by introducing new ones or by overloading gcc ones like -V
944  // or -b.
945  CCCPrintPhases = Args.hasArg(options::OPT_ccc_print_phases);
946  CCCPrintBindings = Args.hasArg(options::OPT_ccc_print_bindings);
947  if (const Arg *A = Args.getLastArg(options::OPT_ccc_gcc_name))
948  CCCGenericGCCName = A->getValue();
949  CCCUsePCH =
950  Args.hasFlag(options::OPT_ccc_pch_is_pch, options::OPT_ccc_pch_is_pth);
951  GenReproducer = Args.hasFlag(options::OPT_gen_reproducer,
952  options::OPT_fno_crash_diagnostics,
953  !!::getenv("FORCE_CLANG_DIAGNOSTICS_CRASH"));
954  // FIXME: TargetTriple is used by the target-prefixed calls to as/ld
955  // and getToolChain is const.
956  if (IsCLMode()) {
957  // clang-cl targets MSVC-style Win32.
958  llvm::Triple T(TargetTriple);
959  T.setOS(llvm::Triple::Win32);
960  T.setVendor(llvm::Triple::PC);
961  T.setEnvironment(llvm::Triple::MSVC);
962  T.setObjectFormat(llvm::Triple::COFF);
963  TargetTriple = T.str();
964  }
965  if (const Arg *A = Args.getLastArg(options::OPT_target))
966  TargetTriple = A->getValue();
967  if (const Arg *A = Args.getLastArg(options::OPT_ccc_install_dir))
968  Dir = InstalledDir = A->getValue();
969  for (const Arg *A : Args.filtered(options::OPT_B)) {
970  A->claim();
971  PrefixDirs.push_back(A->getValue(0));
972  }
973  if (const Arg *A = Args.getLastArg(options::OPT__sysroot_EQ))
974  SysRoot = A->getValue();
975  if (const Arg *A = Args.getLastArg(options::OPT__dyld_prefix_EQ))
976  DyldPrefix = A->getValue();
977 
978  if (const Arg *A = Args.getLastArg(options::OPT_resource_dir))
979  ResourceDir = A->getValue();
980 
981  if (const Arg *A = Args.getLastArg(options::OPT_save_temps_EQ)) {
982  SaveTemps = llvm::StringSwitch<SaveTempsMode>(A->getValue())
983  .Case("cwd", SaveTempsCwd)
984  .Case("obj", SaveTempsObj)
985  .Default(SaveTempsCwd);
986  }
987 
988  setLTOMode(Args);
989 
990  // Process -fembed-bitcode= flags.
991  if (Arg *A = Args.getLastArg(options::OPT_fembed_bitcode_EQ)) {
992  StringRef Name = A->getValue();
993  unsigned Model = llvm::StringSwitch<unsigned>(Name)
994  .Case("off", EmbedNone)
995  .Case("all", EmbedBitcode)
996  .Case("bitcode", EmbedBitcode)
997  .Case("marker", EmbedMarker)
998  .Default(~0U);
999  if (Model == ~0U) {
1000  Diags.Report(diag::err_drv_invalid_value) << A->getAsString(Args)
1001  << Name;
1002  } else
1003  BitcodeEmbed = static_cast<BitcodeEmbedMode>(Model);
1004  }
1005 
1006  std::unique_ptr<llvm::opt::InputArgList> UArgs =
1007  llvm::make_unique<InputArgList>(std::move(Args));
1008 
1009  // Perform the default argument translations.
1010  DerivedArgList *TranslatedArgs = TranslateInputArgs(*UArgs);
1011 
1012  // Owned by the host.
1013  const ToolChain &TC = getToolChain(
1014  *UArgs, computeTargetTriple(*this, TargetTriple, *UArgs));
1015 
1016  // The compilation takes ownership of Args.
1017  Compilation *C = new Compilation(*this, TC, UArgs.release(), TranslatedArgs,
1018  ContainsError);
1019 
1020  if (!HandleImmediateArgs(*C))
1021  return C;
1022 
1023  // Construct the list of inputs.
1024  InputList Inputs;
1025  BuildInputs(C->getDefaultToolChain(), *TranslatedArgs, Inputs);
1026 
1027  // Populate the tool chains for the offloading devices, if any.
1029 
1030  // Construct the list of abstract actions to perform for this compilation. On
1031  // MachO targets this uses the driver-driver and universal actions.
1032  if (TC.getTriple().isOSBinFormatMachO())
1033  BuildUniversalActions(*C, C->getDefaultToolChain(), Inputs);
1034  else
1035  BuildActions(*C, C->getArgs(), Inputs, C->getActions());
1036 
1037  if (CCCPrintPhases) {
1038  PrintActions(*C);
1039  return C;
1040  }
1041 
1042  BuildJobs(*C);
1043 
1044  return C;
1045 }
1046 
1047 static void printArgList(raw_ostream &OS, const llvm::opt::ArgList &Args) {
1048  llvm::opt::ArgStringList ASL;
1049  for (const auto *A : Args)
1050  A->render(Args, ASL);
1051 
1052  for (auto I = ASL.begin(), E = ASL.end(); I != E; ++I) {
1053  if (I != ASL.begin())
1054  OS << ' ';
1055  Command::printArg(OS, *I, true);
1056  }
1057  OS << '\n';
1058 }
1059 
1060 bool Driver::getCrashDiagnosticFile(StringRef ReproCrashFilename,
1061  SmallString<128> &CrashDiagDir) {
1062  using namespace llvm::sys;
1063  assert(llvm::Triple(llvm::sys::getProcessTriple()).isOSDarwin() &&
1064  "Only knows about .crash files on Darwin");
1065 
1066  // The .crash file can be found on at ~/Library/Logs/DiagnosticReports/
1067  // (or /Library/Logs/DiagnosticReports for root) and has the filename pattern
1068  // clang-<VERSION>_<YYYY-MM-DD-HHMMSS>_<hostname>.crash.
1069  path::home_directory(CrashDiagDir);
1070  if (CrashDiagDir.startswith("/var/root"))
1071  CrashDiagDir = "/";
1072  path::append(CrashDiagDir, "Library/Logs/DiagnosticReports");
1073  int PID =
1074 #if LLVM_ON_UNIX
1075  getpid();
1076 #else
1077  0;
1078 #endif
1079  std::error_code EC;
1080  fs::file_status FileStatus;
1081  TimePoint<> LastAccessTime;
1082  SmallString<128> CrashFilePath;
1083  // Lookup the .crash files and get the one generated by a subprocess spawned
1084  // by this driver invocation.
1085  for (fs::directory_iterator File(CrashDiagDir, EC), FileEnd;
1086  File != FileEnd && !EC; File.increment(EC)) {
1087  StringRef FileName = path::filename(File->path());
1088  if (!FileName.startswith(Name))
1089  continue;
1090  if (fs::status(File->path(), FileStatus))
1091  continue;
1092  llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> CrashFile =
1093  llvm::MemoryBuffer::getFile(File->path());
1094  if (!CrashFile)
1095  continue;
1096  // The first line should start with "Process:", otherwise this isn't a real
1097  // .crash file.
1098  StringRef Data = CrashFile.get()->getBuffer();
1099  if (!Data.startswith("Process:"))
1100  continue;
1101  // Parse parent process pid line, e.g: "Parent Process: clang-4.0 [79141]"
1102  size_t ParentProcPos = Data.find("Parent Process:");
1103  if (ParentProcPos == StringRef::npos)
1104  continue;
1105  size_t LineEnd = Data.find_first_of("\n", ParentProcPos);
1106  if (LineEnd == StringRef::npos)
1107  continue;
1108  StringRef ParentProcess = Data.slice(ParentProcPos+15, LineEnd).trim();
1109  int OpenBracket = -1, CloseBracket = -1;
1110  for (size_t i = 0, e = ParentProcess.size(); i < e; ++i) {
1111  if (ParentProcess[i] == '[')
1112  OpenBracket = i;
1113  if (ParentProcess[i] == ']')
1114  CloseBracket = i;
1115  }
1116  // Extract the parent process PID from the .crash file and check whether
1117  // it matches this driver invocation pid.
1118  int CrashPID;
1119  if (OpenBracket < 0 || CloseBracket < 0 ||
1120  ParentProcess.slice(OpenBracket + 1, CloseBracket)
1121  .getAsInteger(10, CrashPID) || CrashPID != PID) {
1122  continue;
1123  }
1124 
1125  // Found a .crash file matching the driver pid. To avoid getting an older
1126  // and misleading crash file, continue looking for the most recent.
1127  // FIXME: the driver can dispatch multiple cc1 invocations, leading to
1128  // multiple crashes poiting to the same parent process. Since the driver
1129  // does not collect pid information for the dispatched invocation there's
1130  // currently no way to distinguish among them.
1131  const auto FileAccessTime = FileStatus.getLastModificationTime();
1132  if (FileAccessTime > LastAccessTime) {
1133  CrashFilePath.assign(File->path());
1134  LastAccessTime = FileAccessTime;
1135  }
1136  }
1137 
1138  // If found, copy it over to the location of other reproducer files.
1139  if (!CrashFilePath.empty()) {
1140  EC = fs::copy_file(CrashFilePath, ReproCrashFilename);
1141  if (EC)
1142  return false;
1143  return true;
1144  }
1145 
1146  return false;
1147 }
1148 
1149 // When clang crashes, produce diagnostic information including the fully
1150 // preprocessed source file(s). Request that the developer attach the
1151 // diagnostic information to a bug report.
1153  Compilation &C, const Command &FailingCommand,
1154  StringRef AdditionalInformation, CompilationDiagnosticReport *Report) {
1155  if (C.getArgs().hasArg(options::OPT_fno_crash_diagnostics))
1156  return;
1157 
1158  // Don't try to generate diagnostics for link or dsymutil jobs.
1159  if (FailingCommand.getCreator().isLinkJob() ||
1160  FailingCommand.getCreator().isDsymutilJob())
1161  return;
1162 
1163  // Print the version of the compiler.
1164  PrintVersion(C, llvm::errs());
1165 
1166  Diag(clang::diag::note_drv_command_failed_diag_msg)
1167  << "PLEASE submit a bug report to " BUG_REPORT_URL " and include the "
1168  "crash backtrace, preprocessed source, and associated run script.";
1169 
1170  // Suppress driver output and emit preprocessor output to temp file.
1171  Mode = CPPMode;
1172  CCGenDiagnostics = true;
1173 
1174  // Save the original job command(s).
1175  Command Cmd = FailingCommand;
1176 
1177  // Keep track of whether we produce any errors while trying to produce
1178  // preprocessed sources.
1179  DiagnosticErrorTrap Trap(Diags);
1180 
1181  // Suppress tool output.
1183 
1184  // Construct the list of inputs.
1185  InputList Inputs;
1186  BuildInputs(C.getDefaultToolChain(), C.getArgs(), Inputs);
1187 
1188  for (InputList::iterator it = Inputs.begin(), ie = Inputs.end(); it != ie;) {
1189  bool IgnoreInput = false;
1190 
1191  // Ignore input from stdin or any inputs that cannot be preprocessed.
1192  // Check type first as not all linker inputs have a value.
1193  if (types::getPreprocessedType(it->first) == types::TY_INVALID) {
1194  IgnoreInput = true;
1195  } else if (!strcmp(it->second->getValue(), "-")) {
1196  Diag(clang::diag::note_drv_command_failed_diag_msg)
1197  << "Error generating preprocessed source(s) - "
1198  "ignoring input from stdin.";
1199  IgnoreInput = true;
1200  }
1201 
1202  if (IgnoreInput) {
1203  it = Inputs.erase(it);
1204  ie = Inputs.end();
1205  } else {
1206  ++it;
1207  }
1208  }
1209 
1210  if (Inputs.empty()) {
1211  Diag(clang::diag::note_drv_command_failed_diag_msg)
1212  << "Error generating preprocessed source(s) - "
1213  "no preprocessable inputs.";
1214  return;
1215  }
1216 
1217  // Don't attempt to generate preprocessed files if multiple -arch options are
1218  // used, unless they're all duplicates.
1219  llvm::StringSet<> ArchNames;
1220  for (const Arg *A : C.getArgs()) {
1221  if (A->getOption().matches(options::OPT_arch)) {
1222  StringRef ArchName = A->getValue();
1223  ArchNames.insert(ArchName);
1224  }
1225  }
1226  if (ArchNames.size() > 1) {
1227  Diag(clang::diag::note_drv_command_failed_diag_msg)
1228  << "Error generating preprocessed source(s) - cannot generate "
1229  "preprocessed source with multiple -arch options.";
1230  return;
1231  }
1232 
1233  // Construct the list of abstract actions to perform for this compilation. On
1234  // Darwin OSes this uses the driver-driver and builds universal actions.
1235  const ToolChain &TC = C.getDefaultToolChain();
1236  if (TC.getTriple().isOSBinFormatMachO())
1237  BuildUniversalActions(C, TC, Inputs);
1238  else
1239  BuildActions(C, C.getArgs(), Inputs, C.getActions());
1240 
1241  BuildJobs(C);
1242 
1243  // If there were errors building the compilation, quit now.
1244  if (Trap.hasErrorOccurred()) {
1245  Diag(clang::diag::note_drv_command_failed_diag_msg)
1246  << "Error generating preprocessed source(s).";
1247  return;
1248  }
1249 
1250  // Generate preprocessed output.
1251  SmallVector<std::pair<int, const Command *>, 4> FailingCommands;
1252  C.ExecuteJobs(C.getJobs(), FailingCommands);
1253 
1254  // If any of the preprocessing commands failed, clean up and exit.
1255  if (!FailingCommands.empty()) {
1256  Diag(clang::diag::note_drv_command_failed_diag_msg)
1257  << "Error generating preprocessed source(s).";
1258  return;
1259  }
1260 
1261  const ArgStringList &TempFiles = C.getTempFiles();
1262  if (TempFiles.empty()) {
1263  Diag(clang::diag::note_drv_command_failed_diag_msg)
1264  << "Error generating preprocessed source(s).";
1265  return;
1266  }
1267 
1268  Diag(clang::diag::note_drv_command_failed_diag_msg)
1269  << "\n********************\n\n"
1270  "PLEASE ATTACH THE FOLLOWING FILES TO THE BUG REPORT:\n"
1271  "Preprocessed source(s) and associated run script(s) are located at:";
1272 
1273  SmallString<128> VFS;
1274  SmallString<128> ReproCrashFilename;
1275  for (const char *TempFile : TempFiles) {
1276  Diag(clang::diag::note_drv_command_failed_diag_msg) << TempFile;
1277  if (Report)
1278  Report->TemporaryFiles.push_back(TempFile);
1279  if (ReproCrashFilename.empty()) {
1280  ReproCrashFilename = TempFile;
1281  llvm::sys::path::replace_extension(ReproCrashFilename, ".crash");
1282  }
1283  if (StringRef(TempFile).endswith(".cache")) {
1284  // In some cases (modules) we'll dump extra data to help with reproducing
1285  // the crash into a directory next to the output.
1286  VFS = llvm::sys::path::filename(TempFile);
1287  llvm::sys::path::append(VFS, "vfs", "vfs.yaml");
1288  }
1289  }
1290 
1291  // Assume associated files are based off of the first temporary file.
1292  CrashReportInfo CrashInfo(TempFiles[0], VFS);
1293 
1294  std::string Script = CrashInfo.Filename.rsplit('.').first.str() + ".sh";
1295  std::error_code EC;
1296  llvm::raw_fd_ostream ScriptOS(Script, EC, llvm::sys::fs::CD_CreateNew);
1297  if (EC) {
1298  Diag(clang::diag::note_drv_command_failed_diag_msg)
1299  << "Error generating run script: " + Script + " " + EC.message();
1300  } else {
1301  ScriptOS << "# Crash reproducer for " << getClangFullVersion() << "\n"
1302  << "# Driver args: ";
1303  printArgList(ScriptOS, C.getInputArgs());
1304  ScriptOS << "# Original command: ";
1305  Cmd.Print(ScriptOS, "\n", /*Quote=*/true);
1306  Cmd.Print(ScriptOS, "\n", /*Quote=*/true, &CrashInfo);
1307  if (!AdditionalInformation.empty())
1308  ScriptOS << "\n# Additional information: " << AdditionalInformation
1309  << "\n";
1310  if (Report)
1311  Report->TemporaryFiles.push_back(Script);
1312  Diag(clang::diag::note_drv_command_failed_diag_msg) << Script;
1313  }
1314 
1315  // On darwin, provide information about the .crash diagnostic report.
1316  if (llvm::Triple(llvm::sys::getProcessTriple()).isOSDarwin()) {
1317  SmallString<128> CrashDiagDir;
1318  if (getCrashDiagnosticFile(ReproCrashFilename, CrashDiagDir)) {
1319  Diag(clang::diag::note_drv_command_failed_diag_msg)
1320  << ReproCrashFilename.str();
1321  } else { // Suggest a directory for the user to look for .crash files.
1322  llvm::sys::path::append(CrashDiagDir, Name);
1323  CrashDiagDir += "_<YYYY-MM-DD-HHMMSS>_<hostname>.crash";
1324  Diag(clang::diag::note_drv_command_failed_diag_msg)
1325  << "Crash backtrace is located in";
1326  Diag(clang::diag::note_drv_command_failed_diag_msg)
1327  << CrashDiagDir.str();
1328  Diag(clang::diag::note_drv_command_failed_diag_msg)
1329  << "(choose the .crash file that corresponds to your crash)";
1330  }
1331  }
1332 
1333  for (const auto &A : C.getArgs().filtered(options::OPT_frewrite_map_file,
1334  options::OPT_frewrite_map_file_EQ))
1335  Diag(clang::diag::note_drv_command_failed_diag_msg) << A->getValue();
1336 
1337  Diag(clang::diag::note_drv_command_failed_diag_msg)
1338  << "\n\n********************";
1339 }
1340 
1341 void Driver::setUpResponseFiles(Compilation &C, Command &Cmd) {
1342  // Since commandLineFitsWithinSystemLimits() may underestimate system's capacity
1343  // if the tool does not support response files, there is a chance/ that things
1344  // will just work without a response file, so we silently just skip it.
1346  llvm::sys::commandLineFitsWithinSystemLimits(Cmd.getExecutable(), Cmd.getArguments()))
1347  return;
1348 
1349  std::string TmpName = GetTemporaryPath("response", "txt");
1350  Cmd.setResponseFile(C.addTempFile(C.getArgs().MakeArgString(TmpName)));
1351 }
1352 
1354  Compilation &C,
1355  SmallVectorImpl<std::pair<int, const Command *>> &FailingCommands) {
1356  // Just print if -### was present.
1357  if (C.getArgs().hasArg(options::OPT__HASH_HASH_HASH)) {
1358  C.getJobs().Print(llvm::errs(), "\n", true);
1359  return 0;
1360  }
1361 
1362  // If there were errors building the compilation, quit now.
1363  if (Diags.hasErrorOccurred())
1364  return 1;
1365 
1366  // Set up response file names for each command, if necessary
1367  for (auto &Job : C.getJobs())
1368  setUpResponseFiles(C, Job);
1369 
1370  C.ExecuteJobs(C.getJobs(), FailingCommands);
1371 
1372  // If the command succeeded, we are done.
1373  if (FailingCommands.empty())
1374  return 0;
1375 
1376  // Otherwise, remove result files and print extra information about abnormal
1377  // failures.
1378  for (const auto &CmdPair : FailingCommands) {
1379  int Res = CmdPair.first;
1380  const Command *FailingCommand = CmdPair.second;
1381 
1382  // Remove result files if we're not saving temps.
1383  if (!isSaveTempsEnabled()) {
1384  const JobAction *JA = cast<JobAction>(&FailingCommand->getSource());
1385  C.CleanupFileMap(C.getResultFiles(), JA, true);
1386 
1387  // Failure result files are valid unless we crashed.
1388  if (Res < 0)
1389  C.CleanupFileMap(C.getFailureResultFiles(), JA, true);
1390  }
1391 
1392  // Print extra information about abnormal failures, if possible.
1393  //
1394  // This is ad-hoc, but we don't want to be excessively noisy. If the result
1395  // status was 1, assume the command failed normally. In particular, if it
1396  // was the compiler then assume it gave a reasonable error code. Failures
1397  // in other tools are less common, and they generally have worse
1398  // diagnostics, so always print the diagnostic there.
1399  const Tool &FailingTool = FailingCommand->getCreator();
1400 
1401  if (!FailingCommand->getCreator().hasGoodDiagnostics() || Res != 1) {
1402  // FIXME: See FIXME above regarding result code interpretation.
1403  if (Res < 0)
1404  Diag(clang::diag::err_drv_command_signalled)
1405  << FailingTool.getShortName();
1406  else
1407  Diag(clang::diag::err_drv_command_failed) << FailingTool.getShortName()
1408  << Res;
1409  }
1410  }
1411  return 0;
1412 }
1413 
1414 void Driver::PrintHelp(bool ShowHidden) const {
1415  unsigned IncludedFlagsBitmask;
1416  unsigned ExcludedFlagsBitmask;
1417  std::tie(IncludedFlagsBitmask, ExcludedFlagsBitmask) =
1418  getIncludeExcludeOptionFlagMasks();
1419 
1420  ExcludedFlagsBitmask |= options::NoDriverOption;
1421  if (!ShowHidden)
1422  ExcludedFlagsBitmask |= HelpHidden;
1423 
1424  getOpts().PrintHelp(llvm::outs(), Name.c_str(), DriverTitle.c_str(),
1425  IncludedFlagsBitmask, ExcludedFlagsBitmask,
1426  /*ShowAllAliases=*/false);
1427 }
1428 
1429 void Driver::PrintVersion(const Compilation &C, raw_ostream &OS) const {
1430  // FIXME: The following handlers should use a callback mechanism, we don't
1431  // know what the client would like to do.
1432  OS << getClangFullVersion() << '\n';
1433  const ToolChain &TC = C.getDefaultToolChain();
1434  OS << "Target: " << TC.getTripleString() << '\n';
1435 
1436  // Print the threading model.
1437  if (Arg *A = C.getArgs().getLastArg(options::OPT_mthread_model)) {
1438  // Don't print if the ToolChain would have barfed on it already
1439  if (TC.isThreadModelSupported(A->getValue()))
1440  OS << "Thread model: " << A->getValue();
1441  } else
1442  OS << "Thread model: " << TC.getThreadModel();
1443  OS << '\n';
1444 
1445  // Print out the install directory.
1446  OS << "InstalledDir: " << InstalledDir << '\n';
1447 
1448  // If configuration file was used, print its path.
1449  if (!ConfigFile.empty())
1450  OS << "Configuration file: " << ConfigFile << '\n';
1451 }
1452 
1453 /// PrintDiagnosticCategories - Implement the --print-diagnostic-categories
1454 /// option.
