clang  8.0.0svn
Driver.cpp
Go to the documentation of this file.
1 //===--- Driver.cpp - Clang GCC Compatible Driver -------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "clang/Driver/Driver.h"
11 #include "InputInfo.h"
12 #include "ToolChains/AMDGPU.h"
13 #include "ToolChains/AVR.h"
14 #include "ToolChains/Ananas.h"
15 #include "ToolChains/BareMetal.h"
16 #include "ToolChains/Clang.h"
17 #include "ToolChains/CloudABI.h"
18 #include "ToolChains/Contiki.h"
20 #include "ToolChains/Cuda.h"
21 #include "ToolChains/Darwin.h"
22 #include "ToolChains/DragonFly.h"
23 #include "ToolChains/FreeBSD.h"
24 #include "ToolChains/Fuchsia.h"
25 #include "ToolChains/Gnu.h"
26 #include "ToolChains/HIP.h"
27 #include "ToolChains/Haiku.h"
28 #include "ToolChains/Hexagon.h"
29 #include "ToolChains/Lanai.h"
30 #include "ToolChains/Linux.h"
31 #include "ToolChains/MSVC.h"
32 #include "ToolChains/MinGW.h"
33 #include "ToolChains/Minix.h"
34 #include "ToolChains/MipsLinux.h"
35 #include "ToolChains/Myriad.h"
36 #include "ToolChains/NaCl.h"
37 #include "ToolChains/NetBSD.h"
38 #include "ToolChains/OpenBSD.h"
39 #include "ToolChains/PS4CPU.h"
40 #include "ToolChains/RISCV.h"
41 #include "ToolChains/Solaris.h"
42 #include "ToolChains/TCE.h"
43 #include "ToolChains/WebAssembly.h"
44 #include "ToolChains/XCore.h"
45 #include "clang/Basic/Version.h"
47 #include "clang/Config/config.h"
48 #include "clang/Driver/Action.h"
51 #include "clang/Driver/Job.h"
52 #include "clang/Driver/Options.h"
54 #include "clang/Driver/Tool.h"
55 #include "clang/Driver/ToolChain.h"
56 #include "llvm/ADT/ArrayRef.h"
57 #include "llvm/ADT/STLExtras.h"
58 #include "llvm/ADT/SmallSet.h"
59 #include "llvm/ADT/StringExtras.h"
60 #include "llvm/ADT/StringSet.h"
61 #include "llvm/ADT/StringSwitch.h"
62 #include "llvm/Config/llvm-config.h"
63 #include "llvm/Option/Arg.h"
64 #include "llvm/Option/ArgList.h"
65 #include "llvm/Option/OptSpecifier.h"
66 #include "llvm/Option/OptTable.h"
67 #include "llvm/Option/Option.h"
68 #include "llvm/Support/CommandLine.h"
69 #include "llvm/Support/ErrorHandling.h"
70 #include "llvm/Support/FileSystem.h"
71 #include "llvm/Support/Path.h"
72 #include "llvm/Support/PrettyStackTrace.h"
73 #include "llvm/Support/Process.h"
74 #include "llvm/Support/Program.h"
75 #include "llvm/Support/StringSaver.h"
76 #include "llvm/Support/TargetRegistry.h"
77 #include "llvm/Support/raw_ostream.h"
78 #include <map>
79 #include <memory>
80 #include <utility>
81 #if LLVM_ON_UNIX
82 #include <unistd.h> // getpid
83 #endif
84 
85 using namespace clang::driver;
86 using namespace clang;
87 using namespace llvm::opt;
88 
89 Driver::Driver(StringRef ClangExecutable, StringRef TargetTriple,
90  DiagnosticsEngine &Diags,
92  : Opts(createDriverOptTable()), Diags(Diags), VFS(std::move(VFS)),
93  Mode(GCCMode), SaveTemps(SaveTempsNone), BitcodeEmbed(EmbedNone),
94  LTOMode(LTOK_None), ClangExecutable(ClangExecutable),
95  SysRoot(DEFAULT_SYSROOT), DriverTitle("clang LLVM compiler"),
96  CCPrintOptionsFilename(nullptr), CCPrintHeadersFilename(nullptr),
97  CCLogDiagnosticsFilename(nullptr), CCCPrintBindings(false),
98  CCPrintOptions(false), CCPrintHeaders(false), CCLogDiagnostics(false),
99  CCGenDiagnostics(false), TargetTriple(TargetTriple),
100  CCCGenericGCCName(""), Saver(Alloc), CheckInputsExist(true),
101  CCCUsePCH(true), GenReproducer(false),
102  SuppressMissingInputWarning(false) {
103 
104  // Provide a sane fallback if no VFS is specified.
105  if (!this->VFS)
106  this->VFS = vfs::getRealFileSystem();
107 
108  Name = llvm::sys::path::filename(ClangExecutable);
109  Dir = llvm::sys::path::parent_path(ClangExecutable);
110  InstalledDir = Dir; // Provide a sensible default installed dir.
111 
112 #if defined(CLANG_CONFIG_FILE_SYSTEM_DIR)
113  SystemConfigDir = CLANG_CONFIG_FILE_SYSTEM_DIR;
114 #endif
115 #if defined(CLANG_CONFIG_FILE_USER_DIR)
116  UserConfigDir = CLANG_CONFIG_FILE_USER_DIR;
117 #endif
118 
119  // Compute the path to the resource directory.
120  StringRef ClangResourceDir(CLANG_RESOURCE_DIR);
122  if (ClangResourceDir != "") {
123  llvm::sys::path::append(P, ClangResourceDir);
124  } else {
125  StringRef ClangLibdirSuffix(CLANG_LIBDIR_SUFFIX);
126  P = llvm::sys::path::parent_path(Dir);
127  llvm::sys::path::append(P, Twine("lib") + ClangLibdirSuffix, "clang",
128  CLANG_VERSION_STRING);
129  }
130  ResourceDir = P.str();
131 }
132 
133 void Driver::ParseDriverMode(StringRef ProgramName,
134  ArrayRef<const char *> Args) {
135  if (ClangNameParts.isEmpty())
137  setDriverModeFromOption(ClangNameParts.DriverMode);
138 
139  for (const char *ArgPtr : Args) {
140  // Ignore nullptrs, they are the response file's EOL markers.
141  if (ArgPtr == nullptr)
142  continue;
143  const StringRef Arg = ArgPtr;
144  setDriverModeFromOption(Arg);
145  }
146 }
147 
148 void Driver::setDriverModeFromOption(StringRef Opt) {
149  const std::string OptName =
150  getOpts().getOption(options::OPT_driver_mode).getPrefixedName();
151  if (!Opt.startswith(OptName))
152  return;
153  StringRef Value = Opt.drop_front(OptName.size());
154 
155  if (auto M = llvm::StringSwitch<llvm::Optional<DriverMode>>(Value)
156  .Case("gcc", GCCMode)
157  .Case("g++", GXXMode)
158  .Case("cpp", CPPMode)
159  .Case("cl", CLMode)
160  .Default(None))
161  Mode = *M;
162  else
163  Diag(diag::err_drv_unsupported_option_argument) << OptName << Value;
164 }
165 
167  bool &ContainsError) {
168  llvm::PrettyStackTraceString CrashInfo("Command line argument parsing");
169  ContainsError = false;
170 
171  unsigned IncludedFlagsBitmask;
172  unsigned ExcludedFlagsBitmask;
173  std::tie(IncludedFlagsBitmask, ExcludedFlagsBitmask) =
174  getIncludeExcludeOptionFlagMasks();
175 
176  unsigned MissingArgIndex, MissingArgCount;
177  InputArgList Args =
178  getOpts().ParseArgs(ArgStrings, MissingArgIndex, MissingArgCount,
179  IncludedFlagsBitmask, ExcludedFlagsBitmask);
180 
181  // Check for missing argument error.
182  if (MissingArgCount) {
183  Diag(diag::err_drv_missing_argument)
184  << Args.getArgString(MissingArgIndex) << MissingArgCount;
185  ContainsError |=
186  Diags.getDiagnosticLevel(diag::err_drv_missing_argument,
188  }
189 
190  // Check for unsupported options.