1455 static void PrintDiagnosticCategories(raw_ostream &OS) {
1456  // Skip the empty category.
1457  for (unsigned i = 1, max = DiagnosticIDs::getNumberOfCategories(); i != max;
1458  ++i)
1459  OS << i << ',' << DiagnosticIDs::getCategoryNameFromID(i) << '\n';
1460 }
1461 
1462 void Driver::HandleAutocompletions(StringRef PassedFlags) const {
1463  if (PassedFlags == "")
1464  return;
1465  // Print out all options that start with a given argument. This is used for
1466  // shell autocompletion.
1467  std::vector<std::string> SuggestedCompletions;
1468  std::vector<std::string> Flags;
1469 
1470  unsigned short DisableFlags =
1472 
1473  // Parse PassedFlags by "," as all the command-line flags are passed to this
1474  // function separated by ","
1475  StringRef TargetFlags = PassedFlags;
1476  while (TargetFlags != "") {
1477  StringRef CurFlag;
1478  std::tie(CurFlag, TargetFlags) = TargetFlags.split(",");
1479  Flags.push_back(std::string(CurFlag));
1480  }
1481 
1482  // We want to show cc1-only options only when clang is invoked with -cc1 or
1483  // -Xclang.
1484  if (std::find(Flags.begin(), Flags.end(), "-Xclang") != Flags.end() ||
1485  std::find(Flags.begin(), Flags.end(), "-cc1") != Flags.end())
1486  DisableFlags &= ~options::NoDriverOption;
1487 
1488  StringRef Cur;
1489  Cur = Flags.at(Flags.size() - 1);
1490  StringRef Prev;
1491  if (Flags.size() >= 2) {
1492  Prev = Flags.at(Flags.size() - 2);
1493  SuggestedCompletions = Opts->suggestValueCompletions(Prev, Cur);
1494  }
1495 
1496  if (SuggestedCompletions.empty())
1497  SuggestedCompletions = Opts->suggestValueCompletions(Cur, "");
1498 
1499  if (SuggestedCompletions.empty()) {
1500  // If the flag is in the form of "--autocomplete=-foo",
1501  // we were requested to print out all option names that start with "-foo".
1502  // For example, "--autocomplete=-fsyn" is expanded to "-fsyntax-only".
1503  SuggestedCompletions = Opts->findByPrefix(Cur, DisableFlags);
1504 
1505  // We have to query the -W flags manually as they're not in the OptTable.
1506  // TODO: Find a good way to add them to OptTable instead and them remove
1507  // this code.
1508  for (StringRef S : DiagnosticIDs::getDiagnosticFlags())
1509  if (S.startswith(Cur))
1510  SuggestedCompletions.push_back(S);
1511  }
1512 
1513  // Sort the autocomplete candidates so that shells print them out in a
1514  // deterministic order. We could sort in any way, but we chose
1515  // case-insensitive sorting for consistency with the -help option
1516  // which prints out options in the case-insensitive alphabetical order.
1517  llvm::sort(SuggestedCompletions.begin(), SuggestedCompletions.end(),
1518  [](StringRef A, StringRef B) {
1519  if (int X = A.compare_lower(B))
1520  return X < 0;
1521  return A.compare(B) > 0;
1522  });
1523 
1524  llvm::outs() << llvm::join(SuggestedCompletions, "\n") << '\n';
1525 }
1526 
1528  // The order these options are handled in gcc is all over the place, but we
1529  // don't expect inconsistencies w.r.t. that to matter in practice.
1530 
1531  if (C.getArgs().hasArg(options::OPT_dumpmachine)) {
1532  llvm::outs() << C.getDefaultToolChain().getTripleString() << '\n';
1533  return false;
1534  }
1535 
1536  if (C.getArgs().hasArg(options::OPT_dumpversion)) {
1537  // Since -dumpversion is only implemented for pedantic GCC compatibility, we
1538  // return an answer which matches our definition of __VERSION__.
1539  //
1540  // If we want to return a more correct answer some day, then we should
1541  // introduce a non-pedantically GCC compatible mode to Clang in which we
1542  // provide sensible definitions for -dumpversion, __VERSION__, etc.
1543  llvm::outs() << "4.2.1\n";
1544  return false;
1545  }
1546 
1547  if (C.getArgs().hasArg(options::OPT__print_diagnostic_categories)) {
1548  PrintDiagnosticCategories(llvm::outs());
1549  return false;
1550  }
1551 
1552  if (C.getArgs().hasArg(options::OPT_help) ||
1553  C.getArgs().hasArg(options::OPT__help_hidden)) {
1554  PrintHelp(C.getArgs().hasArg(options::OPT__help_hidden));
1555  return false;
1556  }
1557 
1558  if (C.getArgs().hasArg(options::OPT__version)) {
1559  // Follow gcc behavior and use stdout for --version and stderr for -v.
1560  PrintVersion(C, llvm::outs());
1561  return false;
1562  }
1563 
1564  if (C.getArgs().hasArg(options::OPT_v) ||
1565  C.getArgs().hasArg(options::OPT__HASH_HASH_HASH)) {
1566  PrintVersion(C, llvm::errs());
1567  SuppressMissingInputWarning = true;
1568  }
1569 
1570  if (C.getArgs().hasArg(options::OPT_v)) {
1571  if (!SystemConfigDir.empty())
1572  llvm::errs() << "System configuration file directory: "
1573  << SystemConfigDir << "\n";
1574  if (!UserConfigDir.empty())
1575  llvm::errs() << "User configuration file directory: "
1576  << UserConfigDir << "\n";
1577  }
1578 
1579  const ToolChain &TC = C.getDefaultToolChain();
1580 
1581  if (C.getArgs().hasArg(options::OPT_v))
1582  TC.printVerboseInfo(llvm::errs());
1583 
1584  if (C.getArgs().hasArg(options::OPT_print_resource_dir)) {
1585  llvm::outs() << ResourceDir << '\n';
1586  return false;
1587  }
1588 
1589  if (C.getArgs().hasArg(options::OPT_print_search_dirs)) {
1590  llvm::outs() << "programs: =";
1591  bool separator = false;
1592  for (const std::string &Path : TC.getProgramPaths()) {
1593  if (separator)
1594  llvm::outs() << ':';
1595  llvm::outs() << Path;
1596  separator = true;
1597  }
1598  llvm::outs() << "\n";
1599  llvm::outs() << "libraries: =" << ResourceDir;
1600 
1601  StringRef sysroot = C.getSysRoot();
1602 
1603  for (const std::string &Path : TC.getFilePaths()) {
1604  // Always print a separator. ResourceDir was the first item shown.
1605  llvm::outs() << ':';
1606  // Interpretation of leading '=' is needed only for NetBSD.
1607  if (Path[0] == '=')
1608  llvm::outs() << sysroot << Path.substr(1);
1609  else
1610  llvm::outs() << Path;
1611  }
1612  llvm::outs() << "\n";
1613  return false;
1614  }
1615 
1616  // FIXME: The following handlers should use a callback mechanism, we don't
1617  // know what the client would like to do.
1618  if (Arg *A = C.getArgs().getLastArg(options::OPT_print_file_name_EQ)) {
1619  llvm::outs() << GetFilePath(A->getValue(), TC) << "\n";
1620  return false;
1621  }
1622 
1623  if (Arg *A = C.getArgs().getLastArg(options::OPT_print_prog_name_EQ)) {
1624  StringRef ProgName = A->getValue();
1625 
1626  // Null program name cannot have a path.
1627  if (! ProgName.empty())
1628  llvm::outs() << GetProgramPath(ProgName, TC);
1629 
1630  llvm::outs() << "\n";
1631  return false;
1632  }
1633 
1634  if (Arg *A = C.getArgs().getLastArg(options::OPT_autocomplete)) {
1635  StringRef PassedFlags = A->getValue();
1636  HandleAutocompletions(PassedFlags);
1637  return false;
1638  }
1639 
1640  if (C.getArgs().hasArg(options::OPT_print_libgcc_file_name)) {
1642  const llvm::Triple Triple(TC.ComputeEffectiveClangTriple(C.getArgs()));
1643  RegisterEffectiveTriple TripleRAII(TC, Triple);
1644  switch (RLT) {
1646  llvm::outs() << TC.getCompilerRT(C.getArgs(), "builtins") << "\n";
1647  break;
1648  case ToolChain::RLT_Libgcc:
1649  llvm::outs() << GetFilePath("libgcc.a", TC) << "\n";
1650  break;
1651  }
1652  return false;
1653  }
1654 
1655  if (C.getArgs().hasArg(options::OPT_print_multi_lib)) {
1656  for (const Multilib &Multilib : TC.getMultilibs())
1657  llvm::outs() << Multilib << "\n";
1658  return false;
1659  }
1660 
1661  if (C.getArgs().hasArg(options::OPT_print_multi_directory)) {
1662  for (const Multilib &Multilib : TC.getMultilibs()) {
1663  if (Multilib.gccSuffix().empty())
1664  llvm::outs() << ".\n";
1665  else {
1666  StringRef Suffix(Multilib.gccSuffix());
1667  assert(Suffix.front() == '/');
1668  llvm::outs() << Suffix.substr(1) << "\n";
1669  }
1670  }
1671  return false;
1672  }
1673  return true;
1674 }
1675 
1676 // Display an action graph human-readably. Action A is the "sink" node
1677 // and latest-occuring action. Traversal is in pre-order, visiting the
1678 // inputs to each action before printing the action itself.
1679 static unsigned PrintActions1(const Compilation &C, Action *A,
1680  std::map<Action *, unsigned> &Ids) {
1681  if (Ids.count(A)) // A was already visited.
1682  return Ids[A];
1683 
1684  std::string str;
1685  llvm::raw_string_ostream os(str);
1686 
1687  os << Action::getClassName(A->getKind()) << ", ";
1688  if (InputAction *IA = dyn_cast<InputAction>(A)) {
1689  os << "\"" << IA->getInputArg().getValue() << "\"";
1690  } else if (BindArchAction *BIA = dyn_cast<BindArchAction>(A)) {
1691  os << '"' << BIA->getArchName() << '"' << ", {"
1692  << PrintActions1(C, *BIA->input_begin(), Ids) << "}";
1693  } else if (OffloadAction *OA = dyn_cast<OffloadAction>(A)) {
1694  bool IsFirst = true;
1695  OA->doOnEachDependence(
1696  [&](Action *A, const ToolChain *TC, const char *BoundArch) {
1697  // E.g. for two CUDA device dependences whose bound arch is sm_20 and
1698  // sm_35 this will generate:
1699  // "cuda-device" (nvptx64-nvidia-cuda:sm_20) {#ID}, "cuda-device"
1700  // (nvptx64-nvidia-cuda:sm_35) {#ID}
1701  if (!IsFirst)
1702  os << ", ";
1703  os << '"';
1704  if (TC)
1705  os << A->getOffloadingKindPrefix();
1706  else
1707  os << "host";
1708  os << " (";
1709  os << TC->getTriple().normalize();
1710 
1711  if (BoundArch)
1712  os << ":" << BoundArch;
1713  os << ")";
1714  os << '"';
1715  os << " {" << PrintActions1(C, A, Ids) << "}";
1716  IsFirst = false;
1717  });
1718  } else {
1719  const ActionList *AL = &A->getInputs();
1720 
1721  if (AL->size()) {
1722  const char *Prefix = "{";
1723  for (Action *PreRequisite : *AL) {
1724  os << Prefix << PrintActions1(C, PreRequisite, Ids);
1725  Prefix = ", ";
1726  }
1727  os << "}";
1728  } else
1729  os << "{}";
1730  }
1731 
1732  // Append offload info for all options other than the offloading action
1733  // itself (e.g. (cuda-device, sm_20) or (cuda-host)).
1734  std::string offload_str;
1735  llvm::raw_string_ostream offload_os(offload_str);
1736  if (!isa<OffloadAction>(A)) {
1737  auto S = A->getOffloadingKindPrefix();
1738  if (!S.empty()) {
1739  offload_os << ", (" << S;
1740  if (A->getOffloadingArch())
1741  offload_os << ", " << A->getOffloadingArch();
1742  offload_os << ")";
1743  }
1744  }
1745 
1746  unsigned Id = Ids.size();
1747  Ids[A] = Id;
1748  llvm::errs() << Id << ": " << os.str() << ", "
1749  << types::getTypeName(A->getType()) << offload_os.str() << "\n";
1750 
1751  return Id;
1752 }
1753 
1754 // Print the action graphs in a compilation C.
1755 // For example "clang -c file1.c file2.c" is composed of two subgraphs.
1756 void Driver::PrintActions(const Compilation &C) const {
1757  std::map<Action *, unsigned> Ids;
1758  for (Action *A : C.getActions())
1759  PrintActions1(C, A, Ids);
1760 }
1761 
1762 /// Check whether the given input tree contains any compilation or
1763 /// assembly actions.
1765  if (isa<CompileJobAction>(A) || isa<BackendJobAction>(A) ||
1766  isa<AssembleJobAction>(A))
1767  return true;
1768 
1769  for (const Action *Input : A->inputs())
1771  return true;
1772 
1773  return false;
1774 }
1775 
1777  const InputList &BAInputs) const {
1778  DerivedArgList &Args = C.getArgs();
1779  ActionList &Actions = C.getActions();
1780  llvm::PrettyStackTraceString CrashInfo("Building universal build actions");
1781  // Collect the list of architectures. Duplicates are allowed, but should only
1782  // be handled once (in the order seen).
1783  llvm::StringSet<> ArchNames;
1785  for (Arg *A : Args) {
1786  if (A->getOption().matches(options::OPT_arch)) {
1787  // Validate the option here; we don't save the type here because its
1788  // particular spelling may participate in other driver choices.
1789  llvm::Triple::ArchType Arch =
1791  if (Arch == llvm::Triple::UnknownArch) {
1792  Diag(clang::diag::err_drv_invalid_arch_name) << A->getAsString(Args);
1793  continue;
1794  }
1795 
1796  A->claim();
1797  if (ArchNames.insert(A->getValue()).second)
1798  Archs.push_back(A->getValue());
1799  }
1800  }
1801 
1802  // When there is no explicit arch for this platform, make sure we still bind
1803  // the architecture (to the default) so that -Xarch_ is handled correctly.
1804  if (!Archs.size())
1805  Archs.push_back(Args.MakeArgString(TC.getDefaultUniversalArchName()));
1806 
1807  ActionList SingleActions;
1808  BuildActions(C, Args, BAInputs, SingleActions);
1809 
1810  // Add in arch bindings for every top level action, as well as lipo and
1811  // dsymutil steps if needed.
1812  for (Action* Act : SingleActions) {
1813  // Make sure we can lipo this kind of output. If not (and it is an actual
1814  // output) then we disallow, since we can't create an output file with the
1815  // right name without overwriting it. We could remove this oddity by just
1816  // changing the output names to include the arch, which would also fix
1817  // -save-temps. Compatibility wins for now.
1818 
1819  if (Archs.size() > 1 && !types::canLipoType(Act->getType()))
1820  Diag(clang::diag::err_drv_invalid_output_with_multiple_archs)
1821  << types::getTypeName(Act->getType());
1822 
1823  ActionList Inputs;
1824  for (unsigned i = 0, e = Archs.size(); i != e; ++i)
1825  Inputs.push_back(C.MakeAction<BindArchAction>(Act, Archs[i]));
1826 
1827  // Lipo if necessary, we do it this way because we need to set the arch flag
1828  // so that -Xarch_ gets overwritten.
1829  if (Inputs.size() == 1 || Act->getType() == types::TY_Nothing)
1830  Actions.append(Inputs.begin(), Inputs.end());
1831  else
1832  Actions.push_back(C.MakeAction<LipoJobAction>(Inputs, Act->getType()));
1833 
1834  // Handle debug info queries.
1835  Arg *A = Args.getLastArg(options::OPT_g_Group);
1836  if (A && !A->getOption().matches(options::OPT_g0) &&
1837  !A->getOption().matches(options::OPT_gstabs) &&
1838  ContainsCompileOrAssembleAction(Actions.back())) {
1839 
1840  // Add a 'dsymutil' step if necessary, when debug info is enabled and we
1841  // have a compile input. We need to run 'dsymutil' ourselves in such cases
1842  // because the debug info will refer to a temporary object file which
1843  // will be removed at the end of the compilation process.
1844  if (Act->getType() == types::TY_Image) {
1845  ActionList Inputs;
1846  Inputs.push_back(Actions.back());
1847  Actions.pop_back();
1848  Actions.push_back(
1849  C.MakeAction<DsymutilJobAction>(Inputs, types::TY_dSYM));
1850  }
1851 
1852  // Verify the debug info output.
1853  if (Args.hasArg(options::OPT_verify_debug_info)) {
1854  Action* LastAction = Actions.back();
1855  Actions.pop_back();
1856  Actions.push_back(C.MakeAction<VerifyDebugInfoJobAction>(
1857  LastAction, types::TY_Nothing));
1858  }
1859  }
1860  }
1861 }
1862 
1863 /// Check that the file referenced by Value exists. If it doesn't,
1864 /// issue a diagnostic and return false.
1865 static bool DiagnoseInputExistence(const Driver &D, const DerivedArgList &Args,
1866  StringRef Value, types::ID Ty) {
1867  if (!D.getCheckInputsExist())
1868  return true;
1869 
1870  // stdin always exists.
1871  if (Value == "-")
1872  return true;
1873 
1874  SmallString<64> Path(Value);
1875  if (Arg *WorkDir = Args.getLastArg(options::OPT_working_directory)) {
1876  if (!llvm::sys::path::is_absolute(Path)) {
1877  SmallString<64> Directory(WorkDir->getValue());
1878  llvm::sys::path::append(Directory, Value);
1879  Path.assign(Directory);
1880  }
1881  }
1882 
1883  if (llvm::sys::fs::exists(Twine(Path)))
1884  return true;
1885 
1886  if (D.IsCLMode()) {
1887  if (!llvm::sys::path::is_absolute(Twine(Path)) &&
1888  llvm::sys::Process::FindInEnvPath("LIB", Value))
1889  return true;
1890 
1891  if (Args.hasArg(options::OPT__SLASH_link) && Ty == types::TY_Object) {
1892  // Arguments to the /link flag might cause the linker to search for object
1893  // and library files in paths we don't know about. Don't error in such
1894  // cases.
1895  return true;
1896  }
1897  }
1898 
1899  D.Diag(clang::diag::err_drv_no_such_file) << Path;
1900  return false;
1901 }
1902 
1903 // Construct a the list of inputs and their types.
1904 void Driver::BuildInputs(const ToolChain &TC, DerivedArgList &Args,
1905  InputList &Inputs) const {
1906  // Track the current user specified (-x) input. We also explicitly track the
1907  // argument used to set the type; we only want to claim the type when we
1908  // actually use it, so we warn about unused -x arguments.
1909  types::ID InputType = types::TY_Nothing;
1910  Arg *InputTypeArg = nullptr;
1911 
1912  // The last /TC or /TP option sets the input type to C or C++ globally.
1913  if (Arg *TCTP = Args.getLastArgNoClaim(options::OPT__SLASH_TC,
1914  options::OPT__SLASH_TP)) {
1915  InputTypeArg = TCTP;
1916  InputType = TCTP->getOption().matches(options::OPT__SLASH_TC)
1917  ? types::TY_C
1918  : types::TY_CXX;
1919 
1920  Arg *Previous = nullptr;
1921  bool ShowNote = false;
1922  for (Arg *A : Args.filtered(options::OPT__SLASH_TC, options::OPT__SLASH_TP)) {
1923  if (Previous) {
1924  Diag(clang::diag::warn_drv_overriding_flag_option)
1925  << Previous->getSpelling() << A->getSpelling();
1926  ShowNote = true;
1927  }
1928  Previous = A;
1929  }
1930  if (ShowNote)
1931  Diag(clang::diag::note_drv_t_option_is_global);
1932 
1933  // No driver mode exposes -x and /TC or /TP; we don't support mixing them.
1934  assert(!Args.hasArg(options::OPT_x) && "-x and /TC or /TP is not allowed");
1935  }
1936 
1937  for (Arg *A : Args) {
1938  if (A->getOption().getKind() == Option::InputClass) {
1939  const char *Value = A->getValue();
1941 
1942  // Infer the input type if necessary.
1943  if (InputType == types::TY_Nothing) {
1944  // If there was an explicit arg for this, claim it.
1945  if (InputTypeArg)
1946  InputTypeArg->claim();
1947 
1948  // stdin must be handled specially.
1949  if (memcmp(Value, "-", 2) == 0) {
1950  // If running with -E, treat as a C input (this changes the builtin
1951  // macros, for example). This may be overridden by -ObjC below.
1952  //
1953  // Otherwise emit an error but still use a valid type to avoid
1954  // spurious errors (e.g., no inputs).
1955  if (!Args.hasArgNoClaim(options::OPT_E) && !CCCIsCPP())
1956  Diag(IsCLMode() ? clang::diag::err_drv_unknown_stdin_type_clang_cl
1957  : clang::diag::err_drv_unknown_stdin_type);
1958  Ty = types::TY_C;
1959  } else {
1960  // Otherwise lookup by extension.
1961  // Fallback is C if invoked as C preprocessor or Object otherwise.
1962  // We use a host hook here because Darwin at least has its own
1963  // idea of what .s is.
1964  if (const char *Ext = strrchr(Value, '.'))
1965  Ty = TC.LookupTypeForExtension(Ext + 1);
1966 
1967  if (Ty == types::TY_INVALID) {
1968  if (CCCIsCPP())
1969  Ty = types::TY_C;
1970  else
1971  Ty = types::TY_Object;
1972  }
1973 
1974  // If the driver is invoked as C++ compiler (like clang++ or c++) it
1975  // should autodetect some input files as C++ for g++ compatibility.
1976  if (CCCIsCXX()) {
1977  types::ID OldTy = Ty;
1979 
1980  if (Ty != OldTy)
1981  Diag(clang::diag::warn_drv_treating_input_as_cxx)
1982  << getTypeName(OldTy) << getTypeName(Ty);
1983  }
1984  }
1985 
1986  // -ObjC and -ObjC++ override the default language, but only for "source
1987  // files". We just treat everything that isn't a linker input as a
1988  // source file.
1989  //
1990  // FIXME: Clean this up if we move the phase sequence into the type.
1991  if (Ty != types::TY_Object) {
1992  if (Args.hasArg(options::OPT_ObjC))
1993  Ty = types::TY_ObjC;
1994  else if (Args.hasArg(options::OPT_ObjCXX))
1995  Ty = types::TY_ObjCXX;
1996  }
1997  } else {
1998  assert(InputTypeArg && "InputType set w/o InputTypeArg");
1999  if (!InputTypeArg->getOption().matches(options::OPT_x)) {
2000  // If emulating cl.exe, make sure that /TC and /TP don't affect input
2001  // object files.
2002  const char *Ext = strrchr(Value, '.');
2003  if (Ext && TC.LookupTypeForExtension(Ext + 1) == types::TY_Object)
2004  Ty = types::TY_Object;
2005  }
2006  if (Ty == types::TY_INVALID) {
2007  Ty = InputType;
2008  InputTypeArg->claim();
2009  }
2010  }
2011 
2012  if (DiagnoseInputExistence(*this, Args, Value, Ty))
2013  Inputs.push_back(std::make_pair(Ty, A));
2014 
2015  } else if (A->getOption().matches(options::OPT__SLASH_Tc)) {
2016  StringRef Value = A->getValue();
2017  if (DiagnoseInputExistence(*this, Args, Value, types::TY_C)) {
2018  Arg *InputArg = MakeInputArg(Args, *Opts, A->getValue());
2019  Inputs.push_back(std::make_pair(types::TY_C, InputArg));
2020  }
2021  A->claim();
2022  } else if (A->getOption().matches(options::OPT__SLASH_Tp)) {
2023  StringRef Value = A->getValue();
2024  if (DiagnoseInputExistence(*this, Args, Value, types::TY_CXX)) {
2025  Arg *InputArg = MakeInputArg(Args, *Opts, A->getValue());
2026  Inputs.push_back(std::make_pair(types::TY_CXX, InputArg));
2027  }
2028  A->claim();
2029  } else if (A->getOption().hasFlag(options::LinkerInput)) {
2030  // Just treat as object type, we could make a special type for this if
2031  // necessary.
2032  Inputs.push_back(std::make_pair(types::TY_Object, A));
2033 
2034  } else if (A->getOption().matches(options::OPT_x)) {
2035  InputTypeArg = A;
2036  InputType = types::lookupTypeForTypeSpecifier(A->getValue());
2037  A->claim();
2038 
2039  // Follow gcc behavior and treat as linker input for invalid -x
2040  // options. Its not clear why we shouldn't just revert to unknown; but
2041  // this isn't very important, we might as well be bug compatible.
2042  if (!InputType) {
2043  Diag(clang::diag::err_drv_unknown_language) << A->getValue();
2044  InputType = types::TY_Object;
2045  }
2046  } else if (A->getOption().getID() == options::OPT__SLASH_U) {
2047  assert(A->getNumValues() == 1 && "The /U option has one value.");
2048  StringRef Val = A->getValue(0);
2049  if (Val.find_first_of("/\\") != StringRef::npos) {
2050  // Warn about e.g. "/Users/me/myfile.c".
2051  Diag(diag::warn_slash_u_filename) << Val;
2052  Diag(diag::note_use_dashdash);
2053  }
2054  }
2055  }
2056  if (CCCIsCPP() && Inputs.empty()) {
2057  // If called as standalone preprocessor, stdin is processed
2058  // if no other input is present.
2059  Arg *A = MakeInputArg(Args, *Opts, "-");
2060  Inputs.push_back(std::make_pair(types::TY_C, A));
2061  }
2062 }
2063 
2064 namespace {
2065 /// Provides a convenient interface for different programming models to generate
2066 /// the required device actions.
2067 class OffloadingActionBuilder final {
2068  /// Flag used to trace errors in the builder.
2069  bool IsValid = false;
2070 
2071  /// The compilation that is using this builder.
2072  Compilation &C;
2073 
2074  /// Map between an input argument and the offload kinds used to process it.
2075  std::map<const Arg *, unsigned> InputArgToOffloadKindMap;
2076 
2077  /// Builder interface. It doesn't build anything or keep any state.
2078  class DeviceActionBuilder {
2079  public:
2081 
2082  enum ActionBuilderReturnCode {
2083  // The builder acted successfully on the current action.
2084  ABRT_Success,
2085  // The builder didn't have to act on the current action.
2086  ABRT_Inactive,
2087  // The builder was successful and requested the host action to not be
2088  // generated.
2089  ABRT_Ignore_Host,
2090  };
2091 
2092  protected:
2093  /// Compilation associated with this builder.
2094  Compilation &C;
2095 
2096  /// Tool chains associated with this builder. The same programming
2097  /// model may have associated one or more tool chains.
2099 
2100  /// The derived arguments associated with this builder.
2101  DerivedArgList &Args;
2102 
2103  /// The inputs associated with this builder.
2104  const Driver::InputList &Inputs;
2105 
2106  /// The associated offload kind.
2107  Action::OffloadKind AssociatedOffloadKind = Action::OFK_None;
2108 
2109  public:
2110  DeviceActionBuilder(Compilation &C, DerivedArgList &Args,
2111  const Driver::InputList &Inputs,
2112  Action::OffloadKind AssociatedOffloadKind)
2113  : C(C), Args(Args), Inputs(Inputs),
2114  AssociatedOffloadKind(AssociatedOffloadKind) {}
2115  virtual ~DeviceActionBuilder() {}
2116 
2117  /// Fill up the array \a DA with all the device dependences that should be
2118  /// added to the provided host action \a HostAction. By default it is
2119  /// inactive.
2120  virtual ActionBuilderReturnCode
2121  getDeviceDependences(OffloadAction::DeviceDependences &DA,
2122  phases::ID CurPhase, phases::ID FinalPhase,
2123  PhasesTy &Phases) {
2124  return ABRT_Inactive;
2125  }
2126 
2127  /// Update the state to include the provided host action \a HostAction as a
2128  /// dependency of the current device action. By default it is inactive.
2129  virtual ActionBuilderReturnCode addDeviceDepences(Action *HostAction) {
2130  return ABRT_Inactive;
2131  }
2132 
2133  /// Append top level actions generated by the builder. Return true if errors
2134  /// were found.
2135  virtual void appendTopLevelActions(ActionList &AL) {}
2136 
2137  /// Append linker actions generated by the builder. Return true if errors
2138  /// were found.
2139  virtual void appendLinkDependences(OffloadAction::DeviceDependences &DA) {}
2140 
2141  /// Initialize the builder. Return true if any initialization errors are
2142  /// found.
2143  virtual bool initialize() { return false; }
2144 
2145  /// Return true if the builder can use bundling/unbundling.
2146  virtual bool canUseBundlerUnbundler() const { return false; }
2147 
2148  /// Return true if this builder is valid. We have a valid builder if we have
2149  /// associated device tool chains.
2150  bool isValid() { return !ToolChains.empty(); }
2151 
2152  /// Return the associated offload kind.
2153  Action::OffloadKind getAssociatedOffloadKind() {
2154  return AssociatedOffloadKind;
2155  }
2156  };
2157 
2158  /// Base class for CUDA/HIP action builder. It injects device code in
2159  /// the host backend action.
2160  class CudaActionBuilderBase : public DeviceActionBuilder {
2161  protected:
2162  /// Flags to signal if the user requested host-only or device-only
2163  /// compilation.
2164  bool CompileHostOnly = false;
2165  bool CompileDeviceOnly = false;
2166 
2167  /// List of GPU architectures to use in this compilation.
2168  SmallVector<CudaArch, 4> GpuArchList;
2169 
2170  /// The CUDA actions for the current input.
2171  ActionList CudaDeviceActions;
2172 
2173  /// The CUDA fat binary if it was generated for the current input.
2174  Action *CudaFatBinary = nullptr;
2175 
2176  /// Flag that is set to true if this builder acted on the current input.
2177  bool IsActive = false;
2178  public:
2179  CudaActionBuilderBase(Compilation &C, DerivedArgList &Args,
2180  const Driver::InputList &Inputs,
2181  Action::OffloadKind OFKind)
2182  : DeviceActionBuilder(C, Args, Inputs, OFKind) {}
2183 
2184  ActionBuilderReturnCode addDeviceDepences(Action *HostAction) override {
2185  // While generating code for CUDA, we only depend on the host input action
2186  // to trigger the creation of all the CUDA device actions.
2187 
2188  // If we are dealing with an input action, replicate it for each GPU
2189  // architecture. If we are in host-only mode we return 'success' so that
2190  // the host uses the CUDA offload kind.
2191  if (auto *IA = dyn_cast<InputAction>(HostAction)) {
2192  assert(!GpuArchList.empty() &&
2193  "We should have at least one GPU architecture.");
2194 
2195  // If the host input is not CUDA or HIP, we don't need to bother about
2196  // this input.
2197  if (IA->getType() != types::TY_CUDA &&
2198  IA->getType() != types::TY_HIP) {
2199  // The builder will ignore this input.
2200  IsActive = false;
2201  return ABRT_Inactive;
2202  }
2203 
2204  // Set the flag to true, so that the builder acts on the current input.
2205  IsActive = true;
2206 
2207  if (CompileHostOnly)
2208  return ABRT_Success;
2209 
2210  // Replicate inputs for each GPU architecture.
2211  auto Ty = IA->getType() == types::TY_HIP ? types::TY_HIP_DEVICE
2212  : types::TY_CUDA_DEVICE;
2213  for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) {
2214  CudaDeviceActions.push_back(
2215  C.MakeAction<InputAction>(IA->getInputArg(), Ty));
2216  }
2217 
2218  return ABRT_Success;
2219  }
2220 
2221  // If this is an unbundling action use it as is for each CUDA toolchain.
2222  if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction)) {
2223  CudaDeviceActions.clear();
2224  for (auto Arch : GpuArchList) {
2225  CudaDeviceActions.push_back(UA);
2226  UA->registerDependentActionInfo(ToolChains[0], CudaArchToString(Arch),
2227  AssociatedOffloadKind);
2228  }
2229  return ABRT_Success;
2230  }
2231 
2232  return IsActive ? ABRT_Success : ABRT_Inactive;
2233  }
2234 
2235  void appendTopLevelActions(ActionList &AL) override {
2236  // Utility to append actions to the top level list.
2237  auto AddTopLevel = [&](Action *A, CudaArch BoundArch) {
2239  Dep.add(*A, *ToolChains.front(), CudaArchToString(BoundArch),
2240  AssociatedOffloadKind);
2241  AL.push_back(C.MakeAction<OffloadAction>(Dep, A->getType()));
2242  };
2243 
2244  // If we have a fat binary, add it to the list.
2245  if (CudaFatBinary) {
2246  AddTopLevel(CudaFatBinary, CudaArch::UNKNOWN);
2247  CudaDeviceActions.clear();
2248  CudaFatBinary = nullptr;
2249  return;
2250  }
2251 
2252  if (CudaDeviceActions.empty())
2253  return;
2254 
2255  // If we have CUDA actions at this point, that's because we have a have
2256  // partial compilation, so we should have an action for each GPU
2257  // architecture.
2258  assert(CudaDeviceActions.size() == GpuArchList.size() &&
2259  "Expecting one action per GPU architecture.");
2260  assert(ToolChains.size() == 1 &&
2261  "Expecting to have a sing CUDA toolchain.");
2262  for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I)
2263  AddTopLevel(CudaDeviceActions[I], GpuArchList[I]);
2264 
2265  CudaDeviceActions.clear();
2266  }
2267 
2268  bool initialize() override {
2269  assert(AssociatedOffloadKind == Action::OFK_Cuda ||
2270  AssociatedOffloadKind == Action::OFK_HIP);
2271 
2272  // We don't need to support CUDA.
2273  if (AssociatedOffloadKind == Action::OFK_Cuda &&
2275  return false;
2276 
2277  // We don't need to support HIP.
2278  if (AssociatedOffloadKind == Action::OFK_HIP &&
2280  return false;
2281 
2283  assert(HostTC && "No toolchain for host compilation.");
2284  if (HostTC->getTriple().isNVPTX() ||
2285  HostTC->getTriple().getArch() == llvm::Triple::amdgcn) {
2286  // We do not support targeting NVPTX/AMDGCN for host compilation. Throw
2287  // an error and abort pipeline construction early so we don't trip
2288  // asserts that assume device-side compilation.
2289  C.getDriver().Diag(diag::err_drv_cuda_host_arch)
2290  << HostTC->getTriple().getArchName();
2291  return true;
2292  }
2293 
2294  ToolChains.push_back(
2295  AssociatedOffloadKind == Action::OFK_Cuda
2298 
2299  Arg *PartialCompilationArg = Args.getLastArg(
2300  options::OPT_cuda_host_only, options::OPT_cuda_device_only,
2301  options::OPT_cuda_compile_host_device);
2302  CompileHostOnly = PartialCompilationArg &&
2303  PartialCompilationArg->getOption().matches(
2304  options::OPT_cuda_host_only);
2305  CompileDeviceOnly = PartialCompilationArg &&
2306  PartialCompilationArg->getOption().matches(
2307  options::OPT_cuda_device_only);
2308 
2309  // Collect all cuda_gpu_arch parameters, removing duplicates.
2310  std::set<CudaArch> GpuArchs;
2311  bool Error = false;
2312  for (Arg *A : Args) {
2313  if (!(A->getOption().matches(options::OPT_cuda_gpu_arch_EQ) ||
2314  A->getOption().matches(options::OPT_no_cuda_gpu_arch_EQ)))
2315  continue;
2316  A->claim();
2317 
2318  const StringRef ArchStr = A->getValue();
2319  if (A->getOption().matches(options::OPT_no_cuda_gpu_arch_EQ) &&
2320  ArchStr == "all") {
2321  GpuArchs.clear();
2322  continue;
2323  }
2324  CudaArch Arch = StringToCudaArch(ArchStr);
2325  if (Arch == CudaArch::UNKNOWN) {
2326  C.getDriver().Diag(clang::diag::err_drv_cuda_bad_gpu_arch) << ArchStr;
2327  Error = true;
2328  } else if (A->getOption().matches(options::OPT_cuda_gpu_arch_EQ))
2329  GpuArchs.insert(Arch);
2330  else if (A->getOption().matches(options::OPT_no_cuda_gpu_arch_EQ))
2331  GpuArchs.erase(Arch);
2332  else
2333  llvm_unreachable("Unexpected option.");
2334  }
2335 
2336  // Collect list of GPUs remaining in the set.
2337  for (CudaArch Arch : GpuArchs)
2338  GpuArchList.push_back(Arch);
2339 
2340  // Default to sm_20 which is the lowest common denominator for
2341  // supported GPUs. sm_20 code should work correctly, if
2342  // suboptimally, on all newer GPUs.
2343  if (GpuArchList.empty())
2344  GpuArchList.push_back(CudaArch::SM_20);
2345 
2346  return Error;
2347  }
2348  };
2349 
2350  /// \brief CUDA action builder. It injects device code in the host backend
2351  /// action.
2352  class CudaActionBuilder final : public CudaActionBuilderBase {
2353  public:
2354  CudaActionBuilder(Compilation &C, DerivedArgList &Args,
2355  const Driver::InputList &Inputs)
2356  : CudaActionBuilderBase(C, Args, Inputs, Action::OFK_Cuda) {}
2357 
2358  ActionBuilderReturnCode
2359  getDeviceDependences(OffloadAction::DeviceDependences &DA,
2360  phases::ID CurPhase, phases::ID FinalPhase,
2361  PhasesTy &Phases) override {
2362  if (!IsActive)
2363  return ABRT_Inactive;
2364 
2365  // If we don't have more CUDA actions, we don't have any dependences to
2366  // create for the host.
2367  if (CudaDeviceActions.empty())
2368  return ABRT_Success;
2369 
2370  assert(CudaDeviceActions.size() == GpuArchList.size() &&
2371  "Expecting one action per GPU architecture.");
2372  assert(!CompileHostOnly &&
2373  "Not expecting CUDA actions in host-only compilation.");
2374 
2375  // If we are generating code for the device or we are in a backend phase,
2376  // we attempt to generate the fat binary. We compile each arch to ptx and
2377  // assemble to cubin, then feed the cubin *and* the ptx into a device
2378  // "link" action, which uses fatbinary to combine these cubins into one
2379  // fatbin. The fatbin is then an input to the host action if not in
2380  // device-only mode.
2381  if (CompileDeviceOnly || CurPhase == phases::Backend) {
2382  ActionList DeviceActions;
2383  for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) {
2384  // Produce the device action from the current phase up to the assemble
2385  // phase.
2386  for (auto Ph : Phases) {
2387  // Skip the phases that were already dealt with.
2388  if (Ph < CurPhase)
2389  continue;
2390  // We have to be consistent with the host final phase.
2391  if (Ph > FinalPhase)
2392  break;
2393 
2394  CudaDeviceActions[I] = C.getDriver().ConstructPhaseAction(
2395  C, Args, Ph, CudaDeviceActions[I], Action::OFK_Cuda);
2396 
2397  if (Ph == phases::Assemble)
2398  break;
2399  }
2400 
2401  // If we didn't reach the assemble phase, we can't generate the fat
2402  // binary. We don't need to generate the fat binary if we are not in
2403  // device-only mode.
2404  if (!isa<AssembleJobAction>(CudaDeviceActions[I]) ||
2405  CompileDeviceOnly)
2406  continue;
2407 
2408  Action *AssembleAction = CudaDeviceActions[I];
2409  assert(AssembleAction->getType() == types::TY_Object);
2410  assert(AssembleAction->getInputs().size() == 1);
2411 
2412  Action *BackendAction = AssembleAction->getInputs()[0];
2413  assert(BackendAction->getType() == types::TY_PP_Asm);
2414 
2415  for (auto &A : {AssembleAction, BackendAction}) {
2417  DDep.add(*A, *ToolChains.front(), CudaArchToString(GpuArchList[I]),
2419  DeviceActions.push_back(
2420  C.MakeAction<OffloadAction>(DDep, A->getType()));
2421  }
2422  }
2423 
2424  // We generate the fat binary if we have device input actions.
2425  if (!DeviceActions.empty()) {
2426  CudaFatBinary =
2427  C.MakeAction<LinkJobAction>(DeviceActions, types::TY_CUDA_FATBIN);
2428 
2429  if (!CompileDeviceOnly) {
2430  DA.add(*CudaFatBinary, *ToolChains.front(), /*BoundArch=*/nullptr,
2432  // Clear the fat binary, it is already a dependence to an host
2433  // action.
2434  CudaFatBinary = nullptr;
2435  }
2436 
2437  // Remove the CUDA actions as they are already connected to an host
2438  // action or fat binary.
2439  CudaDeviceActions.clear();
2440  }
2441 
2442  // We avoid creating host action in device-only mode.
2443  return CompileDeviceOnly ? ABRT_Ignore_Host : ABRT_Success;
2444  } else if (CurPhase > phases::Backend) {
2445  // If we are past the backend phase and still have a device action, we
2446  // don't have to do anything as this action is already a device
2447  // top-level action.
2448  return ABRT_Success;
2449  }
2450 
2451  assert(CurPhase < phases::Backend && "Generating single CUDA "
2452  "instructions should only occur "
2453  "before the backend phase!");
2454 
2455  // By default, we produce an action for each device arch.
2456  for (Action *&A : CudaDeviceActions)
2457  A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A);
2458 
2459  return ABRT_Success;
2460  }
2461  };
2462  /// \brief HIP action builder. It injects device code in the host backend
2463  /// action.
2464  class HIPActionBuilder final : public CudaActionBuilderBase {
2465  /// The linker inputs obtained for each device arch.
2466  SmallVector<ActionList, 8> DeviceLinkerInputs;
2467 
2468  public:
2469  HIPActionBuilder(Compilation &C, DerivedArgList &Args,
2470  const Driver::InputList &Inputs)
2471  : CudaActionBuilderBase(C, Args, Inputs, Action::OFK_HIP) {}
2472 
2473  bool canUseBundlerUnbundler() const override { return true; }
2474 
2475  ActionBuilderReturnCode
2476  getDeviceDependences(OffloadAction::DeviceDependences &DA,
2477  phases::ID CurPhase, phases::ID FinalPhase,
2478  PhasesTy &Phases) override {
2479  // amdgcn does not support linking of object files, therefore we skip
2480  // backend and assemble phases to output LLVM IR.
2481  if (CudaDeviceActions.empty() || CurPhase == phases::Backend ||
2482  CurPhase == phases::Assemble)
2483  return ABRT_Success;
2484 
2485  assert((CurPhase == phases::Link ||
2486  CudaDeviceActions.size() == GpuArchList.size()) &&
2487  "Expecting one action per GPU architecture.");
2488  assert(!CompileHostOnly &&
2489  "Not expecting CUDA actions in host-only compilation.");
2490 
2491  // Save CudaDeviceActions to DeviceLinkerInputs for each GPU subarch.
2492  // This happens to each device action originated from each input file.
2493  // Later on, device actions in DeviceLinkerInputs are used to create
2494  // device link actions in appendLinkDependences and the created device
2495  // link actions are passed to the offload action as device dependence.
2496  if (CurPhase == phases::Link) {
2497  DeviceLinkerInputs.resize(CudaDeviceActions.size());
2498  auto LI = DeviceLinkerInputs.begin();
2499  for (auto *A : CudaDeviceActions) {
2500  LI->push_back(A);
2501  ++LI;
2502  }
2503 
2504  // We will pass the device action as a host dependence, so we don't
2505  // need to do anything else with them.
2506  CudaDeviceActions.clear();
2507  return ABRT_Success;
2508  }
2509 
2510  // By default, we produce an action for each device arch.
2511  for (Action *&A : CudaDeviceActions)
2512  A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A,
2513  AssociatedOffloadKind);
2514 
2515  return ABRT_Success;
2516  }
2517 
2518  void appendLinkDependences(OffloadAction::DeviceDependences &DA) override {
2519  // Append a new link action for each device.
2520  unsigned I = 0;
2521  for (auto &LI : DeviceLinkerInputs) {
2522  auto *DeviceLinkAction =
2523  C.MakeAction<LinkJobAction>(LI, types::TY_Image);
2524  DA.add(*DeviceLinkAction, *ToolChains[0],
2525  CudaArchToString(GpuArchList[I]), AssociatedOffloadKind);
2526  ++I;
2527  }
2528  }
2529  };
2530 
2531  /// OpenMP action builder. The host bitcode is passed to the device frontend
2532  /// and all the device linked images are passed to the host link phase.
2533  class OpenMPActionBuilder final : public DeviceActionBuilder {
2534  /// The OpenMP actions for the current input.
2535  ActionList OpenMPDeviceActions;
2536 
2537  /// The linker inputs obtained for each toolchain.
2538  SmallVector<ActionList, 8> DeviceLinkerInputs;
2539 
2540  public:
2541  OpenMPActionBuilder(Compilation &C, DerivedArgList &Args,
2542  const Driver::InputList &Inputs)
2543  : DeviceActionBuilder(C, Args, Inputs, Action::OFK_OpenMP) {}
2544 
2545  ActionBuilderReturnCode
2546  getDeviceDependences(OffloadAction::DeviceDependences &DA,
2547  phases::ID CurPhase, phases::ID FinalPhase,
2548  PhasesTy &Phases) override {
2549 
2550  // We should always have an action for each input.