191  for (const Arg *A : Args) {
192  if (A->getOption().hasFlag(options::Unsupported)) {
193  unsigned DiagID;
194  auto ArgString = A->getAsString(Args);
195  std::string Nearest;
196  if (getOpts().findNearest(
197  ArgString, Nearest, IncludedFlagsBitmask,
198  ExcludedFlagsBitmask | options::Unsupported) > 1) {
199  DiagID = diag::err_drv_unsupported_opt;
200  Diag(DiagID) << ArgString;
201  } else {
202  DiagID = diag::err_drv_unsupported_opt_with_suggestion;
203  Diag(DiagID) << ArgString << Nearest;
204  }
205  ContainsError |= Diags.getDiagnosticLevel(DiagID, SourceLocation()) >
207  continue;
208  }
209 
210  // Warn about -mcpu= without an argument.
211  if (A->getOption().matches(options::OPT_mcpu_EQ) && A->containsValue("")) {
212  Diag(diag::warn_drv_empty_joined_argument) << A->getAsString(Args);
213  ContainsError |= Diags.getDiagnosticLevel(
214  diag::warn_drv_empty_joined_argument,
216  }
217  }
218 
219  for (const Arg *A : Args.filtered(options::OPT_UNKNOWN)) {
220  unsigned DiagID;
221  auto ArgString = A->getAsString(Args);
222  std::string Nearest;
223  if (getOpts().findNearest(
224  ArgString, Nearest, IncludedFlagsBitmask, ExcludedFlagsBitmask) > 1) {
225  DiagID = IsCLMode() ? diag::warn_drv_unknown_argument_clang_cl
226  : diag::err_drv_unknown_argument;
227  Diags.Report(DiagID) << ArgString;
228  } else {
229  DiagID = IsCLMode() ? diag::warn_drv_unknown_argument_clang_cl_with_suggestion
230  : diag::err_drv_unknown_argument_with_suggestion;
231  Diags.Report(DiagID) << ArgString << Nearest;
232  }
233  ContainsError |= Diags.getDiagnosticLevel(DiagID, SourceLocation()) >
235  }
236 
237  return Args;
238 }
239 
240 // Determine which compilation mode we are in. We look for options which
241 // affect the phase, starting with the earliest phases, and record which
242 // option we used to determine the final phase.
243 phases::ID Driver::getFinalPhase(const DerivedArgList &DAL,
244  Arg **FinalPhaseArg) const {
245  Arg *PhaseArg = nullptr;
246  phases::ID FinalPhase;
247 
248  // -{E,EP,P,M,MM} only run the preprocessor.
249  if (CCCIsCPP() || (PhaseArg = DAL.getLastArg(options::OPT_E)) ||
250  (PhaseArg = DAL.getLastArg(options::OPT__SLASH_EP)) ||
251  (PhaseArg = DAL.getLastArg(options::OPT_M, options::OPT_MM)) ||
252  (PhaseArg = DAL.getLastArg(options::OPT__SLASH_P))) {
253  FinalPhase = phases::Preprocess;
254 
255  // --precompile only runs up to precompilation.
256  } else if ((PhaseArg = DAL.getLastArg(options::OPT__precompile))) {
257  FinalPhase = phases::Precompile;
258 
259  // -{fsyntax-only,-analyze,emit-ast} only run up to the compiler.
260  } else if ((PhaseArg = DAL.getLastArg(options::OPT_fsyntax_only)) ||
261  (PhaseArg = DAL.getLastArg(options::OPT_module_file_info)) ||
262  (PhaseArg = DAL.getLastArg(options::OPT_verify_pch)) ||
263  (PhaseArg = DAL.getLastArg(options::OPT_rewrite_objc)) ||
264  (PhaseArg = DAL.getLastArg(options::OPT_rewrite_legacy_objc)) ||
265  (PhaseArg = DAL.getLastArg(options::OPT__migrate)) ||
266  (PhaseArg = DAL.getLastArg(options::OPT__analyze,
267  options::OPT__analyze_auto)) ||
268  (PhaseArg = DAL.getLastArg(options::OPT_emit_ast))) {
269  FinalPhase = phases::Compile;
270 
271  // -S only runs up to the backend.
272  } else if ((PhaseArg = DAL.getLastArg(options::OPT_S))) {
273  FinalPhase = phases::Backend;
274 
275  // -c compilation only runs up to the assembler.
276  } else if ((PhaseArg = DAL.getLastArg(options::OPT_c))) {
277  FinalPhase = phases::Assemble;
278 
279  // Otherwise do everything.
280  } else
281  FinalPhase = phases::Link;
282 
283  if (FinalPhaseArg)
284  *FinalPhaseArg = PhaseArg;
285 
286  return FinalPhase;
287 }
288 
289 static Arg *MakeInputArg(DerivedArgList &Args, OptTable &Opts,
290  StringRef Value, bool Claim = true) {
291  Arg *A = new Arg(Opts.getOption(options::OPT_INPUT), Value,
292  Args.getBaseArgs().MakeIndex(Value), Value.data());
293  Args.AddSynthesizedArg(A);
294  if (Claim)
295  A->claim();
296  return A;
297 }
298 
299 DerivedArgList *Driver::TranslateInputArgs(const InputArgList &Args) const {
300  DerivedArgList *DAL = new DerivedArgList(Args);
301 
302  bool HasNostdlib = Args.hasArg(options::OPT_nostdlib);
303  bool HasNodefaultlib = Args.hasArg(options::OPT_nodefaultlibs);
304  for (Arg *A : Args) {
305  // Unfortunately, we have to parse some forwarding options (-Xassembler,
306  // -Xlinker, -Xpreprocessor) because we either integrate their functionality
307  // (assembler and preprocessor), or bypass a previous driver ('collect2').
308 
309  // Rewrite linker options, to replace --no-demangle with a custom internal
310  // option.
311  if ((A->getOption().matches(options::OPT_Wl_COMMA) ||
312  A->getOption().matches(options::OPT_Xlinker)) &&
313  A->containsValue("--no-demangle")) {
314  // Add the rewritten no-demangle argument.
315  DAL->AddFlagArg(A, Opts->getOption(options::OPT_Z_Xlinker__no_demangle));
316 
317  // Add the remaining values as Xlinker arguments.
318  for (StringRef Val : A->getValues())
319  if (Val != "--no-demangle")
320  DAL->AddSeparateArg(A, Opts->getOption(options::OPT_Xlinker), Val);
321 
322  continue;
323  }
324 
325  // Rewrite preprocessor options, to replace -Wp,-MD,FOO which is used by
326  // some build systems. We don't try to be complete here because we don't
327  // care to encourage this usage model.
328  if (A->getOption().matches(options::OPT_Wp_COMMA) &&
329  (A->getValue(0) == StringRef("-MD") ||
330  A->getValue(0) == StringRef("-MMD"))) {
331  // Rewrite to -MD/-MMD along with -MF.
332  if (A->getValue(0) == StringRef("-MD"))
333  DAL->AddFlagArg(A, Opts->getOption(options::OPT_MD));
334  else
335  DAL->AddFlagArg(A, Opts->getOption(options::OPT_MMD));
336  if (A->getNumValues() == 2)
337  DAL->AddSeparateArg(A, Opts->getOption(options::OPT_MF),
338  A->getValue(1));
339  continue;
340  }
341 
342  // Rewrite reserved library names.
343  if (A->getOption().matches(options::OPT_l)) {
344  StringRef Value = A->getValue();
345 
346  // Rewrite unless -nostdlib is present.
347  if (!HasNostdlib && !HasNodefaultlib && Value == "stdc++") {
348  DAL->AddFlagArg(A, Opts->getOption(options::OPT_Z_reserved_lib_stdcxx));
349  continue;
350  }
351 
352  // Rewrite unconditionally.
353  if (Value == "cc_kext") {
354  DAL->AddFlagArg(A, Opts->getOption(options::OPT_Z_reserved_lib_cckext));
355  continue;
356  }
357  }
358 
359  // Pick up inputs via the -- option.
360  if (A->getOption().matches(options::OPT__DASH_DASH)) {
361  A->claim();
362  for (StringRef Val : A->getValues())
363  DAL->append(MakeInputArg(*DAL, *Opts, Val, false));
364  continue;
365  }
366 
367  DAL->append(A);
368  }
369 
370  // Enforce -static if -miamcu is present.