2551  assert(OpenMPDeviceActions.size() == ToolChains.size() &&
2552  "Number of OpenMP actions and toolchains do not match.");
2553 
2554  // The host only depends on device action in the linking phase, when all
2555  // the device images have to be embedded in the host image.
2556  if (CurPhase == phases::Link) {
2557  assert(ToolChains.size() == DeviceLinkerInputs.size() &&
2558  "Toolchains and linker inputs sizes do not match.");
2559  auto LI = DeviceLinkerInputs.begin();
2560  for (auto *A : OpenMPDeviceActions) {
2561  LI->push_back(A);
2562  ++LI;
2563  }
2564 
2565  // We passed the device action as a host dependence, so we don't need to
2566  // do anything else with them.
2567  OpenMPDeviceActions.clear();
2568  return ABRT_Success;
2569  }
2570 
2571  // By default, we produce an action for each device arch.
2572  for (Action *&A : OpenMPDeviceActions)
2573  A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A);
2574 
2575  return ABRT_Success;
2576  }
2577 
2578  ActionBuilderReturnCode addDeviceDepences(Action *HostAction) override {
2579 
2580  // If this is an input action replicate it for each OpenMP toolchain.
2581  if (auto *IA = dyn_cast<InputAction>(HostAction)) {
2582  OpenMPDeviceActions.clear();
2583  for (unsigned I = 0; I < ToolChains.size(); ++I)
2584  OpenMPDeviceActions.push_back(
2585  C.MakeAction<InputAction>(IA->getInputArg(), IA->getType()));
2586  return ABRT_Success;
2587  }
2588 
2589  // If this is an unbundling action use it as is for each OpenMP toolchain.
2590  if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction)) {
2591  OpenMPDeviceActions.clear();
2592  for (unsigned I = 0; I < ToolChains.size(); ++I) {
2593  OpenMPDeviceActions.push_back(UA);
2594  UA->registerDependentActionInfo(
2595  ToolChains[I], /*BoundArch=*/StringRef(), Action::OFK_OpenMP);
2596  }
2597  return ABRT_Success;
2598  }
2599 
2600  // When generating code for OpenMP we use the host compile phase result as
2601  // a dependence to the device compile phase so that it can learn what
2602  // declarations should be emitted. However, this is not the only use for
2603  // the host action, so we prevent it from being collapsed.
2604  if (isa<CompileJobAction>(HostAction)) {
2606  assert(ToolChains.size() == OpenMPDeviceActions.size() &&
2607  "Toolchains and device action sizes do not match.");
2609  *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
2610  /*BoundArch=*/nullptr, Action::OFK_OpenMP);
2611  auto TC = ToolChains.begin();
2612  for (Action *&A : OpenMPDeviceActions) {
2613  assert(isa<CompileJobAction>(A));
2615  DDep.add(*A, **TC, /*BoundArch=*/nullptr, Action::OFK_OpenMP);
2616  A = C.MakeAction<OffloadAction>(HDep, DDep);
2617  ++TC;
2618  }
2619  }
2620  return ABRT_Success;
2621  }
2622 
2623  void appendTopLevelActions(ActionList &AL) override {
2624  if (OpenMPDeviceActions.empty())
2625  return;
2626 
2627  // We should always have an action for each input.
2628  assert(OpenMPDeviceActions.size() == ToolChains.size() &&
2629  "Number of OpenMP actions and toolchains do not match.");
2630 
2631  // Append all device actions followed by the proper offload action.
2632  auto TI = ToolChains.begin();
2633  for (auto *A : OpenMPDeviceActions) {
2635  Dep.add(*A, **TI, /*BoundArch=*/nullptr, Action::OFK_OpenMP);
2636  AL.push_back(C.MakeAction<OffloadAction>(Dep, A->getType()));
2637  ++TI;
2638  }
2639  // We no longer need the action stored in this builder.
2640  OpenMPDeviceActions.clear();
2641  }
2642 
2643  void appendLinkDependences(OffloadAction::DeviceDependences &DA) override {
2644  assert(ToolChains.size() == DeviceLinkerInputs.size() &&
2645  "Toolchains and linker inputs sizes do not match.");
2646 
2647  // Append a new link action for each device.
2648  auto TC = ToolChains.begin();
2649  for (auto &LI : DeviceLinkerInputs) {
2650  auto *DeviceLinkAction =
2651  C.MakeAction<LinkJobAction>(LI, types::TY_Image);
2652  DA.add(*DeviceLinkAction, **TC, /*BoundArch=*/nullptr,
2654  ++TC;
2655  }
2656  }
2657 
2658  bool initialize() override {
2659  // Get the OpenMP toolchains. If we don't get any, the action builder will
2660  // know there is nothing to do related to OpenMP offloading.
2661  auto OpenMPTCRange = C.getOffloadToolChains<Action::OFK_OpenMP>();
2662  for (auto TI = OpenMPTCRange.first, TE = OpenMPTCRange.second; TI != TE;
2663  ++TI)
2664  ToolChains.push_back(TI->second);
2665 
2666  DeviceLinkerInputs.resize(ToolChains.size());
2667  return false;
2668  }
2669 
2670  bool canUseBundlerUnbundler() const override {
2671  // OpenMP should use bundled files whenever possible.
2672  return true;
2673  }
2674  };
2675 
2676  ///
2677  /// TODO: Add the implementation for other specialized builders here.
2678  ///
2679 
2680  /// Specialized builders being used by this offloading action builder.
2681  SmallVector<DeviceActionBuilder *, 4> SpecializedBuilders;
2682 
2683  /// Flag set to true if all valid builders allow file bundling/unbundling.
2684  bool CanUseBundler;
2685 
2686 public:
2687  OffloadingActionBuilder(Compilation &C, DerivedArgList &Args,
2688  const Driver::InputList &Inputs)
2689  : C(C) {
2690  // Create a specialized builder for each device toolchain.
2691 
2692  IsValid = true;
2693 
2694  // Create a specialized builder for CUDA.
2695  SpecializedBuilders.push_back(new CudaActionBuilder(C, Args, Inputs));
2696 
2697  // Create a specialized builder for HIP.
2698  SpecializedBuilders.push_back(new HIPActionBuilder(C, Args, Inputs));
2699 
2700  // Create a specialized builder for OpenMP.
2701  SpecializedBuilders.push_back(new OpenMPActionBuilder(C, Args, Inputs));
2702 
2703  //
2704  // TODO: Build other specialized builders here.
2705  //
2706 
2707  // Initialize all the builders, keeping track of errors. If all valid
2708  // builders agree that we can use bundling, set the flag to true.
2709  unsigned ValidBuilders = 0u;
2710  unsigned ValidBuildersSupportingBundling = 0u;
2711  for (auto *SB : SpecializedBuilders) {
2712  IsValid = IsValid && !SB->initialize();
2713 
2714  // Update the counters if the builder is valid.
2715  if (SB->isValid()) {
2716  ++ValidBuilders;
2717  if (SB->canUseBundlerUnbundler())
2718  ++ValidBuildersSupportingBundling;
2719  }
2720  }
2721  CanUseBundler =
2722  ValidBuilders && ValidBuilders == ValidBuildersSupportingBundling;
2723  }
2724 
2725  ~OffloadingActionBuilder() {
2726  for (auto *SB : SpecializedBuilders)
2727  delete SB;
2728  }
2729 
2730  /// Generate an action that adds device dependences (if any) to a host action.
2731  /// If no device dependence actions exist, just return the host action \a
2732  /// HostAction. If an error is found or if no builder requires the host action
2733  /// to be generated, return nullptr.
2734  Action *
2735  addDeviceDependencesToHostAction(Action *HostAction, const Arg *InputArg,
2736  phases::ID CurPhase, phases::ID FinalPhase,
2737  DeviceActionBuilder::PhasesTy &Phases) {
2738  if (!IsValid)
2739  return nullptr;
2740 
2741  if (SpecializedBuilders.empty())
2742  return HostAction;
2743 
2744  assert(HostAction && "Invalid host action!");
2745 
2747  // Check if all the programming models agree we should not emit the host
2748  // action. Also, keep track of the offloading kinds employed.
2749  auto &OffloadKind = InputArgToOffloadKindMap[InputArg];
2750  unsigned InactiveBuilders = 0u;
2751  unsigned IgnoringBuilders = 0u;
2752  for (auto *SB : SpecializedBuilders) {
2753  if (!SB->isValid()) {
2754  ++InactiveBuilders;
2755  continue;
2756  }
2757 
2758  auto RetCode =
2759  SB->getDeviceDependences(DDeps, CurPhase, FinalPhase, Phases);
2760 
2761  // If the builder explicitly says the host action should be ignored,
2762  // we need to increment the variable that tracks the builders that request
2763  // the host object to be ignored.
2764  if (RetCode == DeviceActionBuilder::ABRT_Ignore_Host)
2765  ++IgnoringBuilders;
2766 
2767  // Unless the builder was inactive for this action, we have to record the
2768  // offload kind because the host will have to use it.
2769  if (RetCode != DeviceActionBuilder::ABRT_Inactive)
2770  OffloadKind |= SB->getAssociatedOffloadKind();
2771  }
2772 
2773  // If all builders agree that the host object should be ignored, just return
2774  // nullptr.
2775  if (IgnoringBuilders &&
2776  SpecializedBuilders.size() == (InactiveBuilders + IgnoringBuilders))
2777  return nullptr;
2778 
2779  if (DDeps.getActions().empty())
2780  return HostAction;
2781 
2782  // We have dependences we need to bundle together. We use an offload action
2783  // for that.
2785  *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
2786  /*BoundArch=*/nullptr, DDeps);
2787  return C.MakeAction<OffloadAction>(HDep, DDeps);
2788  }
2789 
2790  /// Generate an action that adds a host dependence to a device action. The
2791  /// results will be kept in this action builder. Return true if an error was
2792  /// found.
2793  bool addHostDependenceToDeviceActions(Action *&HostAction,
2794  const Arg *InputArg) {
2795  if (!IsValid)
2796  return true;
2797 
2798  // If we are supporting bundling/unbundling and the current action is an
2799  // input action of non-source file, we replace the host action by the
2800  // unbundling action. The bundler tool has the logic to detect if an input
2801  // is a bundle or not and if the input is not a bundle it assumes it is a
2802  // host file. Therefore it is safe to create an unbundling action even if
2803  // the input is not a bundle.
2804  if (CanUseBundler && isa<InputAction>(HostAction) &&
2805  InputArg->getOption().getKind() == llvm::opt::Option::InputClass &&
2806  !types::isSrcFile(HostAction->getType())) {
2807  auto UnbundlingHostAction =
2808  C.MakeAction<OffloadUnbundlingJobAction>(HostAction);
2809  UnbundlingHostAction->registerDependentActionInfo(
2811  /*BoundArch=*/"all", Action::OFK_Host);
2812  HostAction = UnbundlingHostAction;
2813  }
2814 
2815  assert(HostAction && "Invalid host action!");
2816 
2817  // Register the offload kinds that are used.
2818  auto &OffloadKind = InputArgToOffloadKindMap[InputArg];
2819  for (auto *SB : SpecializedBuilders) {
2820  if (!SB->isValid())
2821  continue;
2822 
2823  auto RetCode = SB->addDeviceDepences(HostAction);
2824 
2825  // Host dependences for device actions are not compatible with that same
2826  // action being ignored.
2827  assert(RetCode != DeviceActionBuilder::ABRT_Ignore_Host &&
2828  "Host dependence not expected to be ignored.!");
2829 
2830  // Unless the builder was inactive for this action, we have to record the
2831  // offload kind because the host will have to use it.
2832  if (RetCode != DeviceActionBuilder::ABRT_Inactive)
2833  OffloadKind |= SB->getAssociatedOffloadKind();
2834  }
2835 
2836  return false;
2837  }
2838 
2839  /// Add the offloading top level actions to the provided action list. This
2840  /// function can replace the host action by a bundling action if the
2841  /// programming models allow it.
2842  bool appendTopLevelActions(ActionList &AL, Action *HostAction,
2843  const Arg *InputArg) {
2844  // Get the device actions to be appended.
2845  ActionList OffloadAL;
2846  for (auto *SB : SpecializedBuilders) {
2847  if (!SB->isValid())
2848  continue;
2849  SB->appendTopLevelActions(OffloadAL);
2850  }
2851 
2852  // If we can use the bundler, replace the host action by the bundling one in
2853  // the resulting list. Otherwise, just append the device actions.
2854  if (CanUseBundler && !OffloadAL.empty()) {
2855  // Add the host action to the list in order to create the bundling action.
2856  OffloadAL.push_back(HostAction);
2857 
2858  // We expect that the host action was just appended to the action list
2859  // before this method was called.
2860  assert(HostAction == AL.back() && "Host action not in the list??");
2861  HostAction = C.MakeAction<OffloadBundlingJobAction>(OffloadAL);
2862  AL.back() = HostAction;
2863  } else
2864  AL.append(OffloadAL.begin(), OffloadAL.end());
2865 
2866  // Propagate to the current host action (if any) the offload information
2867  // associated with the current input.
2868  if (HostAction)
2869  HostAction->propagateHostOffloadInfo(InputArgToOffloadKindMap[InputArg],
2870  /*BoundArch=*/nullptr);
2871  return false;
2872  }
2873 
2874  /// Processes the host linker action. This currently consists of replacing it
2875  /// with an offload action if there are device link objects and propagate to
2876  /// the host action all the offload kinds used in the current compilation. The
2877  /// resulting action is returned.
2878  Action *processHostLinkAction(Action *HostAction) {
2879  // Add all the dependences from the device linking actions.
2881  for (auto *SB : SpecializedBuilders) {
2882  if (!SB->isValid())
2883  continue;
2884 
2885  SB->appendLinkDependences(DDeps);
2886  }
2887 
2888  // Calculate all the offload kinds used in the current compilation.
2889  unsigned ActiveOffloadKinds = 0u;
2890  for (auto &I : InputArgToOffloadKindMap)
2891  ActiveOffloadKinds |= I.second;
2892 
2893  // If we don't have device dependencies, we don't have to create an offload
2894  // action.
2895  if (DDeps.getActions().empty()) {
2896  // Propagate all the active kinds to host action. Given that it is a link
2897  // action it is assumed to depend on all actions generated so far.
2898  HostAction->propagateHostOffloadInfo(ActiveOffloadKinds,
2899  /*BoundArch=*/nullptr);
2900  return HostAction;
2901  }
2902 
2903  // Create the offload action with all dependences. When an offload action
2904  // is created the kinds are propagated to the host action, so we don't have
2905  // to do that explicitly here.
2907  *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
2908  /*BoundArch*/ nullptr, ActiveOffloadKinds);
2909  return C.MakeAction<OffloadAction>(HDep, DDeps);
2910  }
2911 };
2912 } // anonymous namespace.
2913 
2914 void Driver::BuildActions(Compilation &C, DerivedArgList &Args,
2915  const InputList &Inputs, ActionList &Actions) const {
2916  llvm::PrettyStackTraceString CrashInfo("Building compilation actions");
2917 
2918  if (!SuppressMissingInputWarning && Inputs.empty()) {
2919  Diag(clang::diag::err_drv_no_input_files);
2920  return;
2921  }
2922 
2923  Arg *FinalPhaseArg;
2924  phases::ID FinalPhase = getFinalPhase(Args, &FinalPhaseArg);
2925 
2926  if (FinalPhase == phases::Link) {
2927  if (Args.hasArg(options::OPT_emit_llvm))
2928  Diag(clang::diag::err_drv_emit_llvm_link);
2929  if (IsCLMode() && LTOMode != LTOK_None &&
2930  !Args.getLastArgValue(options::OPT_fuse_ld_EQ).equals_lower("lld"))
2931  Diag(clang::diag::err_drv_lto_without_lld);
2932  }
2933 
2934  // Reject -Z* at the top level, these options should never have been exposed
2935  // by gcc.
2936  if (Arg *A = Args.getLastArg(options::OPT_Z_Joined))
2937  Diag(clang::diag::err_drv_use_of_Z_option) << A->getAsString(Args);
2938 
2939  // Diagnose misuse of /Fo.
2940  if (Arg *A = Args.getLastArg(options::OPT__SLASH_Fo)) {
2941  StringRef V = A->getValue();
2942  if (Inputs.size() > 1 && !V.empty() &&
2943  !llvm::sys::path::is_separator(V.back())) {
2944  // Check whether /Fo tries to name an output file for multiple inputs.
2945  Diag(clang::diag::err_drv_out_file_argument_with_multiple_sources)
2946  << A->getSpelling() << V;
2947  Args.eraseArg(options::OPT__SLASH_Fo);
2948  }
2949  }
2950 
2951  // Diagnose misuse of /Fa.
2952  if (Arg *A = Args.getLastArg(options::OPT__SLASH_Fa)) {
2953  StringRef V = A->getValue();
2954  if (Inputs.size() > 1 && !V.empty() &&
2955  !llvm::sys::path::is_separator(V.back())) {
2956  // Check whether /Fa tries to name an asm file for multiple inputs.
2957  Diag(clang::diag::err_drv_out_file_argument_with_multiple_sources)
2958  << A->getSpelling() << V;
2959  Args.eraseArg(options::OPT__SLASH_Fa);
2960  }
2961  }
2962 
2963  // Diagnose misuse of /o.
2964  if (Arg *A = Args.getLastArg(options::OPT__SLASH_o)) {
2965  if (A->getValue()[0] == '\0') {
2966  // It has to have a value.
2967  Diag(clang::diag::err_drv_missing_argument) << A->getSpelling() << 1;
2968  Args.eraseArg(options::OPT__SLASH_o);
2969  }
2970  }
2971 
2972  // Diagnose unsupported forms of /Yc /Yu. Ignore /Yc/Yu for now if:
2973  // * no filename after it
2974  // * both /Yc and /Yu passed but with different filenames
2975  // * corresponding file not also passed as /FI
2976  Arg *YcArg = Args.getLastArg(options::OPT__SLASH_Yc);
2977  Arg *YuArg = Args.getLastArg(options::OPT__SLASH_Yu);
2978  if (YcArg && YcArg->getValue()[0] == '\0') {
2979  Diag(clang::diag::warn_drv_ycyu_no_arg_clang_cl) << YcArg->getSpelling();
2980  Args.eraseArg(options::OPT__SLASH_Yc);
2981  YcArg = nullptr;
2982  }
2983  if (YuArg && YuArg->getValue()[0] == '\0') {
2984  Diag(clang::diag::warn_drv_ycyu_no_arg_clang_cl) << YuArg->getSpelling();
2985  Args.eraseArg(options::OPT__SLASH_Yu);
2986  YuArg = nullptr;
2987  }
2988  if (YcArg && YuArg && strcmp(YcArg->getValue(), YuArg->getValue()) != 0) {
2989  Diag(clang::diag::warn_drv_ycyu_different_arg_clang_cl);
2990  Args.eraseArg(options::OPT__SLASH_Yc);
2991  Args.eraseArg(options::OPT__SLASH_Yu);
2992  YcArg = YuArg = nullptr;
2993  }
2994  if (YcArg || YuArg) {
2995  StringRef Val = YcArg ? YcArg->getValue() : YuArg->getValue();
2996  bool FoundMatchingInclude = false;
2997  for (const Arg *Inc : Args.filtered(options::OPT_include)) {
2998  // FIXME: Do case-insensitive matching and consider / and \ as equal.
2999  if (Inc->getValue() == Val)
3000  FoundMatchingInclude = true;
3001  }
3002  if (!FoundMatchingInclude) {
3003  Diag(clang::diag::warn_drv_ycyu_no_fi_arg_clang_cl)
3004  << (YcArg ? YcArg : YuArg)->getSpelling();
3005  Args.eraseArg(options::OPT__SLASH_Yc);
3006  Args.eraseArg(options::OPT__SLASH_Yu);
3007  YcArg = YuArg = nullptr;
3008  }
3009  }
3010  if (YcArg && Inputs.size() > 1) {
3011  Diag(clang::diag::warn_drv_yc_multiple_inputs_clang_cl);
3012  Args.eraseArg(options::OPT__SLASH_Yc);
3013  YcArg = nullptr;
3014  }
3015  if (Args.hasArg(options::OPT__SLASH_Y_)) {
3016  // /Y- disables all pch handling. Rather than check for it everywhere,
3017  // just remove clang-cl pch-related flags here.
3018  Args.eraseArg(options::OPT__SLASH_Fp);
3019  Args.eraseArg(options::OPT__SLASH_Yc);
3020  Args.eraseArg(options::OPT__SLASH_Yu);
3021  YcArg = YuArg = nullptr;
3022  }
3023 
3024  // Builder to be used to build offloading actions.
3025  OffloadingActionBuilder OffloadBuilder(C, Args, Inputs);
3026 
3027  // Construct the actions to perform.
3028  ActionList LinkerInputs;
3029 
3031  for (auto &I : Inputs) {
3032  types::ID InputType = I.first;
3033  const Arg *InputArg = I.second;
3034 
3035  PL.clear();
3036  types::getCompilationPhases(InputType, PL);
3037 
3038  // If the first step comes after the final phase we are doing as part of
3039  // this compilation, warn the user about it.
3040  phases::ID InitialPhase = PL[0];
3041  if (InitialPhase > FinalPhase) {
3042  if (InputArg->isClaimed())
3043  continue;
3044 
3045  // Claim here to avoid the more general unused warning.
3046  InputArg->claim();
3047 
3048  // Suppress all unused style warnings with -Qunused-arguments
3049  if (Args.hasArg(options::OPT_Qunused_arguments))
3050  continue;
3051 
3052  // Special case when final phase determined by binary name, rather than
3053  // by a command-line argument with a corresponding Arg.
3054  if (CCCIsCPP())
3055  Diag(clang::diag::warn_drv_input_file_unused_by_cpp)
3056  << InputArg->getAsString(Args) << getPhaseName(InitialPhase);
3057  // Special case '-E' warning on a previously preprocessed file to make
3058  // more sense.
3059  else if (InitialPhase == phases::Compile &&
3060  FinalPhase == phases::Preprocess &&
3061  getPreprocessedType(InputType) == types::TY_INVALID)
3062  Diag(clang::diag::warn_drv_preprocessed_input_file_unused)
3063  << InputArg->getAsString(Args) << !!FinalPhaseArg
3064  << (FinalPhaseArg ? FinalPhaseArg->getOption().getName() : "");
3065  else
3066  Diag(clang::diag::warn_drv_input_file_unused)
3067  << InputArg->getAsString(Args) << getPhaseName(InitialPhase)
3068  << !!FinalPhaseArg
3069  << (FinalPhaseArg ? FinalPhaseArg->getOption().getName() : "");
3070  continue;
3071  }
3072 
3073  if (YcArg) {
3074  // Add a separate precompile phase for the compile phase.