371  if (Args.hasFlag(options::OPT_miamcu, options::OPT_mno_iamcu, false))
372  DAL->AddFlagArg(0, Opts->getOption(options::OPT_static));
373 
374 // Add a default value of -mlinker-version=, if one was given and the user
375 // didn't specify one.
376 #if defined(HOST_LINK_VERSION)
377  if (!Args.hasArg(options::OPT_mlinker_version_EQ) &&
378  strlen(HOST_LINK_VERSION) > 0) {
379  DAL->AddJoinedArg(0, Opts->getOption(options::OPT_mlinker_version_EQ),
380  HOST_LINK_VERSION);
381  DAL->getLastArg(options::OPT_mlinker_version_EQ)->claim();
382  }
383 #endif
384 
385  return DAL;
386 }
387 
388 /// Compute target triple from args.
389 ///
390 /// This routine provides the logic to compute a target triple from various
391 /// args passed to the driver and the default triple string.
392 static llvm::Triple computeTargetTriple(const Driver &D,
393  StringRef TargetTriple,
394  const ArgList &Args,
395  StringRef DarwinArchName = "") {
396  // FIXME: Already done in Compilation *Driver::BuildCompilation
397  if (const Arg *A = Args.getLastArg(options::OPT_target))
398  TargetTriple = A->getValue();
399 
400  llvm::Triple Target(llvm::Triple::normalize(TargetTriple));
401 
402  // Handle Apple-specific options available here.
403  if (Target.isOSBinFormatMachO()) {
404  // If an explicit Darwin arch name is given, that trumps all.
405  if (!DarwinArchName.empty()) {
406  tools::darwin::setTripleTypeForMachOArchName(Target, DarwinArchName);
407  return Target;
408  }
409 
410  // Handle the Darwin '-arch' flag.
411  if (Arg *A = Args.getLastArg(options::OPT_arch)) {
412  StringRef ArchName = A->getValue();
414  }
415  }
416 
417  // Handle pseudo-target flags '-mlittle-endian'/'-EL' and
418  // '-mbig-endian'/'-EB'.
419  if (Arg *A = Args.getLastArg(options::OPT_mlittle_endian,
420  options::OPT_mbig_endian)) {
421  if (A->getOption().matches(options::OPT_mlittle_endian)) {
422  llvm::Triple LE = Target.getLittleEndianArchVariant();
423  if (LE.getArch() != llvm::Triple::UnknownArch)
424  Target = std::move(LE);
425  } else {
426  llvm::Triple BE = Target.getBigEndianArchVariant();
427  if (BE.getArch() != llvm::Triple::UnknownArch)
428  Target = std::move(BE);
429  }
430  }
431 
432  // Skip further flag support on OSes which don't support '-m32' or '-m64'.
433  if (Target.getArch() == llvm::Triple::tce ||
434  Target.getOS() == llvm::Triple::Minix)
435  return Target;
436 
437  // Handle pseudo-target flags '-m64', '-mx32', '-m32' and '-m16'.
438  Arg *A = Args.getLastArg(options::OPT_m64, options::OPT_mx32,
439  options::OPT_m32, options::OPT_m16);
440  if (A) {
441  llvm::Triple::ArchType AT = llvm::Triple::UnknownArch;
442 
443  if (A->getOption().matches(options::OPT_m64)) {
444  AT = Target.get64BitArchVariant().getArch();
445  if (Target.getEnvironment() == llvm::Triple::GNUX32)
446  Target.setEnvironment(llvm::Triple::GNU);
447  } else if (A->getOption().matches(options::OPT_mx32) &&
448  Target.get64BitArchVariant().getArch() == llvm::Triple::x86_64) {
449  AT = llvm::Triple::x86_64;
450  Target.setEnvironment(llvm::Triple::GNUX32);
451  } else if (A->getOption().matches(options::OPT_m32)) {
452  AT = Target.get32BitArchVariant().getArch();
453  if (Target.getEnvironment() == llvm::Triple::GNUX32)
454  Target.setEnvironment(llvm::Triple::GNU);
455  } else if (A->getOption().matches(options::OPT_m16) &&
456  Target.get32BitArchVariant().getArch() == llvm::Triple::x86) {
457  AT = llvm::Triple::x86;
458  Target.setEnvironment(llvm::Triple::CODE16);
459  }
460 
461  if (AT != llvm::Triple::UnknownArch && AT != Target.getArch())
462  Target.setArch(AT);
463  }
464 
465  // Handle -miamcu flag.
466  if (Args.hasFlag(options::OPT_miamcu, options::OPT_mno_iamcu, false)) {
467  if (Target.get32BitArchVariant().getArch() != llvm::Triple::x86)
468  D.Diag(diag::err_drv_unsupported_opt_for_target) << "-miamcu"
469  << Target.str();
470 
471  if (A && !A->getOption().matches(options::OPT_m32))
472  D.Diag(diag::err_drv_argument_not_allowed_with)
473  << "-miamcu" << A->getBaseArg().getAsString(Args);
474 
475  Target.setArch(llvm::Triple::x86);
476  Target.setArchName("i586");
477  Target.setEnvironment(llvm::Triple::UnknownEnvironment);
478  Target.setEnvironmentName("");
479  Target.setOS(llvm::Triple::ELFIAMCU);
480  Target.setVendor(llvm::Triple::UnknownVendor);
481  Target.setVendorName("intel");
482  }
483 
484  return Target;
485 }
486 
487 // Parse the LTO options and record the type of LTO compilation
488 // based on which -f(no-)?lto(=.*)? option occurs last.
489 void Driver::setLTOMode(const llvm::opt::ArgList &Args) {
490  LTOMode = LTOK_None;
491  if (!Args.hasFlag(options::OPT_flto, options::OPT_flto_EQ,
492  options::OPT_fno_lto, false))
493  return;
494 
495  StringRef LTOName("full");
496 
497  const Arg *A = Args.getLastArg(options::OPT_flto_EQ);
498  if (A)
499  LTOName = A->getValue();
500 
501  LTOMode = llvm::StringSwitch<LTOKind>(LTOName)
502  .Case("full", LTOK_Full)
503  .Case("thin", LTOK_Thin)
504  .Default(LTOK_Unknown);
505 
506  if (LTOMode == LTOK_Unknown) {
507  assert(A);
508  Diag(diag::err_drv_unsupported_option_argument) << A->getOption().getName()
509  << A->getValue();
510  }
511 }
512 
513 /// Compute the desired OpenMP runtime from the flags provided.
515  StringRef RuntimeName(CLANG_DEFAULT_OPENMP_RUNTIME);
516 
517  const Arg *A = Args.getLastArg(options::OPT_fopenmp_EQ);
518  if (A)
519  RuntimeName = A->getValue();
520 
521  auto RT = llvm::StringSwitch<OpenMPRuntimeKind>(RuntimeName)
522  .Case("libomp", OMPRT_OMP)
523  .Case("libgomp", OMPRT_GOMP)
524  .Case("libiomp5", OMPRT_IOMP5)
525  .Default(OMPRT_Unknown);
526 
527  if (RT == OMPRT_Unknown) {
528  if (A)
529  Diag(diag::err_drv_unsupported_option_argument)
530  << A->getOption().getName() << A->getValue();
531  else
532  // FIXME: We could use a nicer diagnostic here.
533  Diag(diag::err_drv_unsupported_opt) << "-fopenmp";
534  }
535 
536  return RT;
537 }
538 
540  InputList &Inputs) {
541 
542  //
543  // CUDA/HIP
544  //
545  // We need to generate a CUDA/HIP toolchain if any of the inputs has a CUDA
546  // or HIP type. However, mixed CUDA/HIP compilation is not supported.
547  bool IsCuda =
548  llvm::any_of(Inputs, [](std::pair<types::ID, const llvm::opt::Arg *> &I) {
549  return types::isCuda(I.first);
550  });
551  bool IsHIP =
552  llvm::any_of(Inputs,
553  [](std::pair<types::ID, const llvm::opt::Arg *> &I) {
554  return types::isHIP(I.first);
555  }) ||
556  C.getInputArgs().hasArg(options::OPT_hip_link);
557  if (IsCuda && IsHIP) {
558  Diag(clang::diag::err_drv_mix_cuda_hip);
559  return;
560  }
561  if (IsCuda) {
563  const llvm::Triple &HostTriple = HostTC->getTriple();
564  StringRef DeviceTripleStr;
565  auto OFK = Action::OFK_Cuda;
566  DeviceTripleStr =
567  HostTriple.isArch64Bit() ? "nvptx64-nvidia-cuda" : "nvptx-nvidia-cuda";
568  llvm::Triple CudaTriple(DeviceTripleStr);
569  // Use the CUDA and host triples as the key into the ToolChains map,
570  // because the device toolchain we create depends on both.
571  auto &CudaTC = ToolChains[CudaTriple.str() + "/" + HostTriple.str()];
572  if (!CudaTC) {
573  CudaTC = llvm::make_unique<toolchains::CudaToolChain>(
574  *this, CudaTriple, *HostTC, C.getInputArgs(), OFK);
575  }
576  C.addOffloadDeviceToolChain(CudaTC.get(), OFK);
577  } else if (IsHIP) {
579  const llvm::Triple &HostTriple = HostTC->getTriple();
580  StringRef DeviceTripleStr;
581  auto OFK = Action::OFK_HIP;
582  DeviceTripleStr = "amdgcn-amd-amdhsa";
583  llvm::Triple HIPTriple(DeviceTripleStr);
584  // Use the HIP and host triples as the key into the ToolChains map,
585  // because the device toolchain we create depends on both.
586  auto &HIPTC = ToolChains[HIPTriple.str() + "/" + HostTriple.str()];
587  if (!HIPTC) {
588  HIPTC = llvm::make_unique<toolchains::HIPToolChain>(
589  *this, HIPTriple, *HostTC, C.getInputArgs());
590  }
591  C.addOffloadDeviceToolChain(HIPTC.get(), OFK);
592  }
593 
594  //
595  // OpenMP
596  //
597  // We need to generate an OpenMP toolchain if the user specified targets with
598  // the -fopenmp-targets option.
599  if (Arg *OpenMPTargets =
600  C.getInputArgs().getLastArg(options::OPT_fopenmp_targets_EQ)) {
601  if (OpenMPTargets->getNumValues()) {
602  // We expect that -fopenmp-targets is always used in conjunction with the
603  // option -fopenmp specifying a valid runtime with offloading support,
604  // i.e. libomp or libiomp.
605  bool HasValidOpenMPRuntime = C.getInputArgs().hasFlag(
606  options::OPT_fopenmp, options::OPT_fopenmp_EQ,
607  options::OPT_fno_openmp, false);
608  if (HasValidOpenMPRuntime) {
610  HasValidOpenMPRuntime =
611  OpenMPKind == OMPRT_OMP || OpenMPKind == OMPRT_IOMP5;
612  }
613 
614  if (HasValidOpenMPRuntime) {
615  llvm::StringMap<const char *> FoundNormalizedTriples;
616  for (const char *Val : OpenMPTargets->getValues()) {
617  llvm::Triple TT(Val);
618  std::string NormalizedName = TT.normalize();
619 
620  // Make sure we don't have a duplicate triple.
621  auto Duplicate = FoundNormalizedTriples.find(NormalizedName);
622  if (Duplicate != FoundNormalizedTriples.end()) {
623  Diag(clang::diag::warn_drv_omp_offload_target_duplicate)
624  << Val << Duplicate->second;
625  continue;
626  }
627 
628  // Store the current triple so that we can check for duplicates in the
629  // following iterations.
630  FoundNormalizedTriples[NormalizedName] = Val;
631 
632  // If the specified target is invalid, emit a diagnostic.
633  if (TT.getArch() == llvm::Triple::UnknownArch)
634  Diag(clang::diag::err_drv_invalid_omp_target) << Val;
635  else {
636  const ToolChain *TC;
637  // CUDA toolchains have to be selected differently. They pair host
638  // and device in their implementation.
639  if (TT.isNVPTX()) {
640  const ToolChain *HostTC =
642  assert(HostTC && "Host toolchain should be always defined.");
643  auto &CudaTC =
644  ToolChains[TT.str() + "/" + HostTC->getTriple().normalize()];
645  if (!CudaTC)
646  CudaTC = llvm::make_unique<toolchains::CudaToolChain>(
647  *this, TT, *HostTC, C.getInputArgs(), Action::OFK_OpenMP);
648  TC = CudaTC.get();
649  } else
650  TC = &getToolChain(C.getInputArgs(), TT);
652  }
653  }
654  } else
655  Diag(clang::diag::err_drv_expecting_fopenmp_with_fopenmp_targets);
656  } else
657  Diag(clang::diag::warn_drv_empty_joined_argument)
658  << OpenMPTargets->getAsString(C.getInputArgs());
659  }
660 
661  //
662  // TODO: Add support for other offloading programming models here.
663  //
664 }
665 
666 /// Looks the given directories for the specified file.
667 ///
668 /// \param[out] FilePath File path, if the file was found.
669 /// \param[in] Dirs Directories used for the search.
670 /// \param[in] FileName Name of the file to search for.
671 /// \return True if file was found.
672 ///
673 /// Looks for file specified by FileName sequentially in directories specified
674 /// by Dirs.
675 ///
676 static bool searchForFile(SmallVectorImpl<char> &FilePath,
678  StringRef FileName) {
679  SmallString<128> WPath;
680  for (const StringRef &Dir : Dirs) {
681  if (Dir.empty())
682  continue;
683  WPath.clear();
684  llvm::sys::path::append(WPath, Dir, FileName);
685  llvm::sys::path::native(WPath);
686  if (llvm::sys::fs::is_regular_file(WPath)) {
687  FilePath = std::move(WPath);
688  return true;
689  }
690  }
691  return false;
692 }
693 
694 bool Driver::readConfigFile(StringRef FileName) {
695  // Try reading the given file.
697  if (!llvm::cl::readConfigFile(FileName, Saver, NewCfgArgs)) {
698  Diag(diag::err_drv_cannot_read_config_file) << FileName;
699  return true;
700  }
701 
702  // Read options from config file.
703  llvm::SmallString<128> CfgFileName(FileName);
704  llvm::sys::path::native(CfgFileName);
705  ConfigFile = CfgFileName.str();
706  bool ContainErrors;
707  CfgOptions = llvm::make_unique<InputArgList>(
708  ParseArgStrings(NewCfgArgs, ContainErrors));
709  if (ContainErrors) {
710  CfgOptions.reset();
711  return true;
712  }
713 
714  if (CfgOptions->hasArg(options::OPT_config)) {
715  CfgOptions.reset();
716  Diag(diag::err_drv_nested_config_file);
717  return true;
718  }
719 
720  // Claim all arguments that come from a configuration file so that the driver
721  // does not warn on any that is unused.
722  for (Arg *A : *CfgOptions)
723  A->claim();
724  return false;
725 }
726 
727 bool Driver::loadConfigFile() {
728  std::string CfgFileName;
729  bool FileSpecifiedExplicitly = false;
730 
731  // Process options that change search path for config files.
732  if (CLOptions) {
733  if (CLOptions->hasArg(options::OPT_config_system_dir_EQ)) {
734  SmallString<128> CfgDir;
735  CfgDir.append(
736  CLOptions->getLastArgValue(options::OPT_config_system_dir_EQ));
737  if (!CfgDir.empty()) {
738  if (llvm::sys::fs::make_absolute(CfgDir).value() != 0)
739  SystemConfigDir.clear();
740  else
741  SystemConfigDir = std::string(CfgDir.begin(), CfgDir.end());
742  }
743  }
744  if (CLOptions->hasArg(options::OPT_config_user_dir_EQ)) {
745  SmallString<128> CfgDir;
746  CfgDir.append(
747  CLOptions->getLastArgValue(options::OPT_config_user_dir_EQ));
748  if (!CfgDir.empty()) {
749  if (llvm::sys::fs::make_absolute(CfgDir).value() != 0)
750  UserConfigDir.clear();
751  else
752  UserConfigDir = std::string(CfgDir.begin(), CfgDir.end());
753  }
754  }
755  }
756 
757  // First try to find config file specified in command line.