3075  if (FinalPhase >= phases::Compile) {
3076  const types::ID HeaderType = lookupHeaderTypeForSourceType(InputType);
3078  types::getCompilationPhases(HeaderType, PCHPL);
3079  Arg *PchInputArg = MakeInputArg(Args, *Opts, YcArg->getValue());
3080 
3081  // Build the pipeline for the pch file.
3082  Action *ClangClPch =
3083  C.MakeAction<InputAction>(*PchInputArg, HeaderType);
3084  for (phases::ID Phase : PCHPL)
3085  ClangClPch = ConstructPhaseAction(C, Args, Phase, ClangClPch);
3086  assert(ClangClPch);
3087  Actions.push_back(ClangClPch);
3088  // The driver currently exits after the first failed command. This
3089  // relies on that behavior, to make sure if the pch generation fails,
3090  // the main compilation won't run.
3091  }
3092  }
3093 
3094  // Build the pipeline for this file.
3095  Action *Current = C.MakeAction<InputAction>(*InputArg, InputType);
3096 
3097  // Use the current host action in any of the offloading actions, if
3098  // required.
3099  if (OffloadBuilder.addHostDependenceToDeviceActions(Current, InputArg))
3100  break;
3101 
3102  for (SmallVectorImpl<phases::ID>::iterator i = PL.begin(), e = PL.end();
3103  i != e; ++i) {
3104  phases::ID Phase = *i;
3105 
3106  // We are done if this step is past what the user requested.
3107  if (Phase > FinalPhase)
3108  break;
3109 
3110  // Add any offload action the host action depends on.
3111  Current = OffloadBuilder.addDeviceDependencesToHostAction(
3112  Current, InputArg, Phase, FinalPhase, PL);
3113  if (!Current)
3114  break;
3115 
3116  // Queue linker inputs.
3117  if (Phase == phases::Link) {
3118  assert((i + 1) == e && "linking must be final compilation step.");
3119  LinkerInputs.push_back(Current);
3120  Current = nullptr;
3121  break;
3122  }
3123 
3124  // Otherwise construct the appropriate action.
3125  auto *NewCurrent = ConstructPhaseAction(C, Args, Phase, Current);
3126 
3127  // We didn't create a new action, so we will just move to the next phase.
3128  if (NewCurrent == Current)
3129  continue;
3130 
3131  Current = NewCurrent;
3132 
3133  // Use the current host action in any of the offloading actions, if
3134  // required.
3135  if (OffloadBuilder.addHostDependenceToDeviceActions(Current, InputArg))
3136  break;
3137 
3138  if (Current->getType() == types::TY_Nothing)
3139  break;
3140  }
3141 
3142  // If we ended with something, add to the output list.
3143  if (Current)
3144  Actions.push_back(Current);
3145 
3146  // Add any top level actions generated for offloading.
3147  OffloadBuilder.appendTopLevelActions(Actions, Current, InputArg);
3148  }
3149 
3150  // Add a link action if necessary.
3151  if (!LinkerInputs.empty()) {
3152  Action *LA = C.MakeAction<LinkJobAction>(LinkerInputs, types::TY_Image);
3153  LA = OffloadBuilder.processHostLinkAction(LA);
3154  Actions.push_back(LA);
3155  }
3156 
3157  // If we are linking, claim any options which are obviously only used for
3158  // compilation.
3159  if (FinalPhase == phases::Link && PL.size() == 1) {
3160  Args.ClaimAllArgs(options::OPT_CompileOnly_Group);
3161  Args.ClaimAllArgs(options::OPT_cl_compile_Group);
3162  }
3163 
3164  // Claim ignored clang-cl options.
3165  Args.ClaimAllArgs(options::OPT_cl_ignored_Group);
3166 
3167  // Claim --cuda-host-only and --cuda-compile-host-device, which may be passed
3168  // to non-CUDA compilations and should not trigger warnings there.
3169  Args.ClaimAllArgs(options::OPT_cuda_host_only);
3170  Args.ClaimAllArgs(options::OPT_cuda_compile_host_device);
3171 }
3172 
3174  Compilation &C, const ArgList &Args, phases::ID Phase, Action *Input,
3175  Action::OffloadKind TargetDeviceOffloadKind) const {
3176  llvm::PrettyStackTraceString CrashInfo("Constructing phase actions");
3177 
3178  // Some types skip the assembler phase (e.g., llvm-bc), but we can't
3179  // encode this in the steps because the intermediate type depends on
3180  // arguments. Just special case here.
3181  if (Phase == phases::Assemble && Input->getType() != types::TY_PP_Asm)
3182  return Input;
3183 
3184  // Build the appropriate action.
3185  switch (Phase) {
3186  case phases::Link:
3187  llvm_unreachable("link action invalid here.");
3188  case phases::Preprocess: {
3189  types::ID OutputTy;
3190  // -{M, MM} alter the output type.
3191  if (Args.hasArg(options::OPT_M, options::OPT_MM)) {
3192  OutputTy = types::TY_Dependencies;
3193  } else {
3194  OutputTy = Input->getType();
3195  if (!Args.hasFlag(options::OPT_frewrite_includes,
3196  options::OPT_fno_rewrite_includes, false) &&
3197  !Args.hasFlag(options::OPT_frewrite_imports,
3198  options::OPT_fno_rewrite_imports, false) &&
3200  OutputTy = types::getPreprocessedType(OutputTy);
3201  assert(OutputTy != types::TY_INVALID &&
3202  "Cannot preprocess this input type!");
3203  }
3204  return C.MakeAction<PreprocessJobAction>(Input, OutputTy);
3205  }
3206  case phases::Precompile: {
3207  types::ID OutputTy = getPrecompiledType(Input->getType());
3208  assert(OutputTy != types::TY_INVALID &&
3209  "Cannot precompile this input type!");
3210  if (Args.hasArg(options::OPT_fsyntax_only)) {
3211  // Syntax checks should not emit a PCH file
3212  OutputTy = types::TY_Nothing;
3213  }
3214  return C.MakeAction<PrecompileJobAction>(Input, OutputTy);
3215  }
3216  case phases::Compile: {
3217  if (Args.hasArg(options::OPT_fsyntax_only))
3218  return C.MakeAction<CompileJobAction>(Input, types::TY_Nothing);
3219  if (Args.hasArg(options::OPT_rewrite_objc))
3220  return C.MakeAction<CompileJobAction>(Input, types::TY_RewrittenObjC);
3221  if (Args.hasArg(options::OPT_rewrite_legacy_objc))
3222  return C.MakeAction<CompileJobAction>(Input,
3223  types::TY_RewrittenLegacyObjC);
3224  if (Args.hasArg(options::OPT__analyze, options::OPT__analyze_auto))
3225  return C.MakeAction<AnalyzeJobAction>(Input, types::TY_Plist);
3226  if (Args.hasArg(options::OPT__migrate))
3227  return C.MakeAction<MigrateJobAction>(Input, types::TY_Remap);
3228  if (Args.hasArg(options::OPT_emit_ast))
3229  return C.MakeAction<CompileJobAction>(Input, types::TY_AST);
3230  if (Args.hasArg(options::OPT_module_file_info))
3231  return C.MakeAction<CompileJobAction>(Input, types::TY_ModuleFile);
3232  if (Args.hasArg(options::OPT_verify_pch))
3233  return C.MakeAction<VerifyPCHJobAction>(Input, types::TY_Nothing);
3234  return C.MakeAction<CompileJobAction>(Input, types::TY_LLVM_BC);
3235  }
3236  case phases::Backend: {
3237  if (isUsingLTO() && TargetDeviceOffloadKind == Action::OFK_None) {
3238  types::ID Output =
3239  Args.hasArg(options::OPT_S) ? types::TY_LTO_IR : types::TY_LTO_BC;
3240  return C.MakeAction<BackendJobAction>(Input, Output);
3241  }
3242  if (Args.hasArg(options::OPT_emit_llvm)) {
3243  types::ID Output =
3244  Args.hasArg(options::OPT_S) ? types::TY_LLVM_IR : types::TY_LLVM_BC;
3245  return C.MakeAction<BackendJobAction>(Input, Output);
3246  }
3247  return C.MakeAction<BackendJobAction>(Input, types::TY_PP_Asm);
3248  }
3249  case phases::Assemble:
3250  return C.MakeAction<AssembleJobAction>(std::move(Input), types::TY_Object);
3251  }
3252 
3253  llvm_unreachable("invalid phase in ConstructPhaseAction");
3254 }
3255 
3257  llvm::PrettyStackTraceString CrashInfo("Building compilation jobs");
3258 
3259  Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o);
3260 
3261  // It is an error to provide a -o option if we are making multiple output
3262  // files.
3263  if (FinalOutput) {
3264  unsigned NumOutputs = 0;
3265  for (const Action *A : C.getActions())
3266  if (A->getType() != types::TY_Nothing)
3267  ++NumOutputs;
3268 
3269  if (NumOutputs > 1) {
3270  Diag(clang::diag::err_drv_output_argument_with_multiple_files);
3271  FinalOutput = nullptr;
3272  }
3273  }
3274 
3275  // Collect the list of architectures.
3276  llvm::StringSet<> ArchNames;
3277  if (C.getDefaultToolChain().getTriple().isOSBinFormatMachO())
3278  for (const Arg *A : C.getArgs())
3279  if (A->getOption().matches(options::OPT_arch))
3280  ArchNames.insert(A->getValue());
3281 
3282  // Set of (Action, canonical ToolChain triple) pairs we've built jobs for.
3283  std::map<std::pair<const Action *, std::string>, InputInfo> CachedResults;
3284  for (Action *A : C.getActions()) {
3285  // If we are linking an image for multiple archs then the linker wants
3286  // -arch_multiple and -final_output <final image name>. Unfortunately, this
3287  // doesn't fit in cleanly because we have to pass this information down.
3288  //
3289  // FIXME: This is a hack; find a cleaner way to integrate this into the
3290  // process.
3291  const char *LinkingOutput = nullptr;
3292  if (isa<LipoJobAction>(A)) {
3293  if (FinalOutput)
3294  LinkingOutput = FinalOutput->getValue();
3295  else
3296  LinkingOutput = getDefaultImageName();
3297  }
3298 
3300  /*BoundArch*/ StringRef(),
3301  /*AtTopLevel*/ true,
3302  /*MultipleArchs*/ ArchNames.size() > 1,
3303  /*LinkingOutput*/ LinkingOutput, CachedResults,
3304  /*TargetDeviceOffloadKind*/ Action::OFK_None);
3305  }
3306 
3307  // If the user passed -Qunused-arguments or there were errors, don't warn
3308  // about any unused arguments.
3309  if (Diags.hasErrorOccurred() ||
3310  C.getArgs().hasArg(options::OPT_Qunused_arguments))
3311  return;
3312 
3313  // Claim -### here.
3314  (void)C.getArgs().hasArg(options::OPT__HASH_HASH_HASH);
3315 
3316  // Claim --driver-mode, --rsp-quoting, it was handled earlier.
3317  (void)C.getArgs().hasArg(options::OPT_driver_mode);
3318  (void)C.getArgs().hasArg(options::OPT_rsp_quoting);
3319 
3320  for (Arg *A : C.getArgs()) {
3321  // FIXME: It would be nice to be able to send the argument to the
3322  // DiagnosticsEngine, so that extra values, position, and so on could be
3323  // printed.
3324  if (!A->isClaimed()) {
3325  if (A->getOption().hasFlag(options::NoArgumentUnused))
3326  continue;
3327 
3328  // Suppress the warning automatically if this is just a flag, and it is an
3329  // instance of an argument we already claimed.
3330  const Option &Opt = A->getOption();
3331  if (Opt.getKind() == Option::FlagClass) {
3332  bool DuplicateClaimed = false;
3333 
3334  for (const Arg *AA : C.getArgs().filtered(&Opt)) {
3335  if (AA->isClaimed()) {
3336  DuplicateClaimed = true;
3337  break;
3338  }
3339  }
3340 
3341  if (DuplicateClaimed)
3342  continue;
3343  }
3344 
3345  // In clang-cl, don't mention unknown arguments here since they have
3346  // already been warned about.
3347  if (!IsCLMode() || !A->getOption().matches(options::OPT_UNKNOWN))
3348  Diag(clang::diag::warn_drv_unused_argument)
3349  << A->getAsString(C.getArgs());
3350  }
3351  }
3352 }
3353 
3354 namespace {
3355 /// Utility class to control the collapse of dependent actions and select the
3356 /// tools accordingly.
3357 class ToolSelector final {
3358  /// The tool chain this selector refers to.
3359  const ToolChain &TC;
3360 
3361  /// The compilation this selector refers to.
3362  const Compilation &C;
3363 
3364  /// The base action this selector refers to.
3365  const JobAction *BaseAction;
3366 
3367  /// Set to true if the current toolchain refers to host actions.
3368  bool IsHostSelector;
3369 
3370  /// Set to true if save-temps and embed-bitcode functionalities are active.
3371  bool SaveTemps;
3372  bool EmbedBitcode;
3373 
3374  /// Get previous dependent action or null if that does not exist. If
3375  /// \a CanBeCollapsed is false, that action must be legal to collapse or
3376  /// null will be returned.
3377  const JobAction *getPrevDependentAction(const ActionList &Inputs,
3378  ActionList &SavedOffloadAction,
3379  bool CanBeCollapsed = true) {
3380  // An option can be collapsed only if it has a single input.
3381  if (Inputs.size() != 1)
3382  return nullptr;
3383 
3384  Action *CurAction = *Inputs.begin();
3385  if (CanBeCollapsed &&
3387  return nullptr;
3388 
3389  // If the input action is an offload action. Look through it and save any
3390  // offload action that can be dropped in the event of a collapse.
3391  if (auto *OA = dyn_cast<OffloadAction>(CurAction)) {
3392  // If the dependent action is a device action, we will attempt to collapse
3393  // only with other device actions. Otherwise, we would do the same but
3394  // with host actions only.
3395  if (!IsHostSelector) {
3396  if (OA->hasSingleDeviceDependence(/*DoNotConsiderHostActions=*/true)) {
3397  CurAction =
3398  OA->getSingleDeviceDependence(/*DoNotConsiderHostActions=*/true);
3399  if (CanBeCollapsed &&
3401  return nullptr;
3402  SavedOffloadAction.push_back(OA);
3403  return dyn_cast<JobAction>(CurAction);
3404  }
3405  } else if (OA->hasHostDependence()) {
3406  CurAction = OA->getHostDependence();
3407  if (CanBeCollapsed &&
3409  return nullptr;
3410  SavedOffloadAction.push_back(OA);
3411  return dyn_cast<JobAction>(CurAction);
3412  }
3413  return nullptr;
3414  }
3415 
3416  return dyn_cast<JobAction>(CurAction);
3417  }
3418 
3419  /// Return true if an assemble action can be collapsed.
3420  bool canCollapseAssembleAction() const {
3421  return TC.useIntegratedAs() && !SaveTemps &&
3422  !C.getArgs().hasArg(options::OPT_via_file_asm) &&
3423  !C.getArgs().hasArg(options::OPT__SLASH_FA) &&
3424  !C.getArgs().hasArg(options::OPT__SLASH_Fa);
3425  }
3426 
3427  /// Return true if a preprocessor action can be collapsed.
3428  bool canCollapsePreprocessorAction() const {
3429  return !C.getArgs().hasArg(options::OPT_no_integrated_cpp) &&
3430  !C.getArgs().hasArg(options::OPT_traditional_cpp) && !SaveTemps &&
3431  !C.getArgs().hasArg(options::OPT_rewrite_objc);
3432  }
3433 
3434  /// Struct that relates an action with the offload actions that would be
3435  /// collapsed with it.
3436  struct JobActionInfo final {
3437  /// The action this info refers to.
3438  const JobAction *JA = nullptr;
3439  /// The offload actions we need to take care off if this action is
3440  /// collapsed.
3441  ActionList SavedOffloadAction;
3442  };
3443 
3444  /// Append collapsed offload actions from the give nnumber of elements in the
3445  /// action info array.
3446  static void AppendCollapsedOffloadAction(ActionList &CollapsedOffloadAction,
3447  ArrayRef<JobActionInfo> &ActionInfo,
3448  unsigned ElementNum) {
3449  assert(ElementNum <= ActionInfo.size() && "Invalid number of elements.");
3450  for (unsigned I = 0; I < ElementNum; ++I)
3451  CollapsedOffloadAction.append(ActionInfo[I].SavedOffloadAction.begin(),
3452  ActionInfo[I].SavedOffloadAction.end());
3453  }
3454 
3455  /// Functions that attempt to perform the combining. They detect if that is
3456  /// legal, and if so they update the inputs \a Inputs and the offload action
3457  /// that were collapsed in \a CollapsedOffloadAction. A tool that deals with
3458  /// the combined action is returned. If the combining is not legal or if the
3459  /// tool does not exist, null is returned.
3460  /// Currently three kinds of collapsing are supported:
3461  /// - Assemble + Backend + Compile;
3462  /// - Assemble + Backend ;
3463  /// - Backend + Compile.
3464  const Tool *
3465  combineAssembleBackendCompile(ArrayRef<JobActionInfo> ActionInfo,
3466  const ActionList *&Inputs,
3467  ActionList &CollapsedOffloadAction) {
3468  if (ActionInfo.size() < 3 || !canCollapseAssembleAction())
3469  return nullptr;
3470  auto *AJ = dyn_cast<AssembleJobAction>(ActionInfo[0].JA);
3471  auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[1].JA);
3472  auto *CJ = dyn_cast<CompileJobAction>(ActionInfo[2].JA);
3473  if (!AJ || !BJ || !CJ)
3474  return nullptr;
3475 
3476  // Get compiler tool.
3477  const Tool *T = TC.SelectTool(*CJ);
3478  if (!T)
3479  return nullptr;
3480 
3481  // When using -fembed-bitcode, it is required to have the same tool (clang)
3482  // for both CompilerJA and BackendJA. Otherwise, combine two stages.
3483  if (EmbedBitcode) {
3484  const Tool *BT = TC.SelectTool(*BJ);
3485  if (BT == T)
3486  return nullptr;
3487  }
3488 
3489  if (!T->hasIntegratedAssembler())
3490  return nullptr;
3491 
3492  Inputs = &CJ->getInputs();
3493  AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo,
3494  /*NumElements=*/3);
3495  return T;
3496  }
3497  const Tool *combineAssembleBackend(ArrayRef<JobActionInfo> ActionInfo,
3498  const ActionList *&Inputs,
3499  ActionList &CollapsedOffloadAction) {
3500  if (ActionInfo.size() < 2 || !canCollapseAssembleAction())
3501  return nullptr;
3502  auto *AJ = dyn_cast<AssembleJobAction>(ActionInfo[0].JA);
3503  auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[1].JA);
3504  if (!AJ || !BJ)
3505  return nullptr;
3506 
3507  // Retrieve the compile job, backend action must always be preceded by one.
3508  ActionList CompileJobOffloadActions;
3509  auto *CJ = getPrevDependentAction(BJ->getInputs(), CompileJobOffloadActions,
3510  /*CanBeCollapsed=*/false);
3511  if (!AJ || !BJ || !CJ)
3512  return nullptr;
3513 
3514  assert(isa<CompileJobAction>(CJ) &&
3515  "Expecting compile job preceding backend job.");
3516 
3517  // Get compiler tool.
3518  const Tool *T = TC.SelectTool(*CJ);
3519  if (!T)
3520  return nullptr;
3521 
3522  if (!T->hasIntegratedAssembler())
3523  return nullptr;
3524 
3525  Inputs = &BJ->getInputs();
3526  AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo,
3527  /*NumElements=*/2);
3528  return T;
3529  }
3530  const Tool *combineBackendCompile(ArrayRef<JobActionInfo> ActionInfo,
3531  const ActionList *&Inputs,
3532  ActionList &CollapsedOffloadAction) {
3533  if (ActionInfo.size() < 2)
3534  return nullptr;
3535  auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[0].JA);
3536  auto *CJ = dyn_cast<CompileJobAction>(ActionInfo[1].JA);
3537  if (!BJ || !CJ)
3538  return nullptr;
3539 
3540  // Check if the initial input (to the compile job or its predessor if one
3541  // exists) is LLVM bitcode. In that case, no preprocessor step is required
3542  // and we can still collapse the compile and backend jobs when we have
3543  // -save-temps. I.e. there is no need for a separate compile job just to
3544  // emit unoptimized bitcode.
3545  bool InputIsBitcode = true;
3546  for (size_t i = 1; i < ActionInfo.size(); i++)
3547  if (ActionInfo[i].JA->getType() != types::TY_LLVM_BC &&
3548  ActionInfo[i].JA->getType() != types::TY_LTO_BC) {
3549  InputIsBitcode = false;
3550  break;
3551  }
3552  if (!InputIsBitcode && !canCollapsePreprocessorAction())
3553  return nullptr;
3554 
3555  // Get compiler tool.
3556  const Tool *T = TC.SelectTool(*CJ);
3557  if (!T)
3558  return nullptr;
3559 
3560  if (T->canEmitIR() && ((SaveTemps && !InputIsBitcode) || EmbedBitcode))
3561  return nullptr;
3562 
3563  Inputs = &CJ->getInputs();
3564  AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo,
3565  /*NumElements=*/2);
3566  return T;
3567  }
3568 
3569  /// Updates the inputs if the obtained tool supports combining with
3570  /// preprocessor action, and the current input is indeed a preprocessor
3571  /// action. If combining results in the collapse of offloading actions, those
3572  /// are appended to \a CollapsedOffloadAction.
3573  void combineWithPreprocessor(const Tool *T, const ActionList *&Inputs,
3574  ActionList &CollapsedOffloadAction) {
3575  if (!T || !canCollapsePreprocessorAction() || !T->hasIntegratedCPP())
3576  return;
3577 
3578  // Attempt to get a preprocessor action dependence.
3579  ActionList PreprocessJobOffloadActions;
3580  auto *PJ = getPrevDependentAction(*Inputs, PreprocessJobOffloadActions);
3581  if (!PJ || !isa<PreprocessJobAction>(PJ))
3582  return;
3583 
3584  // This is legal to combine. Append any offload action we found and set the
3585  // current inputs to preprocessor inputs.
3586  CollapsedOffloadAction.append(PreprocessJobOffloadActions.begin(),
3587  PreprocessJobOffloadActions.end());
3588  Inputs = &PJ->getInputs();
3589  }
3590 
3591 public:
3592  ToolSelector(const JobAction *BaseAction, const ToolChain &TC,
3593  const Compilation &C, bool SaveTemps, bool EmbedBitcode)
3594  : TC(TC), C(C), BaseAction(BaseAction), SaveTemps(SaveTemps),
3595  EmbedBitcode(EmbedBitcode) {
3596  assert(BaseAction && "Invalid base action.");
3597  IsHostSelector = BaseAction->getOffloadingDeviceKind() == Action::OFK_None;
3598  }
3599 
3600  /// Check if a chain of actions can be combined and return the tool that can
3601  /// handle the combination of actions. The pointer to the current inputs \a
3602  /// Inputs and the list of offload actions \a CollapsedOffloadActions
3603  /// connected to collapsed actions are updated accordingly. The latter enables
3604  /// the caller of the selector to process them afterwards instead of just
3605  /// dropping them. If no suitable tool is found, null will be returned.