758  if (CLOptions) {
759  std::vector<std::string> ConfigFiles =
760  CLOptions->getAllArgValues(options::OPT_config);
761  if (ConfigFiles.size() > 1) {
762  Diag(diag::err_drv_duplicate_config);
763  return true;
764  }
765 
766  if (!ConfigFiles.empty()) {
767  CfgFileName = ConfigFiles.front();
768  assert(!CfgFileName.empty());
769 
770  // If argument contains directory separator, treat it as a path to
771  // configuration file.
772  if (llvm::sys::path::has_parent_path(CfgFileName)) {
773  SmallString<128> CfgFilePath;
774  if (llvm::sys::path::is_relative(CfgFileName))
775  llvm::sys::fs::current_path(CfgFilePath);
776  llvm::sys::path::append(CfgFilePath, CfgFileName);
777  if (!llvm::sys::fs::is_regular_file(CfgFilePath)) {
778  Diag(diag::err_drv_config_file_not_exist) << CfgFilePath;
779  return true;
780  }
781  return readConfigFile(CfgFilePath);
782  }
783 
784  FileSpecifiedExplicitly = true;
785  }
786  }
787 
788  // If config file is not specified explicitly, try to deduce configuration
789  // from executable name. For instance, an executable 'armv7l-clang' will
790  // search for config file 'armv7l-clang.cfg'.
791  if (CfgFileName.empty() && !ClangNameParts.TargetPrefix.empty())
793 
794  if (CfgFileName.empty())
795  return false;
796 
797  // Determine architecture part of the file name, if it is present.
798  StringRef CfgFileArch = CfgFileName;
799  size_t ArchPrefixLen = CfgFileArch.find('-');
800  if (ArchPrefixLen == StringRef::npos)
801  ArchPrefixLen = CfgFileArch.size();
802  llvm::Triple CfgTriple;
803  CfgFileArch = CfgFileArch.take_front(ArchPrefixLen);
804  CfgTriple = llvm::Triple(llvm::Triple::normalize(CfgFileArch));
805  if (CfgTriple.getArch() == llvm::Triple::ArchType::UnknownArch)
806  ArchPrefixLen = 0;
807 
808  if (!StringRef(CfgFileName).endswith(".cfg"))
809  CfgFileName += ".cfg";
810 
811  // If config file starts with architecture name and command line options
812  // redefine architecture (with options like -m32 -LE etc), try finding new
813  // config file with that architecture.
814  SmallString<128> FixedConfigFile;
815  size_t FixedArchPrefixLen = 0;
816  if (ArchPrefixLen) {
817  // Get architecture name from config file name like 'i386.cfg' or
818  // 'armv7l-clang.cfg'.
819  // Check if command line options changes effective triple.
820  llvm::Triple EffectiveTriple = computeTargetTriple(*this,
821  CfgTriple.getTriple(), *CLOptions);
822  if (CfgTriple.getArch() != EffectiveTriple.getArch()) {
823  FixedConfigFile = EffectiveTriple.getArchName();
824  FixedArchPrefixLen = FixedConfigFile.size();
825  // Append the rest of original file name so that file name transforms
826  // like: i386-clang.cfg -> x86_64-clang.cfg.
827  if (ArchPrefixLen < CfgFileName.size())
828  FixedConfigFile += CfgFileName.substr(ArchPrefixLen);
829  }
830  }
831 
832  // Prepare list of directories where config file is searched for.
833  SmallVector<std::string, 3> CfgFileSearchDirs;
834  CfgFileSearchDirs.push_back(UserConfigDir);
835  CfgFileSearchDirs.push_back(SystemConfigDir);
836  CfgFileSearchDirs.push_back(Dir);
837 
838  // Try to find config file. First try file with corrected architecture.
839  llvm::SmallString<128> CfgFilePath;
840  if (!FixedConfigFile.empty()) {
841  if (searchForFile(CfgFilePath, CfgFileSearchDirs, FixedConfigFile))
842  return readConfigFile(CfgFilePath);
843  // If 'x86_64-clang.cfg' was not found, try 'x86_64.cfg'.
844  FixedConfigFile.resize(FixedArchPrefixLen);
845  FixedConfigFile.append(".cfg");
846  if (searchForFile(CfgFilePath, CfgFileSearchDirs, FixedConfigFile))
847  return readConfigFile(CfgFilePath);
848  }
849 
850  // Then try original file name.
851  if (searchForFile(CfgFilePath, CfgFileSearchDirs, CfgFileName))
852  return readConfigFile(CfgFilePath);
853 
854  // Finally try removing driver mode part: 'x86_64-clang.cfg' -> 'x86_64.cfg'.
855  if (!ClangNameParts.ModeSuffix.empty() &&
856  !ClangNameParts.TargetPrefix.empty()) {
857  CfgFileName.assign(ClangNameParts.TargetPrefix);
858  CfgFileName.append(".cfg");
859  if (searchForFile(CfgFilePath, CfgFileSearchDirs, CfgFileName))
860  return readConfigFile(CfgFilePath);
861  }
862 
863  // Report error but only if config file was specified explicitly, by option
864  // --config. If it was deduced from executable name, it is not an error.
865  if (FileSpecifiedExplicitly) {
866  Diag(diag::err_drv_config_file_not_found) << CfgFileName;
867  for (const std::string &SearchDir : CfgFileSearchDirs)
868  if (!SearchDir.empty())
869  Diag(diag::note_drv_config_file_searched_in) << SearchDir;
870  return true;
871  }
872 
873  return false;
874 }
875 
877  llvm::PrettyStackTraceString CrashInfo("Compilation construction");
878 
879  // FIXME: Handle environment options which affect driver behavior, somewhere
880  // (client?). GCC_EXEC_PREFIX, LPATH, CC_PRINT_OPTIONS.
881 
882  if (Optional<std::string> CompilerPathValue =
883  llvm::sys::Process::GetEnv("COMPILER_PATH")) {
884  StringRef CompilerPath = *CompilerPathValue;
885  while (!CompilerPath.empty()) {
886  std::pair<StringRef, StringRef> Split =
887  CompilerPath.split(llvm::sys::EnvPathSeparator);
888  PrefixDirs.push_back(Split.first);
889  CompilerPath = Split.second;
890  }
891  }
892 
893  // We look for the driver mode option early, because the mode can affect
894  // how other options are parsed.
895  ParseDriverMode(ClangExecutable, ArgList.slice(1));
896 
897  // FIXME: What are we going to do with -V and -b?
898 
899  // Arguments specified in command line.
900  bool ContainsError;
901  CLOptions = llvm::make_unique<InputArgList>(
902  ParseArgStrings(ArgList.slice(1), ContainsError));
903 
904  // Try parsing configuration file.
905  if (!ContainsError)
906  ContainsError = loadConfigFile();
907  bool HasConfigFile = !ContainsError && (CfgOptions.get() != nullptr);
908 
909  // All arguments, from both config file and command line.
910  InputArgList Args = std::move(HasConfigFile ? std::move(*CfgOptions)
911  : std::move(*CLOptions));
912  if (HasConfigFile)
913  for (auto *Opt : *CLOptions) {
914  if (Opt->getOption().matches(options::OPT_config))
915  continue;
916  unsigned Index = Args.MakeIndex(Opt->getSpelling());
917  const Arg *BaseArg = &Opt->getBaseArg();
918  if (BaseArg == Opt)
919  BaseArg = nullptr;
920  Arg *Copy = new llvm::opt::Arg(Opt->getOption(), Opt->getSpelling(),
921  Index, BaseArg);
922  Copy->getValues() = Opt->getValues();
923  if (Opt->isClaimed())
924  Copy->claim();
925  Args.append(Copy);
926  }
927 
928  // FIXME: This stuff needs to go into the Compilation, not the driver.
929  bool CCCPrintPhases;
930 
931  // Silence driver warnings if requested
932  Diags.setIgnoreAllWarnings(Args.hasArg(options::OPT_w));
933 
934  // -no-canonical-prefixes is used very early in main.
935  Args.ClaimAllArgs(options::OPT_no_canonical_prefixes);
936 
937  // Ignore -pipe.
938  Args.ClaimAllArgs(options::OPT_pipe);
939 
940  // Extract -ccc args.
941  //
942  // FIXME: We need to figure out where this behavior should live. Most of it
943  // should be outside in the client; the parts that aren't should have proper
944  // options, either by introducing new ones or by overloading gcc ones like -V
945  // or -b.