3606  const Tool *getTool(const ActionList *&Inputs,
3607  ActionList &CollapsedOffloadAction) {
3608  //
3609  // Get the largest chain of actions that we could combine.
3610  //
3611 
3612  SmallVector<JobActionInfo, 5> ActionChain(1);
3613  ActionChain.back().JA = BaseAction;
3614  while (ActionChain.back().JA) {
3615  const Action *CurAction = ActionChain.back().JA;
3616 
3617  // Grow the chain by one element.
3618  ActionChain.resize(ActionChain.size() + 1);
3619  JobActionInfo &AI = ActionChain.back();
3620 
3621  // Attempt to fill it with the
3622  AI.JA =
3623  getPrevDependentAction(CurAction->getInputs(), AI.SavedOffloadAction);
3624  }
3625 
3626  // Pop the last action info as it could not be filled.
3627  ActionChain.pop_back();
3628 
3629  //
3630  // Attempt to combine actions. If all combining attempts failed, just return
3631  // the tool of the provided action. At the end we attempt to combine the
3632  // action with any preprocessor action it may depend on.
3633  //
3634 
3635  const Tool *T = combineAssembleBackendCompile(ActionChain, Inputs,
3636  CollapsedOffloadAction);
3637  if (!T)
3638  T = combineAssembleBackend(ActionChain, Inputs, CollapsedOffloadAction);
3639  if (!T)
3640  T = combineBackendCompile(ActionChain, Inputs, CollapsedOffloadAction);
3641  if (!T) {
3642  Inputs = &BaseAction->getInputs();
3643  T = TC.SelectTool(*BaseAction);
3644  }
3645 
3646  combineWithPreprocessor(T, Inputs, CollapsedOffloadAction);
3647  return T;
3648  }
3649 };
3650 }
3651 
3652 /// Return a string that uniquely identifies the result of a job. The bound arch
3653 /// is not necessarily represented in the toolchain's triple -- for example,
3654 /// armv7 and armv7s both map to the same triple -- so we need both in our map.
3655 /// Also, we need to add the offloading device kind, as the same tool chain can
3656 /// be used for host and device for some programming models, e.g. OpenMP.
3657 static std::string GetTriplePlusArchString(const ToolChain *TC,
3658  StringRef BoundArch,
3659  Action::OffloadKind OffloadKind) {
3660  std::string TriplePlusArch = TC->getTriple().normalize();
3661  if (!BoundArch.empty()) {
3662  TriplePlusArch += "-";
3663  TriplePlusArch += BoundArch;
3664  }
3665  TriplePlusArch += "-";
3666  TriplePlusArch += Action::GetOffloadKindName(OffloadKind);
3667  return TriplePlusArch;
3668 }
3669 
3671  Compilation &C, const Action *A, const ToolChain *TC, StringRef BoundArch,
3672  bool AtTopLevel, bool MultipleArchs, const char *LinkingOutput,
3673  std::map<std::pair<const Action *, std::string>, InputInfo> &CachedResults,
3674  Action::OffloadKind TargetDeviceOffloadKind) const {
3675  std::pair<const Action *, std::string> ActionTC = {
3676  A, GetTriplePlusArchString(TC, BoundArch, TargetDeviceOffloadKind)};
3677  auto CachedResult = CachedResults.find(ActionTC);
3678  if (CachedResult != CachedResults.end()) {
3679  return CachedResult->second;
3680  }
3681  InputInfo Result = BuildJobsForActionNoCache(
3682  C, A, TC, BoundArch, AtTopLevel, MultipleArchs, LinkingOutput,
3683  CachedResults, TargetDeviceOffloadKind);
3684  CachedResults[ActionTC] = Result;
3685  return Result;
3686 }
3687 
3688 InputInfo Driver::BuildJobsForActionNoCache(
3689  Compilation &C, const Action *A, const ToolChain *TC, StringRef BoundArch,
3690  bool AtTopLevel, bool MultipleArchs, const char *LinkingOutput,
3691  std::map<std::pair<const Action *, std::string>, InputInfo> &CachedResults,
3692  Action::OffloadKind TargetDeviceOffloadKind) const {
3693  llvm::PrettyStackTraceString CrashInfo("Building compilation jobs");
3694 
3695  InputInfoList OffloadDependencesInputInfo;
3696  bool BuildingForOffloadDevice = TargetDeviceOffloadKind != Action::OFK_None;
3697  if (const OffloadAction *OA = dyn_cast<OffloadAction>(A)) {
3698  // The 'Darwin' toolchain is initialized only when its arguments are
3699  // computed. Get the default arguments for OFK_None to ensure that
3700  // initialization is performed before processing the offload action.
3701  // FIXME: Remove when darwin's toolchain is initialized during construction.
3702  C.getArgsForToolChain(TC, BoundArch, Action::OFK_None);
3703 
3704  // The offload action is expected to be used in four different situations.
3705  //
3706  // a) Set a toolchain/architecture/kind for a host action:
3707  // Host Action 1 -> OffloadAction -> Host Action 2
3708  //
3709  // b) Set a toolchain/architecture/kind for a device action;
3710  // Device Action 1 -> OffloadAction -> Device Action 2
3711  //
3712  // c) Specify a device dependence to a host action;
3713  // Device Action 1 _
3714  // \
3715  // Host Action 1 ---> OffloadAction -> Host Action 2
3716  //
3717  // d) Specify a host dependence to a device action.
3718  // Host Action 1 _
3719  // \
3720  // Device Action 1 ---> OffloadAction -> Device Action 2
3721  //
3722  // For a) and b), we just return the job generated for the dependence. For
3723  // c) and d) we override the current action with the host/device dependence
3724  // if the current toolchain is host/device and set the offload dependences
3725  // info with the jobs obtained from the device/host dependence(s).
3726 
3727  // If there is a single device option, just generate the job for it.
3728  if (OA->hasSingleDeviceDependence()) {
3729  InputInfo DevA;
3730  OA->doOnEachDeviceDependence([&](Action *DepA, const ToolChain *DepTC,
3731  const char *DepBoundArch) {
3732  DevA =
3733  BuildJobsForAction(C, DepA, DepTC, DepBoundArch, AtTopLevel,
3734  /*MultipleArchs*/ !!DepBoundArch, LinkingOutput,
3735  CachedResults, DepA->getOffloadingDeviceKind());
3736  });
3737  return DevA;
3738  }
3739 
3740  // If 'Action 2' is host, we generate jobs for the device dependences and
3741  // override the current action with the host dependence. Otherwise, we
3742  // generate the host dependences and override the action with the device
3743  // dependence. The dependences can't therefore be a top-level action.
3744  OA->doOnEachDependence(
3745  /*IsHostDependence=*/BuildingForOffloadDevice,
3746  [&](Action *DepA, const ToolChain *DepTC, const char *DepBoundArch) {
3747  OffloadDependencesInputInfo.push_back(BuildJobsForAction(
3748  C, DepA, DepTC, DepBoundArch, /*AtTopLevel=*/false,
3749  /*MultipleArchs*/ !!DepBoundArch, LinkingOutput, CachedResults,
3750  DepA->getOffloadingDeviceKind()));
3751  });
3752 
3753  A = BuildingForOffloadDevice
3754  ? OA->getSingleDeviceDependence(/*DoNotConsiderHostActions=*/true)
3755  : OA->getHostDependence();
3756  }
3757 
3758  if (const InputAction *IA = dyn_cast<InputAction>(A)) {
3759  // FIXME: It would be nice to not claim this here; maybe the old scheme of
3760  // just using Args was better?
3761  const Arg &Input = IA->getInputArg();
3762  Input.claim();
3763  if (Input.getOption().matches(options::OPT_INPUT)) {
3764  const char *Name = Input.getValue();
3765  return InputInfo(A, Name, /* BaseInput = */ Name);
3766  }
3767  return InputInfo(A, &Input, /* BaseInput = */ "");
3768  }
3769 
3770  if (const BindArchAction *BAA = dyn_cast<BindArchAction>(A)) {
3771  const ToolChain *TC;
3772  StringRef ArchName = BAA->getArchName();
3773 
3774  if (!ArchName.empty())
3775  TC = &getToolChain(C.getArgs(),
3776  computeTargetTriple(*this, TargetTriple,
3777  C.getArgs(), ArchName));
3778  else
3779  TC = &C.getDefaultToolChain();
3780 
3781  return BuildJobsForAction(C, *BAA->input_begin(), TC, ArchName, AtTopLevel,
3782  MultipleArchs, LinkingOutput, CachedResults,
3783  TargetDeviceOffloadKind);
3784  }
3785 
3786 
3787  const ActionList *Inputs = &A->getInputs();
3788 
3789  const JobAction *JA = cast<JobAction>(A);
3790  ActionList CollapsedOffloadActions;
3791 
3792  ToolSelector TS(JA, *TC, C, isSaveTempsEnabled(),
3794  const Tool *T = TS.getTool(Inputs, CollapsedOffloadActions);
3795 
3796  if (!T)
3797  return InputInfo();
3798 
3799  // If we've collapsed action list that contained OffloadAction we
3800  // need to build jobs for host/device-side inputs it may have held.
3801  for (const auto *OA : CollapsedOffloadActions)
3802  cast<OffloadAction>(OA)->doOnEachDependence(
3803  /*IsHostDependence=*/BuildingForOffloadDevice,
3804  [&](Action *DepA, const ToolChain *DepTC, const char *DepBoundArch) {
3805  OffloadDependencesInputInfo.push_back(BuildJobsForAction(
3806  C, DepA, DepTC, DepBoundArch, /* AtTopLevel */ false,
3807  /*MultipleArchs=*/!!DepBoundArch, LinkingOutput, CachedResults,
3808  DepA->getOffloadingDeviceKind()));
3809  });
3810 
3811  // Only use pipes when there is exactly one input.
3812  InputInfoList InputInfos;
3813  for (const Action *Input : *Inputs) {
3814  // Treat dsymutil and verify sub-jobs as being at the top-level too, they
3815  // shouldn't get temporary output names.
3816  // FIXME: Clean this up.
3817  bool SubJobAtTopLevel =
3818  AtTopLevel && (isa<DsymutilJobAction>(A) || isa<VerifyJobAction>(A));
3819  InputInfos.push_back(BuildJobsForAction(
3820  C, Input, TC, BoundArch, SubJobAtTopLevel, MultipleArchs, LinkingOutput,
3821  CachedResults, A->getOffloadingDeviceKind()));
3822  }
3823 
3824  // Always use the first input as the base input.
3825  const char *BaseInput = InputInfos[0].getBaseInput();
3826 
3827  // ... except dsymutil actions, which use their actual input as the base
3828  // input.
3829  if (JA->getType() == types::TY_dSYM)
3830  BaseInput = InputInfos[0].getFilename();
3831 
3832  // Append outputs of offload device jobs to the input list
3833  if (!OffloadDependencesInputInfo.empty())
3834  InputInfos.append(OffloadDependencesInputInfo.begin(),
3835  OffloadDependencesInputInfo.end());
3836 
3837  // Set the effective triple of the toolchain for the duration of this job.
3838  llvm::Triple EffectiveTriple;
3839  const ToolChain &ToolTC = T->getToolChain();
3840  const ArgList &Args =
3841  C.getArgsForToolChain(TC, BoundArch, A->getOffloadingDeviceKind());
3842  if (InputInfos.size() != 1) {
3843  EffectiveTriple = llvm::Triple(ToolTC.ComputeEffectiveClangTriple(Args));
3844  } else {
3845  // Pass along the input type if it can be unambiguously determined.
3846  EffectiveTriple = llvm::Triple(
3847  ToolTC.ComputeEffectiveClangTriple(Args, InputInfos[0].getType()));
3848  }
3849  RegisterEffectiveTriple TripleRAII(ToolTC, EffectiveTriple);
3850 
3851  // Determine the place to write output to, if any.
3852  InputInfo Result;
3853  InputInfoList UnbundlingResults;
3854  if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(JA)) {
3855  // If we have an unbundling job, we need to create results for all the
3856  // outputs. We also update the results cache so that other actions using
3857  // this unbundling action can get the right results.
3858  for (auto &UI : UA->getDependentActionsInfo()) {
3859  assert(UI.DependentOffloadKind != Action::OFK_None &&
3860  "Unbundling with no offloading??");
3861 
3862  // Unbundling actions are never at the top level. When we generate the
3863  // offloading prefix, we also do that for the host file because the
3864  // unbundling action does not change the type of the output which can
3865  // cause a overwrite.
3866  std::string OffloadingPrefix = Action::GetOffloadingFileNamePrefix(
3867  UI.DependentOffloadKind,
3868  UI.DependentToolChain->getTriple().normalize(),
3869  /*CreatePrefixForHost=*/true);
3870  auto CurI = InputInfo(
3871  UA,
3872  GetNamedOutputPath(C, *UA, BaseInput, UI.DependentBoundArch,
3873  /*AtTopLevel=*/false,
3874  MultipleArchs ||
3875  UI.DependentOffloadKind == Action::OFK_HIP,
3876  OffloadingPrefix),
3877  BaseInput);
3878  // Save the unbundling result.
3879  UnbundlingResults.push_back(CurI);
3880 
3881  // Get the unique string identifier for this dependence and cache the
3882  // result.
3883  StringRef Arch;
3884  if (TargetDeviceOffloadKind == Action::OFK_HIP) {
3885  if (UI.DependentOffloadKind == Action::OFK_Host)
3886  Arch = "all";
3887  else
3888  Arch = UI.DependentBoundArch;
3889  } else
3890  Arch = BoundArch;
3891 
3892  CachedResults[{A, GetTriplePlusArchString(UI.DependentToolChain, Arch,
3893  UI.DependentOffloadKind)}] =
3894  CurI;
3895  }
3896 
3897  // Now that we have all the results generated, select the one that should be
3898  // returned for the current depending action.
3899  std::pair<const Action *, std::string> ActionTC = {
3900  A, GetTriplePlusArchString(TC, BoundArch, TargetDeviceOffloadKind)};
3901  assert(CachedResults.find(ActionTC) != CachedResults.end() &&
3902  "Result does not exist??");
3903  Result = CachedResults[ActionTC];
3904  } else if (JA->getType() == types::TY_Nothing)
3905  Result = InputInfo(A, BaseInput);
3906  else {
3907  // We only have to generate a prefix for the host if this is not a top-level
3908  // action.
3909  std::string OffloadingPrefix = Action::GetOffloadingFileNamePrefix(
3910  A->getOffloadingDeviceKind(), TC->getTriple().normalize(),
3911  /*CreatePrefixForHost=*/!!A->getOffloadingHostActiveKinds() &&
3912  !AtTopLevel);
3913  Result = InputInfo(A, GetNamedOutputPath(C, *JA, BaseInput, BoundArch,
3914  AtTopLevel, MultipleArchs,
3915  OffloadingPrefix),
3916  BaseInput);
3917  }
3918 
3920  llvm::errs() << "# \"" << T->getToolChain().getTripleString() << '"'
3921  << " - \"" << T->getName() << "\", inputs: [";
3922  for (unsigned i = 0, e = InputInfos.size(); i != e; ++i) {
3923  llvm::errs() << InputInfos[i].getAsString();
3924  if (i + 1 != e)
3925  llvm::errs() << ", ";
3926  }
3927  if (UnbundlingResults.empty())
3928  llvm::errs() << "], output: " << Result.getAsString() << "\n";
3929  else {
3930  llvm::errs() << "], outputs: [";
3931  for (unsigned i = 0, e = UnbundlingResults.size(); i != e; ++i) {
3932  llvm::errs() << UnbundlingResults[i].getAsString();
3933  if (i + 1 != e)
3934  llvm::errs() << ", ";
3935  }
3936  llvm::errs() << "] \n";
3937  }
3938  } else {
3939  if (UnbundlingResults.empty())
3940  T->ConstructJob(
3941  C, *JA, Result, InputInfos,
3942  C.getArgsForToolChain(TC, BoundArch, JA->getOffloadingDeviceKind()),
3943  LinkingOutput);
3944  else
3946  C, *JA, UnbundlingResults, InputInfos,
3947  C.getArgsForToolChain(TC, BoundArch, JA->getOffloadingDeviceKind()),
3948  LinkingOutput);
3949  }
3950  return Result;
3951 }
3952 
3953 const char *Driver::getDefaultImageName() const {
3954  llvm::Triple Target(llvm::Triple::normalize(TargetTriple));
3955  return Target.isOSWindows() ? "a.exe" : "a.out";
3956 }
3957 
3958 /// Create output filename based on ArgValue, which could either be a
3959 /// full filename, filename without extension, or a directory. If ArgValue
3960 /// does not provide a filename, then use BaseName, and use the extension
3961 /// suitable for FileType.
3962 static const char *MakeCLOutputFilename(const ArgList &Args, StringRef ArgValue,
3963  StringRef BaseName,
3964  types::ID FileType) {
3965  SmallString<128> Filename = ArgValue;
3966 
3967  if (ArgValue.empty()) {
3968  // If the argument is empty, output to BaseName in the current dir.
3969  Filename = BaseName;
3970  } else if (llvm::sys::path::is_separator(Filename.back())) {
3971  // If the argument is a directory, output to BaseName in that dir.
3972  llvm::sys::path::append(Filename, BaseName);
3973  }
3974 
3975  if (!llvm::sys::path::has_extension(ArgValue)) {
3976  // If the argument didn't provide an extension, then set it.
3977  const char *Extension = types::getTypeTempSuffix(FileType, true);
3978 
3979  if (FileType == types::TY_Image &&
3980  Args.hasArg(options::OPT__SLASH_LD, options::OPT__SLASH_LDd)) {
3981  // The output file is a dll.
3982  Extension = "dll";
3983  }
3984 
3985  llvm::sys::path::replace_extension(Filename, Extension);
3986  }
3987 
3988  return Args.MakeArgString(Filename.c_str());
3989 }
3990 
3992  const char *BaseInput,
3993  StringRef BoundArch, bool AtTopLevel,
3994  bool MultipleArchs,
3995  StringRef OffloadingPrefix) const {
3996  llvm::PrettyStackTraceString CrashInfo("Computing output path");
3997  // Output to a user requested destination?
3998  if (AtTopLevel && !isa<DsymutilJobAction>(JA) && !isa<VerifyJobAction>(JA)) {
3999  if (Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o))
4000  return C.addResultFile(FinalOutput->getValue(), &JA);
4001  }
4002 
4003  // For /P, preprocess to file named after BaseInput.
4004  if (C.getArgs().hasArg(options::OPT__SLASH_P)) {
4005  assert(AtTopLevel && isa<PreprocessJobAction>(JA));
4006  StringRef BaseName = llvm::sys::path::filename(BaseInput);
4007  StringRef NameArg;
4008  if (Arg *A = C.getArgs().getLastArg(options::OPT__SLASH_Fi))
4009  NameArg = A->getValue();
4010  return C.addResultFile(
4011  MakeCLOutputFilename(C.getArgs(), NameArg, BaseName, types::TY_PP_C),
4012  &JA);
4013  }
4014 
4015  // Default to writing to stdout?
4016  if (AtTopLevel && !CCGenDiagnostics && isa<PreprocessJobAction>(JA))
4017  return "-";
4018 
4019  // Is this the assembly listing for /FA?
4020  if (JA.getType() == types::TY_PP_Asm &&
4021  (C.getArgs().hasArg(options::OPT__SLASH_FA) ||
4022  C.getArgs().hasArg(options::OPT__SLASH_Fa))) {
4023  // Use /Fa and the input filename to determine the asm file name.
4024  StringRef BaseName = llvm::sys::path::filename(BaseInput);
4025  StringRef FaValue = C.getArgs().getLastArgValue(options::OPT__SLASH_Fa);
4026  return C.addResultFile(
4027  MakeCLOutputFilename(C.getArgs(), FaValue, BaseName, JA.getType()),
4028  &JA);
4029  }
4030 
4031  // Output to a temporary file?
4032  if ((!AtTopLevel && !isSaveTempsEnabled() &&
4033  !C.getArgs().hasArg(options::OPT__SLASH_Fo)) ||
4034  CCGenDiagnostics) {
4035  StringRef Name = llvm::sys::path::filename(BaseInput);
4036  std::pair<StringRef, StringRef> Split = Name.split('.');
4037  std::string TmpName = GetTemporaryPath(
4038  Split.first, types::getTypeTempSuffix(JA.getType(), IsCLMode()));
4039  return C.addTempFile(C.getArgs().MakeArgString(TmpName));
4040  }
4041 
4042  SmallString<128> BasePath(BaseInput);
4043  StringRef BaseName;
4044 
4045  // Dsymutil actions should use the full path.
4046  if (isa<DsymutilJobAction>(JA) || isa<VerifyJobAction>(JA))
4047  BaseName = BasePath;
4048  else
4049  BaseName = llvm::sys::path::filename(BasePath);
4050 
4051  // Determine what the derived output name should be.
4052  const char *NamedOutput;
4053 
4054  if ((JA.getType() == types::TY_Object || JA.getType() == types::TY_LTO_BC) &&
4055  C.getArgs().hasArg(options::OPT__SLASH_Fo, options::OPT__SLASH_o)) {
4056  // The /Fo or /o flag decides the object filename.
4057  StringRef Val =
4058  C.getArgs()
4059  .getLastArg(options::OPT__SLASH_Fo, options::OPT__SLASH_o)
4060  ->getValue();
4061  NamedOutput =
4062  MakeCLOutputFilename(C.getArgs(), Val, BaseName, types::TY_Object);
4063  } else if (JA.getType() == types::TY_Image &&
4064  C.getArgs().hasArg(options::OPT__SLASH_Fe,
4065  options::OPT__SLASH_o)) {
4066  // The /Fe or /o flag names the linked file.
4067  StringRef Val =
4068  C.getArgs()
4069  .getLastArg(options::OPT__SLASH_Fe, options::OPT__SLASH_o)
4070  ->getValue();
4071  NamedOutput =
4072  MakeCLOutputFilename(C.getArgs(), Val, BaseName, types::TY_Image);
4073  } else if (JA.getType() == types::TY_Image) {
4074  if (IsCLMode()) {
4075  // clang-cl uses BaseName for the executable name.