946  CCCPrintPhases = Args.hasArg(options::OPT_ccc_print_phases);
947  CCCPrintBindings = Args.hasArg(options::OPT_ccc_print_bindings);
948  if (const Arg *A = Args.getLastArg(options::OPT_ccc_gcc_name))
949  CCCGenericGCCName = A->getValue();
950  CCCUsePCH =
951  Args.hasFlag(options::OPT_ccc_pch_is_pch, options::OPT_ccc_pch_is_pth);
952  GenReproducer = Args.hasFlag(options::OPT_gen_reproducer,
953  options::OPT_fno_crash_diagnostics,
954  !!::getenv("FORCE_CLANG_DIAGNOSTICS_CRASH"));
955  // FIXME: TargetTriple is used by the target-prefixed calls to as/ld
956  // and getToolChain is const.
957  if (IsCLMode()) {
958  // clang-cl targets MSVC-style Win32.
959  llvm::Triple T(TargetTriple);
960  T.setOS(llvm::Triple::Win32);
961  T.setVendor(llvm::Triple::PC);
962  T.setEnvironment(llvm::Triple::MSVC);
963  T.setObjectFormat(llvm::Triple::COFF);
964  TargetTriple = T.str();
965  }
966  if (const Arg *A = Args.getLastArg(options::OPT_target))
967  TargetTriple = A->getValue();
968  if (const Arg *A = Args.getLastArg(options::OPT_ccc_install_dir))
969  Dir = InstalledDir = A->getValue();
970  for (const Arg *A : Args.filtered(options::OPT_B)) {
971  A->claim();
972  PrefixDirs.push_back(A->getValue(0));
973  }
974  if (const Arg *A = Args.getLastArg(options::OPT__sysroot_EQ))
975  SysRoot = A->getValue();
976  if (const Arg *A = Args.getLastArg(options::OPT__dyld_prefix_EQ))
977  DyldPrefix = A->getValue();
978 
979  if (const Arg *A = Args.getLastArg(options::OPT_resource_dir))
980  ResourceDir = A->getValue();
981 
982  if (const Arg *A = Args.getLastArg(options::OPT_save_temps_EQ)) {
983  SaveTemps = llvm::StringSwitch<SaveTempsMode>(A->getValue())
984  .Case("cwd", SaveTempsCwd)
985  .Case("obj", SaveTempsObj)
986  .Default(SaveTempsCwd);
987  }
988 
989  setLTOMode(Args);
990 
991  // Process -fembed-bitcode= flags.
992  if (Arg *A = Args.getLastArg(options::OPT_fembed_bitcode_EQ)) {
993  StringRef Name = A->getValue();
994  unsigned Model = llvm::StringSwitch<unsigned>(Name)
995  .Case("off", EmbedNone)
996  .Case("all", EmbedBitcode)
997  .Case("bitcode", EmbedBitcode)
998  .Case("marker", EmbedMarker)
999  .Default(~0U);
1000  if (Model == ~0U) {
1001  Diags.Report(diag::err_drv_invalid_value) << A->getAsString(Args)
1002  << Name;
1003  } else
1004  BitcodeEmbed = static_cast<BitcodeEmbedMode>(Model);
1005  }
1006 
1007  std::unique_ptr<llvm::opt::InputArgList> UArgs =
1008  llvm::make_unique<InputArgList>(std::move(Args));
1009 
1010  // Perform the default argument translations.
1011  DerivedArgList *TranslatedArgs = TranslateInputArgs(*UArgs);
1012 
1013  // Owned by the host.
1014  const ToolChain &TC = getToolChain(
1015  *UArgs, computeTargetTriple(*this, TargetTriple, *UArgs));
1016 
1017  // The compilation takes ownership of Args.
1018  Compilation *C = new Compilation(*this, TC, UArgs.release(), TranslatedArgs,
1019  ContainsError);
1020 
1021  if (!HandleImmediateArgs(*C))
1022  return C;
1023 
1024  // Construct the list of inputs.
1025  InputList Inputs;
1026  BuildInputs(C->getDefaultToolChain(), *TranslatedArgs, Inputs);
1027 
1028  // Populate the tool chains for the offloading devices, if any.
1030 
1031  // Construct the list of abstract actions to perform for this compilation. On
1032  // MachO targets this uses the driver-driver and universal actions.
1033  if (TC.getTriple().isOSBinFormatMachO())
1034  BuildUniversalActions(*C, C->getDefaultToolChain(), Inputs);
1035  else
1036  BuildActions(*C, C->getArgs(), Inputs, C->getActions());
1037 
1038  if (CCCPrintPhases) {
1039  PrintActions(*C);
1040  return C;
1041  }
1042 
1043  BuildJobs(*C);
1044 
1045  return C;
1046 }
1047 
1048 static void printArgList(raw_ostream &OS, const llvm::opt::ArgList &Args) {
1049  llvm::opt::ArgStringList ASL;
1050  for (const auto *A : Args)
1051  A->render(Args, ASL);
1052 
1053  for (auto I = ASL.begin(), E = ASL.end(); I != E; ++I) {
1054  if (I != ASL.begin())
1055  OS << ' ';
1056  Command::printArg(OS, *I, true);
1057  }
1058  OS << '\n';
1059 }
1060 
1061 bool Driver::getCrashDiagnosticFile(StringRef ReproCrashFilename,
1062  SmallString<128> &CrashDiagDir) {
1063  using namespace llvm::sys;
1064  assert(llvm::Triple(llvm::sys::getProcessTriple()).isOSDarwin() &&
1065  "Only knows about .crash files on Darwin");
1066 
1067  // The .crash file can be found on at ~/Library/Logs/DiagnosticReports/
1068  // (or /Library/Logs/DiagnosticReports for root) and has the filename pattern
1069  // clang-<VERSION>_<YYYY-MM-DD-HHMMSS>_<hostname>.crash.
1070  path::home_directory(CrashDiagDir);
1071  if (CrashDiagDir.startswith("/var/root"))
1072  CrashDiagDir = "/";
1073  path::append(CrashDiagDir, "Library/Logs/DiagnosticReports");
1074  int PID =
1075 #if LLVM_ON_UNIX
1076  getpid();
1077 #else
1078  0;
1079 #endif
1080  std::error_code EC;
1081  fs::file_status FileStatus;
1082  TimePoint<> LastAccessTime;
1083  SmallString<128> CrashFilePath;
1084  // Lookup the .crash files and get the one generated by a subprocess spawned
1085  // by this driver invocation.
1086  for (fs::directory_iterator File(CrashDiagDir, EC), FileEnd;
1087  File != FileEnd && !EC; File.increment(EC)) {
1088  StringRef FileName = path::filename(File->path());
1089  if (!FileName.startswith(Name))
1090  continue;
1091  if (fs::status(File->path(), FileStatus))
1092  continue;
1093  llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> CrashFile =
1094  llvm::MemoryBuffer::getFile(File->path());
1095  if (!CrashFile)
1096  continue;
1097  // The first line should start with "Process:", otherwise this isn't a real
1098  // .crash file.
1099  StringRef Data = CrashFile.get()->getBuffer();
1100  if (!Data.startswith("Process:"))
1101  continue;
1102  // Parse parent process pid line, e.g: "Parent Process: clang-4.0 [79141]"
1103  size_t ParentProcPos = Data.find("Parent Process:");
1104  if (ParentProcPos == StringRef::npos)
1105  continue;
1106  size_t LineEnd = Data.find_first_of("\n", ParentProcPos);
1107  if (LineEnd == StringRef::npos)
1108  continue;
1109  StringRef ParentProcess = Data.slice(ParentProcPos+15, LineEnd).trim();
1110  int OpenBracket = -1, CloseBracket = -1;
1111  for (size_t i = 0, e = ParentProcess.size(); i < e; ++i) {
1112  if (ParentProcess[i] == '[')
1113  OpenBracket = i;
1114  if (ParentProcess[i] == ']')
1115  CloseBracket = i;
1116  }
1117  // Extract the parent process PID from the .crash file and check whether
1118  // it matches this driver invocation pid.