4076  NamedOutput =
4077  MakeCLOutputFilename(C.getArgs(), "", BaseName, types::TY_Image);
4078  } else {
4080  Output += OffloadingPrefix;
4081  if (MultipleArchs && !BoundArch.empty()) {
4082  Output += "-";
4083  Output.append(BoundArch);
4084  }
4085  NamedOutput = C.getArgs().MakeArgString(Output.c_str());
4086  }
4087  } else if (JA.getType() == types::TY_PCH && IsCLMode()) {
4088  NamedOutput = C.getArgs().MakeArgString(GetClPchPath(C, BaseName));
4089  } else {
4090  const char *Suffix = types::getTypeTempSuffix(JA.getType(), IsCLMode());
4091  assert(Suffix && "All types used for output should have a suffix.");
4092 
4093  std::string::size_type End = std::string::npos;
4095  End = BaseName.rfind('.');
4096  SmallString<128> Suffixed(BaseName.substr(0, End));
4097  Suffixed += OffloadingPrefix;
4098  if (MultipleArchs && !BoundArch.empty()) {
4099  Suffixed += "-";
4100  Suffixed.append(BoundArch);
4101  }
4102  // When using both -save-temps and -emit-llvm, use a ".tmp.bc" suffix for
4103  // the unoptimized bitcode so that it does not get overwritten by the ".bc"
4104  // optimized bitcode output.
4105  if (!AtTopLevel && C.getArgs().hasArg(options::OPT_emit_llvm) &&
4106  JA.getType() == types::TY_LLVM_BC)
4107  Suffixed += ".tmp";
4108  Suffixed += '.';
4109  Suffixed += Suffix;
4110  NamedOutput = C.getArgs().MakeArgString(Suffixed.c_str());
4111  }
4112 
4113  // Prepend object file path if -save-temps=obj
4114  if (!AtTopLevel && isSaveTempsObj() && C.getArgs().hasArg(options::OPT_o) &&
4115  JA.getType() != types::TY_PCH) {
4116  Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o);
4117  SmallString<128> TempPath(FinalOutput->getValue());
4118  llvm::sys::path::remove_filename(TempPath);
4119  StringRef OutputFileName = llvm::sys::path::filename(NamedOutput);
4120  llvm::sys::path::append(TempPath, OutputFileName);
4121  NamedOutput = C.getArgs().MakeArgString(TempPath.c_str());
4122  }
4123 
4124  // If we're saving temps and the temp file conflicts with the input file,
4125  // then avoid overwriting input file.
4126  if (!AtTopLevel && isSaveTempsEnabled() && NamedOutput == BaseName) {
4127  bool SameFile = false;
4128  SmallString<256> Result;
4129  llvm::sys::fs::current_path(Result);
4130  llvm::sys::path::append(Result, BaseName);
4131  llvm::sys::fs::equivalent(BaseInput, Result.c_str(), SameFile);
4132  // Must share the same path to conflict.
4133  if (SameFile) {
4134  StringRef Name = llvm::sys::path::filename(BaseInput);
4135  std::pair<StringRef, StringRef> Split = Name.split('.');
4136  std::string TmpName = GetTemporaryPath(
4137  Split.first, types::getTypeTempSuffix(JA.getType(), IsCLMode()));
4138  return C.addTempFile(C.getArgs().MakeArgString(TmpName));
4139  }
4140  }
4141 
4142  // As an annoying special case, PCH generation doesn't strip the pathname.
4143  if (JA.getType() == types::TY_PCH && !IsCLMode()) {
4144  llvm::sys::path::remove_filename(BasePath);
4145  if (BasePath.empty())
4146  BasePath = NamedOutput;
4147  else
4148  llvm::sys::path::append(BasePath, NamedOutput);
4149  return C.addResultFile(C.getArgs().MakeArgString(BasePath.c_str()), &JA);
4150  } else {
4151  return C.addResultFile(NamedOutput, &JA);
4152  }
4153 }
4154 
4155 std::string Driver::GetFilePath(StringRef Name, const ToolChain &TC) const {
4156  // Respect a limited subset of the '-Bprefix' functionality in GCC by
4157  // attempting to use this prefix when looking for file paths.
4158  for (const std::string &Dir : PrefixDirs) {
4159  if (Dir.empty())
4160  continue;
4161  SmallString<128> P(Dir[0] == '=' ? SysRoot + Dir.substr(1) : Dir);
4162  llvm::sys::path::append(P, Name);
4163  if (llvm::sys::fs::exists(Twine(P)))
4164  return P.str();
4165  }
4166 
4168  llvm::sys::path::append(R, Name);
4169  if (llvm::sys::fs::exists(Twine(R)))
4170  return R.str();
4171 
4173  llvm::sys::path::append(P, Name);
4174  if (llvm::sys::fs::exists(Twine(P)))
4175  return P.str();
4176 
4177  for (const std::string &Dir : TC.getFilePaths()) {
4178  if (Dir.empty())
4179  continue;
4180  SmallString<128> P(Dir[0] == '=' ? SysRoot + Dir.substr(1) : Dir);
4181  llvm::sys::path::append(P, Name);
4182  if (llvm::sys::fs::exists(Twine(P)))
4183  return P.str();
4184  }
4185 
4186  return Name;
4187 }
4188 
4189 void Driver::generatePrefixedToolNames(
4190  StringRef Tool, const ToolChain &TC,
4191  SmallVectorImpl<std::string> &Names) const {
4192  // FIXME: Needs a better variable than TargetTriple
4193  Names.emplace_back((TargetTriple + "-" + Tool).str());
4194  Names.emplace_back(Tool);
4195 
4196  // Allow the discovery of tools prefixed with LLVM's default target triple.
4197  std::string DefaultTargetTriple = llvm::sys::getDefaultTargetTriple();
4198  if (DefaultTargetTriple != TargetTriple)
4199  Names.emplace_back((DefaultTargetTriple + "-" + Tool).str());
4200 }
4201 
4203  ArrayRef<std::string> Names) {
4204  for (const auto &Name : Names) {
4205  llvm::sys::path::append(Dir, Name);
4206  if (llvm::sys::fs::can_execute(Twine(Dir)))
4207  return true;
4208  llvm::sys::path::remove_filename(Dir);
4209  }
4210  return false;
4211 }
4212 
4213 std::string Driver::GetProgramPath(StringRef Name, const ToolChain &TC) const {
4214  SmallVector<std::string, 2> TargetSpecificExecutables;
4215  generatePrefixedToolNames(Name, TC, TargetSpecificExecutables);
4216 
4217  // Respect a limited subset of the '-Bprefix' functionality in GCC by
4218  // attempting to use this prefix when looking for program paths.
4219  for (const auto &PrefixDir : PrefixDirs) {
4220  if (llvm::sys::fs::is_directory(PrefixDir)) {
4221  SmallString<128> P(PrefixDir);
4222  if (ScanDirForExecutable(P, TargetSpecificExecutables))
4223  return P.str();
4224  } else {
4225  SmallString<128> P((PrefixDir + Name).str());
4226  if (llvm::sys::fs::can_execute(Twine(P)))
4227  return P.str();
4228  }
4229  }
4230 
4231  const ToolChain::path_list &List = TC.getProgramPaths();
4232  for (const auto &Path : List) {
4233  SmallString<128> P(Path);
4234  if (ScanDirForExecutable(P, TargetSpecificExecutables))
4235  return P.str();
4236  }
4237 
4238  // If all else failed, search the path.
4239  for (const auto &TargetSpecificExecutable : TargetSpecificExecutables)
4240  if (llvm::ErrorOr<std::string> P =
4241  llvm::sys::findProgramByName(TargetSpecificExecutable))
4242  return *P;
4243 
4244  return Name;
4245 }
4246 
4247 std::string Driver::GetTemporaryPath(StringRef Prefix, StringRef Suffix) const {
4248  SmallString<128> Path;
4249  std::error_code EC = llvm::sys::fs::createTemporaryFile(Prefix, Suffix, Path);
4250  if (EC) {
4251  Diag(clang::diag::err_unable_to_make_temp) << EC.message();
4252  return "";
4253  }
4254 
4255  return Path.str();
4256 }
4257 
4258 std::string Driver::GetClPchPath(Compilation &C, StringRef BaseName) const {
4259  SmallString<128> Output;
4260  if (Arg *FpArg = C.getArgs().getLastArg(options::OPT__SLASH_Fp)) {
4261  // FIXME: If anybody needs it, implement this obscure rule:
4262  // "If you specify a directory without a file name, the default file name
4263  // is VCx0.pch., where x is the major version of Visual C++ in use."
4264  Output = FpArg->getValue();
4265 
4266  // "If you do not specify an extension as part of the path name, an
4267  // extension of .pch is assumed. "
4268  if (!llvm::sys::path::has_extension(Output))
4269  Output += ".pch";
4270  } else {
4271  Output = BaseName;
4272  llvm::sys::path::replace_extension(Output, ".pch");
4273  }
4274  return Output.str();
4275 }
4276 
4277 const ToolChain &Driver::getToolChain(const ArgList &Args,
4278  const llvm::Triple &Target) const {
4279 
4280  auto &TC = ToolChains[Target.str()];
4281  if (!TC) {
4282  switch (Target.getOS()) {
4283  case llvm::Triple::Haiku:
4284  TC = llvm::make_unique<toolchains::Haiku>(*this, Target, Args);
4285  break;
4286  case llvm::Triple::Ananas:
4287  TC = llvm::make_unique<toolchains::Ananas>(*this, Target, Args);
4288  break;
4289  case llvm::Triple::CloudABI:
4290  TC = llvm::make_unique<toolchains::CloudABI>(*this, Target, Args);
4291  break;
4292  case llvm::Triple::Darwin:
4293  case llvm::Triple::MacOSX:
4294  case llvm::Triple::IOS:
4295  case llvm::Triple::TvOS:
4296  case llvm::Triple::WatchOS:
4297  TC = llvm::make_unique<toolchains::DarwinClang>(*this, Target, Args);
4298  break;
4299  case llvm::Triple::DragonFly:
4300  TC = llvm::make_unique<toolchains::DragonFly>(*this, Target, Args);
4301  break;
4302  case llvm::Triple::OpenBSD:
4303  TC = llvm::make_unique<toolchains::OpenBSD>(*this, Target, Args);
4304  break;
4305  case llvm::Triple::NetBSD:
4306  TC = llvm::make_unique<toolchains::NetBSD>(*this, Target, Args);
4307  break;
4308  case llvm::Triple::FreeBSD:
4309  TC = llvm::make_unique<toolchains::FreeBSD>(*this, Target, Args);
4310  break;
4311  case llvm::Triple::Minix:
4312  TC = llvm::make_unique<toolchains::Minix>(*this, Target, Args);
4313  break;
4314  case llvm::Triple::Linux:
4315  case llvm::Triple::ELFIAMCU:
4316  if (Target.getArch() == llvm::Triple::hexagon)
4317  TC = llvm::make_unique<toolchains::HexagonToolChain>(*this, Target,
4318  Args);
4319  else if ((Target.getVendor() == llvm::Triple::MipsTechnologies) &&
4320  !Target.hasEnvironment())
4321  TC = llvm::make_unique<toolchains::MipsLLVMToolChain>(*this, Target,
4322  Args);
4323  else
4324  TC = llvm::make_unique<toolchains::Linux>(*this, Target, Args);
4325  break;
4326  case llvm::Triple::NaCl:
4327  TC = llvm::make_unique<toolchains::NaClToolChain>(*this, Target, Args);
4328  break;
4329  case llvm::Triple::Fuchsia:
4330  TC = llvm::make_unique<toolchains::Fuchsia>(*this, Target, Args);
4331  break;
4332  case llvm::Triple::Solaris:
4333  TC = llvm::make_unique<toolchains::Solaris>(*this, Target, Args);
4334  break;
4335  case llvm::Triple::AMDHSA:
4336  TC = llvm::make_unique<toolchains::AMDGPUToolChain>(*this, Target, Args);
4337  break;
4338  case llvm::Triple::Win32:
4339  switch (Target.getEnvironment()) {
4340  default:
4341  if (Target.isOSBinFormatELF())
4342  TC = llvm::make_unique<toolchains::Generic_ELF>(*this, Target, Args);
4343  else if (Target.isOSBinFormatMachO())
4344  TC = llvm::make_unique<toolchains::MachO>(*this, Target, Args);
4345  else
4346  TC = llvm::make_unique<toolchains::Generic_GCC>(*this, Target, Args);
4347  break;
4348  case llvm::Triple::GNU:
4349  TC = llvm::make_unique<toolchains::MinGW>(*this, Target, Args);
4350  break;
4351  case llvm::Triple::Itanium:
4352  TC = llvm::make_unique<toolchains::CrossWindowsToolChain>(*this, Target,
4353  Args);
4354  break;
4355  case llvm::Triple::MSVC:
4356  case llvm::Triple::UnknownEnvironment:
4357  if (Args.getLastArgValue(options::OPT_fuse_ld_EQ)
4358  .startswith_lower("bfd"))
4359  TC = llvm::make_unique<toolchains::CrossWindowsToolChain>(
4360  *this, Target, Args);
4361  else
4362  TC =
4363  llvm::make_unique<toolchains::MSVCToolChain>(*this, Target, Args);
4364  break;
4365  }
4366  break;
4367  case llvm::Triple::PS4:
4368  TC = llvm::make_unique<toolchains::PS4CPU>(*this, Target, Args);
4369  break;
4370  case llvm::Triple::Contiki:
4371  TC = llvm::make_unique<toolchains::Contiki>(*this, Target, Args);
4372  break;
4373  default:
4374  // Of these targets, Hexagon is the only one that might have
4375  // an OS of Linux, in which case it got handled above already.
4376  switch (Target.getArch()) {
4377  case llvm::Triple::tce:
4378  TC = llvm::make_unique<toolchains::TCEToolChain>(*this, Target, Args);
4379  break;
4380  case llvm::Triple::tcele:
4381  TC = llvm::make_unique<toolchains::TCELEToolChain>(*this, Target, Args);
4382  break;
4383  case llvm::Triple::hexagon:
4384  TC = llvm::make_unique<toolchains::HexagonToolChain>(*this, Target,
4385  Args);
4386  break;
4387  case llvm::Triple::lanai:
4388  TC = llvm::make_unique<toolchains::LanaiToolChain>(*this, Target, Args);
4389  break;
4390  case llvm::Triple::xcore:
4391  TC = llvm::make_unique<toolchains::XCoreToolChain>(*this, Target, Args);
4392  break;
4393  case llvm::Triple::wasm32:
4394  case llvm::Triple::wasm64:
4395  TC = llvm::make_unique<toolchains::WebAssembly>(*this, Target, Args);
4396  break;
4397  case llvm::Triple::avr:
4398  TC = llvm::make_unique<toolchains::AVRToolChain>(*this, Target, Args);
4399  break;
4400  default:
4401  if (Target.getVendor() == llvm::Triple::Myriad)
4402  TC = llvm::make_unique<toolchains::MyriadToolChain>(*this, Target,
4403  Args);
4404  else if (toolchains::BareMetal::handlesTarget(Target))
4405  TC = llvm::make_unique<toolchains::BareMetal>(*this, Target, Args);
4406  else if (Target.isOSBinFormatELF())
4407  TC = llvm::make_unique<toolchains::Generic_ELF>(*this, Target, Args);
4408  else if (Target.isOSBinFormatMachO())
4409  TC = llvm::make_unique<toolchains::MachO>(*this, Target, Args);
4410  else
4411  TC = llvm::make_unique<toolchains::Generic_GCC>(*this, Target, Args);
4412  }
4413  }
4414  }
4415 
4416  // Intentionally omitted from the switch above: llvm::Triple::CUDA. CUDA
4417  // compiles always need two toolchains, the CUDA toolchain and the host
4418  // toolchain. So the only valid way to create a CUDA toolchain is via
4419  // CreateOffloadingDeviceToolChains.
4420 
4421  return *TC;
4422 }
4423 
4425  // Say "no" if there is not exactly one input of a type clang understands.
4426  if (JA.size() != 1 ||
4427  !types::isAcceptedByClang((*JA.input_begin())->getType()))
4428  return false;
4429 
4430  // And say "no" if this is not a kind of action clang understands.
4431  if (!isa<PreprocessJobAction>(JA) && !isa<PrecompileJobAction>(JA) &&
4432  !isa<CompileJobAction>(JA) && !isa<BackendJobAction>(JA))
4433  return false;
4434 
4435  return true;
4436 }
4437 
4438 /// GetReleaseVersion - Parse (([0-9]+)(.([0-9]+)(.([0-9]+)?))?)? and return the
4439 /// grouped values as integers. Numbers which are not provided are set to 0.
4440 ///
4441 /// \return True if the entire string was parsed (9.2), or all groups were
4442 /// parsed (10.3.5extrastuff).
4443 bool Driver::GetReleaseVersion(StringRef Str, unsigned &Major, unsigned &Minor,
4444  unsigned &Micro, bool &HadExtra) {
4445  HadExtra = false;
4446 
4447  Major = Minor = Micro = 0;
4448  if (Str.empty())
4449  return false;
4450 
4451  if (Str.consumeInteger(10, Major))
4452  return false;
4453  if (Str.empty())
4454  return true;
4455  if (Str[0] != '.')
4456  return false;
4457 
4458  Str = Str.drop_front(1);
4459 
4460  if (Str.consumeInteger(10, Minor))
4461  return false;
4462  if (Str.empty())
4463  return true;
4464  if (Str[0] != '.')
4465  return false;
4466  Str = Str.drop_front(1);
4467 
4468  if (Str.consumeInteger(10, Micro))
4469  return false;
4470  if (!Str.empty())
4471  HadExtra = true;
4472  return true;
4473 }
4474 
4475 /// Parse digits from a string \p Str and fulfill \p Digits with
4476 /// the parsed numbers. This method assumes that the max number of
4477 /// digits to look for is equal to Digits.size().
4478 ///
4479 /// \return True if the entire string was parsed and there are
4480 /// no extra characters remaining at the end.
4481 bool Driver::GetReleaseVersion(StringRef Str,
4482  MutableArrayRef<unsigned> Digits) {
4483  if (Str.empty())
4484  return false;
4485 
4486  unsigned CurDigit = 0;
4487  while (CurDigit < Digits.size()) {
4488  unsigned Digit;
4489  if (Str.consumeInteger(10, Digit))
4490  return false;
4491  Digits[CurDigit] = Digit;
4492  if (Str.empty())
4493  return true;
4494  if (Str[0] != '.')
4495  return false;
4496  Str = Str.drop_front(1);
4497  CurDigit++;
4498  }
4499 
4500  // More digits than requested, bail out...
4501  return false;
4502 }
4503 
4504 std::pair<unsigned, unsigned> Driver::getIncludeExcludeOptionFlagMasks() const {
4505  unsigned IncludedFlagsBitmask = 0;
4506  unsigned ExcludedFlagsBitmask = options::NoDriverOption;
4507 
4508  if (Mode == CLMode) {
4509  // Include CL and Core options.
4510  IncludedFlagsBitmask |= options::CLOption;
4511  IncludedFlagsBitmask |= options::CoreOption;
4512  } else {
4513  ExcludedFlagsBitmask |= options::CLOption;
4514  }
4515 
4516  return std::make_pair(IncludedFlagsBitmask, ExcludedFlagsBitmask);
4517 }
4518 
4519 bool clang::driver::isOptimizationLevelFast(const ArgList &Args) {
4520  return Args.hasFlag(options::OPT_Ofast, options::OPT_O_Group, false);
4521 }
StringRef getSysRoot() const
Returns the sysroot path.
static bool GetReleaseVersion(StringRef Str, unsigned &Major, unsigned &Minor, unsigned &Micro, bool &HadExtra)
GetReleaseVersion - Parse (([0-9]+)(.
Definition: Driver.cpp:4443
static bool DiagnoseInputExistence(const Driver &D, const DerivedArgList &Args, StringRef Value, types::ID Ty)
Check that the file referenced by Value exists.
Definition: Driver.cpp:1865
ID
ID - Ordered values for successive stages in the compilation process which interact with user options...
Definition: Phases.h:18
static bool ContainsCompileOrAssembleAction(const Action *A)
Check whether the given input tree contains any compilation or assembly actions.
Definition: Driver.cpp:1764
if(T->getSizeExpr()) TRY_TO(TraverseStmt(T -> getSizeExpr()))
SmallVector< std::string, 16 > path_list
Definition: ToolChain.h:90
bool isCollapsingWithNextDependentActionLegal() const
Return true if this function can be collapsed with others.
Definition: Action.h:162
const llvm::opt::ArgStringList & getTempFiles() const
Definition: Compilation.h:208
std::string ModeSuffix
Driver mode part of the executable name, as g++.
Definition: ToolChain.h:66
CudaArch
Definition: Cuda.h:34
const char * CudaArchToString(CudaArch A)
Definition: Cuda.cpp:29
OpenMPRuntimeKind getOpenMPRuntime(const llvm::opt::ArgList &Args) const
Compute the desired OpenMP runtime from the flags provided.
Definition: Driver.cpp:513
std::string getClangFullVersion()
Retrieves a string representing the complete clang version, which includes the clang version number...
Definition: Version.cpp:118
prefix_list PrefixDirs
Definition: Driver.h:146
std::string GetTemporaryPath(StringRef Prefix, StringRef Suffix) const
GetTemporaryPath - Return the pathname of a temporary file to use as part of compilation; the file wi...
Definition: Driver.cpp:4247
const MultilibSet & getMultilibs() const
Definition: ToolChain.h:222
StringRef getArchName() const
Definition: ToolChain.h:198
T * MakeAction(Args &&... Arg)
Creates a new Action owned by this Compilation.
Definition: Compilation.h:197
bool canLipoType(ID Id)
canLipoType - Is this type acceptable as the output of a universal build (currently, just the Nothing, Image, and Object types).
Definition: Types.cpp:88
Set a ToolChain&#39;s effective triple.
Definition: ToolChain.h:539
IntrusiveRefCntPtr< FileSystem > getRealFileSystem()
Gets an vfs::FileSystem for the &#39;real&#39; file system, as seen by the operating system.
const char * getTypeTempSuffix(ID Id, bool CLMode=false)
getTypeTempSuffix - Return the suffix to use when creating a temp file of this type, or null if unspecified.
Definition: Types.cpp:55
unsigned CCCUsePCH
Use lazy precompiled headers for PCH support.
Definition: Driver.h:232
void BuildInputs(const ToolChain &TC, llvm::opt::DerivedArgList &Args, InputList &Inputs) const
BuildInputs - Construct the list of inputs and their types from the given arguments.
Definition: Driver.cpp:1904
StringRef P
void setResponseFile(const char *FileName)
Set to pass arguments via a response file when launching the command.
Definition: Job.cpp:304
bool isUsingLTO() const
Returns true if we are performing any kind of LTO.
Definition: Driver.h:519
virtual std::string getThreadModel() const
getThreadModel() - Which thread model does this target use?
Definition: ToolChain.h:424
virtual void ConstructJob(Compilation &C, const JobAction &JA, const InputInfo &Output, const InputInfoList &Inputs, const llvm::opt::ArgList &TCArgs, const char *LinkingOutput) const =0
ConstructJob - Construct jobs to perform the action JA, writing to Output and with Inputs...
input_range inputs()
Definition: Action.h:149
virtual bool isLinkJob() const
Definition: Tool.h:89
DiagnosticBuilder Report(SourceLocation Loc, unsigned DiagID)
Issue the message to the client.
Definition: Diagnostic.h:1294
std::string GetProgramPath(StringRef Name, const ToolChain &TC) const
GetProgramPath - Lookup Name in the list of program search paths.
Definition: Driver.cpp:4213
virtual bool isThreadModelSupported(const StringRef Model) const
isThreadModelSupported() - Does this target support a thread model?
Definition: ToolChain.cpp:477
std::string DyldPrefix
Dynamic loader prefix, if present.
Definition: Driver.h:152
virtual void printVerboseInfo(raw_ostream &OS) const
Dispatch to the specific toolchain for verbose printing.
Definition: ToolChain.h:293
static StringRef getCategoryNameFromID(unsigned CategoryID)
Given a category ID, return the name of the category.
DiagnosticBuilder Diag(unsigned DiagID) const
Definition: Driver.h:110
InputInfo BuildJobsForAction(Compilation &C, const Action *A, const ToolChain *TC, StringRef BoundArch, bool AtTopLevel, bool MultipleArchs, const char *LinkingOutput, std::map< std::pair< const Action *, std::string >, InputInfo > &CachedResults, Action::OffloadKind TargetDeviceOffloadKind) const
BuildJobsForAction - Construct the jobs to perform for the action A and return an InputInfo for the r...
Definition: Driver.cpp:3670
static ParsedClangName getTargetAndModeFromProgramName(StringRef ProgName)
Return any implicit target and/or mode flag for an invocation of the compiler driver as ProgName...
Definition: ToolChain.cpp:190
ResponseFileSupport getResponseFilesSupport() const
Returns the level of support for response files of this tool, whether it accepts arguments to be pass...
Definition: Tool.h:93
CudaArch StringToCudaArch(llvm::StringRef S)
Definition: Cuda.cpp:93
Type used to communicate device actions.
Definition: Action.h:253
const char * getClassName() const
Definition: Action.h:137
RAII class that determines when any errors have occurred between the time the instance was created an...
Definition: Diagnostic.h:998
virtual void ConstructJobMultipleOutputs(Compilation &C, const JobAction &JA, const InputInfoList &Outputs, const InputInfoList &Inputs, const llvm::opt::ArgList &TCArgs, const char *LinkingOutput) const
Construct jobs to perform the action JA, writing to the Outputs and with Inputs, and add the jobs to ...
Definition: Tool.cpp:26
void registerDependentActionInfo(const ToolChain *TC, StringRef BoundArch, OffloadKind Kind)
Register information about a dependent action.
Definition: Action.h:577
const ArgStringMap & getFailureResultFiles() const
Definition: Compilation.h:212
float __ovld __cnfn normalize(float p)
Returns a vector in the same direction as p but with a length of 1.
Driver(StringRef ClangExecutable, StringRef TargetTriple, DiagnosticsEngine &Diags, IntrusiveRefCntPtr< vfs::FileSystem > VFS=nullptr)
Definition: Driver.cpp:88
const llvm::opt::DerivedArgList & getArgsForToolChain(const ToolChain *TC, StringRef BoundArch, Action::OffloadKind DeviceOffloadKind)
getArgsForToolChain - Return the derived argument list for the tool chain TC (or the default tool cha...
Definition: Compilation.cpp:63
void addOffloadDeviceToolChain(const ToolChain *DeviceToolChain, Action::OffloadKind OffloadKind)
Definition: Compilation.h:174
Compilation * BuildCompilation(ArrayRef< const char *> Args)
BuildCompilation - Construct a compilation object for a command line argument vector.
Definition: Driver.cpp:875
std::string TargetPrefix
Target part of the executable name, as i686-linux-android.
Definition: ToolChain.h:63
path_list & getProgramPaths()
Definition: ToolChain.h:219
Contains the files in the compilation diagnostic report generated by generateCompilationDiagnostics.
Definition: Driver.h:412
static bool ScanDirForExecutable(SmallString< 128 > &Dir, ArrayRef< std::string > Names)
Definition: Driver.cpp:4202
Definition: Format.h:2022
ActionList & getInputs()
Definition: Action.h:142
std::string Dir
The path the driver executable was in, as invoked from the command line.
Definition: Driver.h:121
ID lookupCXXTypeForCType(ID Id)
lookupCXXTypeForCType - Lookup CXX input type that corresponds to given C type (used for clang++ emul...
Definition: Types.cpp:294
const std::string & gccSuffix() const
Get the detected GCC installation path suffix for the multi-arch target variant.
Definition: Multilib.h:45
Type used to communicate host actions.
Definition: Action.h:294
static unsigned getNumberOfCategories()
Return the number of diagnostic categories.
BackendAction
Definition: BackendUtil.h:31
std::string GetClPchPath(Compilation &C, StringRef BaseName) const
Return the pathname of the pch file in clang-cl mode.
Definition: Driver.cpp:4258
Action - Represent an abstract compilation step to perform.
Definition: Action.h:48
std::string getTripleString() const
Definition: ToolChain.h:206
bool HandleImmediateArgs(const Compilation &C)
HandleImmediateArgs - Handle any arguments which should be treated before building actions or binding...
Definition: Driver.cpp:1527
InputInfo - Wrapper for information about an input source.
Definition: InputInfo.h:23
Concrete class used by the front-end to report problems and issues.
Definition: Diagnostic.h:149
types::ID getType() const
Definition: Action.h:140
bool isOptimizationLevelFast(const llvm::opt::ArgList &Args)
path_list & getFilePaths()
Definition: ToolChain.h:216
CompileCommand Cmd
The LLVM OpenMP runtime.
Definition: Driver.h:96
OffloadKind getOffloadingDeviceKind() const
Definition: Action.h:196
std::unique_ptr< llvm::opt::OptTable > createDriverOptTable()
virtual bool isDsymutilJob() const
Definition: Tool.h:90
Driver - Encapsulate logic for constructing compilation processes from a set of gcc-driver-like comma...
Definition: Driver.h:59
An unknown OpenMP runtime.
Definition: Driver.h:92
const llvm::opt::InputArgList & getInputArgs() const
Definition: Compilation.h:185
input_iterator input_begin()
Definition: Action.h:147
bool isHIP(ID Id)
isHIP - Is this a HIP input.
Definition: Types.cpp:179
static Arg * MakeInputArg(DerivedArgList &Args, OptTable &Opts, StringRef Value, bool Claim=true)
Definition: Driver.cpp:288
bool hasOffloadToolChain() const
Return true if an offloading tool chain of a given kind exists.
Definition: Compilation.h:156
ID getPreprocessedType(ID Id)
getPreprocessedType - Get the ID of the type for this input when it has been preprocessed, or INVALID if this input is not preprocessed.
Definition: Types.cpp:43
StringRef Filename
Definition: Format.cpp:1598
void add(Action &A, const ToolChain &TC, const char *BoundArch, OffloadKind OKind)
Add a action along with the associated toolchain, bound arch, and offload kind.
Definition: Action.cpp:287
void PrintActions(const Compilation &C) const
PrintActions - Print the list of actions.
Definition: Driver.cpp:1756
const ToolChain & getDefaultToolChain() const
Definition: Compilation.h:136
const ArgStringMap & getResultFiles() const
Definition: Compilation.h:210
unsigned GenReproducer
Force clang to emit reproducer for driver invocation.
Definition: Driver.h:237
ID lookupHeaderTypeForSourceType(ID Id)
Lookup header file input type that corresponds to given source file type (used for clang-cl emulation...
Definition: Types.cpp:310
const char * getTypeName(ID Id)
getTypeName - Return the name of the type for Id.
Definition: Types.cpp:39
std::string getAsString() const
getAsString - Return a string name for this input, for debugging.
Definition: InputInfo.h:95
ActionClass getKind() const
Definition: Action.h:139
SourceLocation End
const char * getPhaseName(ID Id)
Definition: Phases.cpp:16
int Id
Definition: ASTDiff.cpp:191
const FunctionProtoType * T
const Tool & getCreator() const
getCreator - Return the Tool which caused the creation of this job.
Definition: Job.h:108
StateNode * Previous
bool isSaveTempsObj() const
Definition: Driver.h:330
Defines version macros and version-related utility functions for Clang.
bool IsCLMode() const
Whether the driver should follow cl.exe like behavior.
Definition: Driver.h:183
virtual types::ID LookupTypeForExtension(StringRef Ext) const
LookupTypeForExtension - Return the default language type to use for the given extension.
Definition: ToolChain.cpp:443
This corresponds to a single GCC Multilib, or a segment of one controlled by a command line flag...
Definition: Multilib.h:29
static std::string GetTriplePlusArchString(const ToolChain *TC, StringRef BoundArch, Action::OffloadKind OffloadKind)
Return a string that uniquely identifies the result of a job.
Definition: Driver.cpp:3657
void HandleAutocompletions(StringRef PassedFlags) const
HandleAutocompletions - Handle –autocomplete by searching and printing possible flags, descriptions, and its arguments.
Definition: Driver.cpp:1462
virtual std::string getCompilerRT(const llvm::opt::ArgList &Args, StringRef Component, bool Shared=false) const
Definition: ToolChain.cpp:350
void getCompilationPhases(ID Id, llvm::SmallVectorImpl< phases::ID > &Phases)
getCompilationPhases - Get the list of compilation phases (&#39;Phases&#39;) to be done for type &#39;Id&#39;...
Definition: Types.cpp:268
void BuildUniversalActions(Compilation &C, const ToolChain &TC, const InputList &BAInputs) const
BuildUniversalActions - Construct the list of actions to perform for the given arguments, which may require a universal build.
Definition: Driver.cpp:1776
size_type size() const
Definition: Action.h:145
llvm::opt::InputArgList ParseArgStrings(ArrayRef< const char *> Args, bool &ContainsError)
ParseArgStrings - Parse the given list of strings into an ArgList.
Definition: Driver.cpp:165
void setCannotBeCollapsedWithNextDependentAction()
Mark this action as not legal to collapse.
Definition: Action.h:157
Action * ConstructPhaseAction(Compilation &C, const llvm::opt::ArgList &Args, phases::ID Phase, Action *Input, Action::OffloadKind TargetDeviceOffloadKind=Action::OFK_None) const
ConstructAction - Construct the appropriate action to do for Phase on the Input, taking in to account...
Definition: Driver.cpp:3173
llvm::Triple::ArchType getArchTypeForMachOArchName(StringRef Str)
Definition: Darwin.cpp:34
const ActionList & getActions() const
Get each of the individual arrays.
Definition: Action.h:284
const_offload_toolchains_range getOffloadToolChains() const
Definition: Compilation.h:151
static void PrintDiagnosticCategories(raw_ostream &OS)
PrintDiagnosticCategories - Implement the –print-diagnostic-categories option.
Definition: Driver.cpp:1455
void Print(llvm::raw_ostream &OS, const char *Terminator, bool Quote, CrashReportInfo *CrashInfo=nullptr) const
Definition: Job.cpp:429
void PrintHelp(bool ShowHidden) const
PrintHelp - Print the help text.
Definition: Driver.cpp:1414
virtual bool canEmitIR() const
Definition: Tool.h:87
static void printArg(llvm::raw_ostream &OS, StringRef Arg, bool Quote)
Print a command argument, and optionally quote it.
Definition: Job.cpp:101
#define false
Definition: stdbool.h:33
virtual bool hasIntegratedCPP() const =0
void generateCompilationDiagnostics(Compilation &C, const Command &FailingCommand, StringRef AdditionalInformation="", CompilationDiagnosticReport *GeneratedReport=nullptr)
generateCompilationDiagnostics - Generate diagnostics information including preprocessed source file(...
Definition: Driver.cpp:1152
static unsigned PrintActions1(const Compilation &C, Action *A, std::map< Action *, unsigned > &Ids)
Definition: Driver.cpp:1679
bool embedBitcodeInObject() const
Definition: Driver.h:333
Encodes a location in the source.
const llvm::opt::DerivedArgList & getArgs() const
Definition: Compilation.h:187
bool hasErrorOccurred() const
Determine whether any errors have occurred since this object instance was created.
Definition: Diagnostic.h:1009
Command - An executable path/name and argument vector to execute.
Definition: Job.h:45
bool isCuda(ID Id)
isCuda - Is this a CUDA input.
Definition: Types.cpp:167
The legacy name for the LLVM OpenMP runtime from when it was the Intel OpenMP runtime.
Definition: Driver.h:106
std::string InstalledDir
The path to the installed clang directory, if any.
Definition: Driver.h:130
bool CCCIsCXX() const
Whether the driver should follow g++ like behavior.
Definition: Driver.h:174
const char * addResultFile(const char *Name, const JobAction *JA)
addResultFile - Add a file to remove on failure, and returns its argument.
Definition: Compilation.h:240
bool isSaveTempsEnabled() const
Definition: Driver.h:329
static std::vector< std::string > getDiagnosticFlags()
Get the string of all diagnostic flags.
std::string UserConfigDir
User directory for config files.
Definition: Driver.h:139
bool isAcceptedByClang(ID Id)
isAcceptedByClang - Can clang handle this input type.
Definition: Types.cpp:95
virtual bool hasIntegratedAssembler() const
Definition: Tool.h:86
An offload action combines host or/and device actions according to the programming model implementati...
Definition: Action.h:247
const char * getDefaultImageName() const
Returns the default name for linked images (e.g., "a.out").
Definition: Driver.cpp:3953
virtual RuntimeLibType GetRuntimeLibType(const llvm::opt::ArgList &Args) const
Definition: ToolChain.cpp:636
void ExecuteJobs(const JobList &Jobs, SmallVectorImpl< std::pair< int, const Command *>> &FailingCommands) const
ExecuteJob - Execute a single job.
const char * getShortName() const
Definition: Tool.h:82
void setIgnoreAllWarnings(bool Val)
When set to true, any unmapped warnings are ignored.
Definition: Diagnostic.h:587
static bool searchForFile(SmallVectorImpl< char > &FilePath, ArrayRef< std::string > Dirs, StringRef FileName)
Looks the given directories for the specified file.
Definition: Driver.cpp:675
unsigned getOffloadingHostActiveKinds() const
Definition: Action.h:192
void EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts, llvm::MemoryBufferRef Buf)
const Action & getSource() const
getSource - Return the Action which caused the creation of this job.
Definition: Job.h:105
Dataflow Directional Tag Classes.
Level getDiagnosticLevel(unsigned DiagID, SourceLocation Loc) const
Based on the way the client configured the DiagnosticsEngine object, classify the specified diagnosti...
Definition: Diagnostic.h:833
const char * getExecutable() const
Definition: Job.h:125
unsigned CCCPrintBindings
Only print tool bindings, don&#39;t build any jobs.
Definition: Driver.h:186
static llvm::Triple computeTargetTriple(const Driver &D, StringRef TargetTriple, const ArgList &Args, StringRef DarwinArchName="")
Compute target triple from args.
Definition: Driver.cpp:391
virtual std::string ComputeEffectiveClangTriple(const llvm::opt::ArgList &Args, types::ID InputType=types::TY_INVALID) const
ComputeEffectiveClangTriple - Return the Clang triple to use for this target, which may take into acc...
Definition: ToolChain.cpp:613
const llvm::opt::ArgStringList & getArguments() const
Definition: Job.h:127
virtual bool hasGoodDiagnostics() const
Does this tool have "good" standardized diagnostics, or should the driver add an additional "command ...
Definition: Tool.h:117
std::string SysRoot
sysroot, if present
Definition: Driver.h:149
Tool - Information on a specific compilation tool.
Definition: Tool.h:34
void setTripleTypeForMachOArchName(llvm::Triple &T, StringRef Str)
Definition: Darwin.cpp:69
std::string Name
The name the driver was invoked as.
Definition: Driver.h:117
Defines the virtual file system interface vfs::FileSystem.
static bool handlesTarget(const llvm::Triple &Triple)
Definition: BareMetal.cpp:60
The GNU OpenMP runtime.
Definition: Driver.h:101
llvm::SmallVector< std::string, 4 > TemporaryFiles
Definition: Driver.h:413
int ExecuteCompilation(Compilation &C, SmallVectorImpl< std::pair< int, const Command *> > &FailingCommands)
ExecuteCompilation - Execute the compilation according to the command line arguments and return an ap...
Definition: Driver.cpp:1353
ActionList & getActions()
Definition: Compilation.h:191
ParsedClangName ClangNameParts
Target and driver mode components extracted from clang executable name.
Definition: Driver.h:127
bool getCheckInputsExist() const
Definition: Driver.h:303
std::string ClangExecutable
The original path to the clang executable.
Definition: Driver.h:124
void BuildJobs(Compilation &C) const
BuildJobs - Bind actions to concrete tools and translate arguments to form the list of jobs to run...
Definition: Driver.cpp:3256
ID getPrecompiledType(ID Id)
getPrecompiledType - Get the ID of the type for this input when it has been precompiled, or INVALID if this input is not precompiled.
Definition: Types.cpp:47
bool ShouldUseClangCompiler(const JobAction &JA) const
ShouldUseClangCompiler - Should the clang compiler be used to handle this action. ...
Definition: Driver.cpp:4424
StringRef getDefaultUniversalArchName() const
Provide the default architecture name (as expected by -arch) for this toolchain.
Definition: ToolChain.cpp:212
Compilation - A set of tasks to perform for a single driver invocation.
Definition: Compilation.h:46
void BuildActions(Compilation &C, llvm::opt::DerivedArgList &Args, const InputList &Inputs, ActionList &Actions) const
BuildActions - Construct the list of actions to perform for the given arguments, which are only done ...
Definition: Driver.cpp:2914
const Driver & getDriver() const
Definition: Compilation.h:134
const llvm::Triple & getTriple() const
Definition: ToolChain.h:183
static StringRef GetOffloadKindName(OffloadKind Kind)
Return a string containing a offload kind name.
Definition: Action.cpp:143
std::string GetFilePath(StringRef Name, const ToolChain &TC) const
GetFilePath - Lookup Name in the list of file search paths.
Definition: Driver.cpp:4155
static void printArgList(raw_ostream &OS, const llvm::opt::ArgList &Args)
Definition: Driver.cpp:1047
const ToolChain & getToolChain() const
Definition: Tool.h:84
bool CleanupFileMap(const ArgStringMap &Files, const JobAction *JA, bool IssueErrors=false) const
CleanupFileMap - Remove the files in the given map.
virtual std::string getCompilerRTPath() const
Definition: ToolChain.cpp:340
X
Add a minimal nested name specifier fixit hint to allow lookup of a tag name from an outer enclosing ...
Definition: SemaDecl.cpp:13462
void propagateHostOffloadInfo(unsigned OKinds, const char *OArch)
Append the host offload info of this action and propagate it to its dependences.
Definition: Action.cpp:66
static std::string GetOffloadingFileNamePrefix(OffloadKind Kind, StringRef NormalizedTriple, bool CreatePrefixForHost=false)
Return a string that can be used as prefix in order to generate unique files for each offloading kind...
Definition: Action.cpp:127
void ParseDriverMode(StringRef ProgramName, ArrayRef< const char *> Args)
ParseDriverMode - Look for and handle the driver mode option in Args.
Definition: Driver.cpp:132
const char * getName() const
Definition: Tool.h:80
const llvm::opt::OptTable & getOpts() const
Definition: Driver.h:297
virtual Tool * SelectTool(const JobAction &JA) const
Choose a tool to use to handle the action JA.
Definition: ToolChain.cpp:395
const char * addTempFile(const char *Name)
addTempFile - Add a file to remove on exit, and returns its argument.
Definition: Compilation.h:233
std::string getOffloadingKindPrefix() const
Return a string containing the offload kind of the action.
Definition: Action.cpp:88
const ToolChain * getSingleOffloadToolChain() const
Return an offload toolchain of the provided kind.
Definition: Compilation.h:164
__DEVICE__ int max(int __a, int __b)
std::string DriverTitle
Driver title to use with help.
Definition: Driver.h:155
static const char * MakeCLOutputFilename(const ArgList &Args, StringRef ArgValue, StringRef BaseName, types::ID FileType)
Create output filename based on ArgValue, which could either be a full filename, filename without ext...
Definition: Driver.cpp:3962
void initialize(TemplateInstantiationCallbackPtrs &Callbacks, const Sema &TheSema)
bool CCCIsCPP() const
Whether the driver is just the preprocessor.
Definition: Driver.h:177
void PrintVersion(const Compilation &C, raw_ostream &OS) const
PrintVersion - Print the driver version.
Definition: Driver.cpp:1429
void CreateOffloadingDeviceToolChains(Compilation &C, InputList &Inputs)
CreateOffloadingDeviceToolChains - create all the toolchains required to support offloading devices g...
Definition: Driver.cpp:538
bool appendSuffixForType(ID Id)
appendSuffixForType - When generating outputs of this type, should the suffix be appended (instead of...
Definition: Types.cpp:84
ID lookupTypeForTypeSpecifier(const char *Name)
lookupTypeForTypSpecifier - Lookup the type to use for a user specified type name.
Definition: Types.cpp:256
const char * GetNamedOutputPath(Compilation &C, const JobAction &JA, const char *BaseInput, StringRef BoundArch, bool AtTopLevel, bool MultipleArchs, StringRef NormalizedTriple) const
GetNamedOutputPath - Return the name to use for the output of the action JA.
Definition: Driver.cpp:3991
#define true
Definition: stdbool.h:32
void initCompilationForDiagnostics()
initCompilationForDiagnostics - Remove stale state and suppress output so compilation can be reexecut...
bool isSrcFile(ID Id)
isSrcFile - Is this a source file, i.e.
Definition: Types.cpp:191
const char * DriverMode
Corresponding driver mode argument, as &#39;–driver-mode=g++&#39;.
Definition: ToolChain.h:69
const char * getOffloadingArch() const
Definition: Action.h:197
virtual void Print(llvm::raw_ostream &OS, const char *Terminator, bool Quote, CrashReportInfo *CrashInfo=nullptr) const
Definition: Job.cpp:214
unsigned CCGenDiagnostics
Whether the driver is generating diagnostics for debugging purposes.
Definition: Driver.h:202
std::string SystemConfigDir
System directory for config files.
Definition: Driver.h:136
ToolChain - Access to tools for a single platform.
Definition: ToolChain.h:88
std::string ResourceDir
The path to the compiler resource directory.
Definition: Driver.h:133