1119  int CrashPID;
1120  if (OpenBracket < 0 || CloseBracket < 0 ||
1121  ParentProcess.slice(OpenBracket + 1, CloseBracket)
1122  .getAsInteger(10, CrashPID) || CrashPID != PID) {
1123  continue;
1124  }
1125 
1126  // Found a .crash file matching the driver pid. To avoid getting an older
1127  // and misleading crash file, continue looking for the most recent.
1128  // FIXME: the driver can dispatch multiple cc1 invocations, leading to
1129  // multiple crashes poiting to the same parent process. Since the driver
1130  // does not collect pid information for the dispatched invocation there's
1131  // currently no way to distinguish among them.
1132  const auto FileAccessTime = FileStatus.getLastModificationTime();
1133  if (FileAccessTime > LastAccessTime) {
1134  CrashFilePath.assign(File->path());
1135  LastAccessTime = FileAccessTime;
1136  }
1137  }
1138 
1139  // If found, copy it over to the location of other reproducer files.
1140  if (!CrashFilePath.empty()) {
1141  EC = fs::copy_file(CrashFilePath, ReproCrashFilename);
1142  if (EC)
1143  return false;
1144  return true;
1145  }
1146 
1147  return false;
1148 }
1149 
1150 // When clang crashes, produce diagnostic information including the fully
1151 // preprocessed source file(s). Request that the developer attach the
1152 // diagnostic information to a bug report.
1154  Compilation &C, const Command &FailingCommand,
1155  StringRef AdditionalInformation, CompilationDiagnosticReport *Report) {
1156  if (C.getArgs().hasArg(options::OPT_fno_crash_diagnostics))
1157  return;
1158 
1159  // Don't try to generate diagnostics for link or dsymutil jobs.
1160  if (FailingCommand.getCreator().isLinkJob() ||
1161  FailingCommand.getCreator().isDsymutilJob())
1162  return;
1163 
1164  // Print the version of the compiler.
1165  PrintVersion(C, llvm::errs());
1166 
1167  Diag(clang::diag::note_drv_command_failed_diag_msg)
1168  << "PLEASE submit a bug report to " BUG_REPORT_URL " and include the "
1169  "crash backtrace, preprocessed source, and associated run script.";
1170 
1171  // Suppress driver output and emit preprocessor output to temp file.
1172  Mode = CPPMode;
1173  CCGenDiagnostics = true;
1174 
1175  // Save the original job command(s).
1176  Command Cmd = FailingCommand;
1177 
1178  // Keep track of whether we produce any errors while trying to produce
1179  // preprocessed sources.
1180  DiagnosticErrorTrap Trap(Diags);
1181 
1182  // Suppress tool output.
1184 
1185  // Construct the list of inputs.
1186  InputList Inputs;
1187  BuildInputs(C.getDefaultToolChain(), C.getArgs(), Inputs);
1188 
1189  for (InputList::iterator it = Inputs.begin(), ie = Inputs.end(); it != ie;) {
1190  bool IgnoreInput = false;
1191 
1192  // Ignore input from stdin or any inputs that cannot be preprocessed.
1193  // Check type first as not all linker inputs have a value.
1194  if (types::getPreprocessedType(it->first) == types::TY_INVALID) {
1195  IgnoreInput = true;
1196  } else if (!strcmp(it->second->getValue(), "-")) {
1197  Diag(clang::diag::note_drv_command_failed_diag_msg)
1198  << "Error generating preprocessed source(s) - "
1199  "ignoring input from stdin.";
1200  IgnoreInput = true;
1201  }
1202 
1203  if (IgnoreInput) {
1204  it = Inputs.erase(it);
1205  ie = Inputs.end();
1206  } else {
1207  ++it;
1208  }
1209  }
1210 
1211  if (Inputs.empty()) {
1212  Diag(clang::diag::note_drv_command_failed_diag_msg)
1213  << "Error generating preprocessed source(s) - "
1214  "no preprocessable inputs.";
1215  return;
1216  }
1217 
1218  // Don't attempt to generate preprocessed files if multiple -arch options are
1219  // used, unless they're all duplicates.
1220  llvm::StringSet<> ArchNames;
1221  for (const Arg *A : C.getArgs()) {
1222  if (A->getOption().matches(options::OPT_arch)) {
1223  StringRef ArchName = A->getValue();
1224  ArchNames.insert(ArchName);
1225  }
1226  }
1227  if (ArchNames.size() > 1) {
1228  Diag(clang::diag::note_drv_command_failed_diag_msg)
1229  << "Error generating preprocessed source(s) - cannot generate "
1230  "preprocessed source with multiple -arch options.";
1231  return;
1232  }
1233 
1234  // Construct the list of abstract actions to perform for this compilation. On
1235  // Darwin OSes this uses the driver-driver and builds universal actions.
1236  const ToolChain &TC = C.getDefaultToolChain();
1237  if (TC.getTriple().isOSBinFormatMachO())
1238  BuildUniversalActions(C, TC, Inputs);
1239  else
1240  BuildActions(C, C.getArgs(), Inputs, C.getActions());
1241 
1242  BuildJobs(C);
1243 
1244  // If there were errors building the compilation, quit now.
1245  if (Trap.hasErrorOccurred()) {
1246  Diag(clang::diag::note_drv_command_failed_diag_msg)
1247  << "Error generating preprocessed source(s).";
1248  return;
1249  }
1250 
1251  // Generate preprocessed output.
1252  SmallVector<std::pair<int, const Command *>, 4> FailingCommands;
1253  C.ExecuteJobs(C.getJobs(), FailingCommands);
1254 
1255  // If any of the preprocessing commands failed, clean up and exit.
1256  if (!FailingCommands.empty()) {
1257  Diag(clang::diag::note_drv_command_failed_diag_msg)
1258  << "Error generating preprocessed source(s).";
1259  return;
1260  }
1261 
1262  const ArgStringList &TempFiles = C.getTempFiles();
1263  if (TempFiles.empty()) {
1264  Diag(clang::diag::note_drv_command_failed_diag_msg)
1265  << "Error generating preprocessed source(s).";
1266  return;
1267  }
1268 
1269  Diag(clang::diag::note_drv_command_failed_diag_msg)
1270  << "\n********************\n\n"
1271  "PLEASE ATTACH THE FOLLOWING FILES TO THE BUG REPORT:\n"
1272  "Preprocessed source(s) and associated run script(s) are located at:";
1273 
1274  SmallString<128> VFS;
1275  SmallString<128> ReproCrashFilename;
1276  for (const char *TempFile : TempFiles) {
1277  Diag(clang::diag::note_drv_command_failed_diag_msg) << TempFile;
1278  if (Report)
1279  Report->TemporaryFiles.push_back(TempFile);
1280  if (ReproCrashFilename.empty()) {
1281  ReproCrashFilename = TempFile;
1282  llvm::sys::path::replace_extension(ReproCrashFilename, ".crash");
1283  }
1284  if (StringRef(TempFile).endswith(".cache")) {
1285  // In some cases (modules) we'll dump extra data to help with reproducing
1286  // the crash into a directory next to the output.
1287  VFS = llvm::sys::path::filename(TempFile);
1288  llvm::sys::path::append(VFS, "vfs", "vfs.yaml");
1289  }
1290  }
1291 
1292  // Assume associated files are based off of the first temporary file.
1293  CrashReportInfo CrashInfo(TempFiles[0], VFS);
1294 
1295  llvm::SmallString<128> Script(CrashInfo.Filename);
1296  llvm::sys::path::replace_extension(Script, "sh");
1297  std::error_code EC;
1298  llvm::raw_fd_ostream ScriptOS(Script, EC, llvm::sys::fs::CD_CreateNew);
1299  if (EC) {
1300  Diag(clang::diag::note_drv_command_failed_diag_msg)
1301  << "Error generating run script: " << Script << " " << EC.message();
1302  } else {
1303  ScriptOS << "# Crash reproducer for " << getClangFullVersion() << "\n"
1304  << "# Driver args: ";
1305  printArgList(ScriptOS, C.getInputArgs());
1306  ScriptOS << "# Original command: ";
1307  Cmd.Print(ScriptOS, "\n", /*Quote=*/true);
1308  Cmd.Print(ScriptOS, "\n", /*Quote=*/true, &CrashInfo);
1309  if (!AdditionalInformation.empty())
1310  ScriptOS << "\n# Additional information: " << AdditionalInformation
1311  << "\n";
1312  if (Report)
1313  Report->TemporaryFiles.push_back(Script.str());
1314  Diag(clang::diag::note_drv_command_failed_diag_msg) << Script;
1315  }
1316 
1317  // On darwin, provide information about the .crash diagnostic report.
1318  if (llvm::Triple(llvm::sys::getProcessTriple()).isOSDarwin()) {
1319  SmallString<128> CrashDiagDir;
1320  if (getCrashDiagnosticFile(ReproCrashFilename, CrashDiagDir)) {
1321  Diag(clang::diag::note_drv_command_failed_diag_msg)
1322  << ReproCrashFilename.str();
1323  } else { // Suggest a directory for the user to look for .crash files.
1324  llvm::sys::path::append(CrashDiagDir, Name);
1325  CrashDiagDir += "_<YYYY-MM-DD-HHMMSS>_<hostname>.crash";
1326  Diag(clang::diag::note_drv_command_failed_diag_msg)
1327  << "Crash backtrace is located in";
1328  Diag(clang::diag::note_drv_command_failed_diag_msg)
1329  << CrashDiagDir.str();
1330  Diag(clang::diag::note_drv_command_failed_diag_msg)
1331  << "(choose the .crash file that corresponds to your crash)";
1332  }
1333  }
1334 
1335  for (const auto &A : C.getArgs().filtered(options::OPT_frewrite_map_file,
1336  options::OPT_frewrite_map_file_EQ))
1337  Diag(clang::diag::note_drv_command_failed_diag_msg) << A->getValue();
1338 
1339  Diag(clang::diag::note_drv_command_failed_diag_msg)
1340  << "\n\n********************";
1341 }
1342 
1343 void Driver::setUpResponseFiles(Compilation &C, Command &Cmd) {
1344  // Since commandLineFitsWithinSystemLimits() may underestimate system's capacity
1345  // if the tool does not support response files, there is a chance/ that things
1346  // will just work without a response file, so we silently just skip it.
1348  llvm::sys::commandLineFitsWithinSystemLimits(Cmd.getExecutable(), Cmd.getArguments()))
1349  return;
1350 
1351  std::string TmpName = GetTemporaryPath("response", "txt");
1352  Cmd.setResponseFile(C.addTempFile(C.getArgs().MakeArgString(TmpName)));
1353 }
1354 
1356  Compilation &C,
1357  SmallVectorImpl<std::pair<int, const Command *>> &FailingCommands) {
1358  // Just print if -### was present.
1359  if (C.getArgs().hasArg(options::OPT__HASH_HASH_HASH)) {
1360  C.getJobs().Print(llvm::errs(), "\n", true);
1361  return 0;
1362  }
1363 
1364  // If there were errors building the compilation, quit now.
1365  if (Diags.hasErrorOccurred())
1366  return 1;
1367 
1368  // Set up response file names for each command, if necessary
1369  for (auto &Job : C.getJobs())
1370  setUpResponseFiles(C, Job);
1371 
1372  C.ExecuteJobs(C.getJobs(), FailingCommands);
1373 
1374  // If the command succeeded, we are done.
1375  if (FailingCommands.empty())
1376  return 0;
1377 
1378  // Otherwise, remove result files and print extra information about abnormal
1379  // failures.
1380  for (const auto &CmdPair : FailingCommands) {
1381  int Res = CmdPair.first;
1382  const Command *FailingCommand = CmdPair.second;
1383 
1384  // Remove result files if we're not saving temps.
1385  if (!isSaveTempsEnabled()) {
1386  const JobAction *JA = cast<JobAction>(&FailingCommand->getSource());
1387  C.CleanupFileMap(C.getResultFiles(), JA, true);
1388 
1389  // Failure result files are valid unless we crashed.
1390  if (Res < 0)
1391  C.CleanupFileMap(C.getFailureResultFiles(), JA, true);
1392  }
1393 
1394  // Print extra information about abnormal failures, if possible.
1395  //
1396  // This is ad-hoc, but we don't want to be excessively noisy. If the result
1397  // status was 1, assume the command failed normally. In particular, if it
1398  // was the compiler then assume it gave a reasonable error code. Failures
1399  // in other tools are less common, and they generally have worse
1400  // diagnostics, so always print the diagnostic there.
1401  const Tool &FailingTool = FailingCommand->getCreator();
1402 
1403  if (!FailingCommand->getCreator().hasGoodDiagnostics() || Res != 1) {
1404  // FIXME: See FIXME above regarding result code interpretation.
1405  if (Res < 0)
1406  Diag(clang::diag::err_drv_command_signalled)
1407  << FailingTool.getShortName();
1408  else
1409  Diag(clang::diag::err_drv_command_failed) << FailingTool.getShortName()
1410  << Res;
1411  }
1412  }
1413  return 0;
1414 }
1415 
1416 void Driver::PrintHelp(bool ShowHidden) const {
1417  unsigned IncludedFlagsBitmask;
1418  unsigned ExcludedFlagsBitmask;
1419  std::tie(IncludedFlagsBitmask, ExcludedFlagsBitmask) =
1420  getIncludeExcludeOptionFlagMasks();
1421 
1422  ExcludedFlagsBitmask |= options::NoDriverOption;
1423  if (!ShowHidden)
1424  ExcludedFlagsBitmask |= HelpHidden;
1425 
1426  getOpts().PrintHelp(llvm::outs(), Name.c_str(), DriverTitle.c_str(),
1427  IncludedFlagsBitmask, ExcludedFlagsBitmask,
1428  /*ShowAllAliases=*/false);
1429 }
1430 
1431 void Driver::PrintVersion(const Compilation &C, raw_ostream &OS) const {
1432  // FIXME: The following handlers should use a callback mechanism, we don't
1433  // know what the client would like to do.
1434  OS << getClangFullVersion() << '\n';
1435  const ToolChain &TC = C.getDefaultToolChain();
1436  OS << "Target: " << TC.getTripleString() << '\n';
1437 
1438  // Print the threading model.
1439  if (Arg *A = C.getArgs().getLastArg(options::OPT_mthread_model)) {
1440  // Don't print if the ToolChain would have barfed on it already
1441  if (TC.isThreadModelSupported(A->getValue()))
1442  OS << "Thread model: " << A->getValue();
1443  } else
1444  OS << "Thread model: " << TC.getThreadModel();
1445  OS << '\n';
1446 
1447  // Print out the install directory.
1448  OS << "InstalledDir: " << InstalledDir << '\n';
1449 
1450  // If configuration file was used, print its path.
1451  if (!ConfigFile.empty())
1452  OS << "Configuration file: " << ConfigFile << '\n';
1453 }
1454 
1455 /// PrintDiagnosticCategories - Implement the --print-diagnostic-categories
1456 /// option.
1457 static void PrintDiagnosticCategories(raw_ostream &OS) {
1458  // Skip the empty category.
1459  for (unsigned i = 1, max = DiagnosticIDs::getNumberOfCategories(); i != max;
1460  ++i)
1461  OS << i << ',' << DiagnosticIDs::getCategoryNameFromID(i) << '\n';
1462 }
1463 
1464 void Driver::HandleAutocompletions(StringRef PassedFlags) const {
1465  if (PassedFlags == "")
1466  return;
1467  // Print out all options that start with a given argument. This is used for
1468  // shell autocompletion.
1469  std::vector<std::string> SuggestedCompletions;
1470  std::vector<std::string> Flags;
1471 
1472  unsigned short DisableFlags =
1474 
1475  // Parse PassedFlags by "," as all the command-line flags are passed to this
1476  // function separated by ","
1477  StringRef TargetFlags = PassedFlags;
1478  while (TargetFlags != "") {
1479  StringRef CurFlag;
1480  std::tie(CurFlag, TargetFlags) = TargetFlags.split(",");
1481  Flags.push_back(std::string(CurFlag));
1482  }
1483 
1484  // We want to show cc1-only options only when clang is invoked with -cc1 or
1485  // -Xclang.
1486  if (std::find(Flags.begin(), Flags.end(), "-Xclang") != Flags.end() ||
1487  std::find(Flags.begin(), Flags.end(), "-cc1") != Flags.end())
1488  DisableFlags &= ~options::NoDriverOption;
1489 
1490  StringRef Cur;
1491  Cur = Flags.at(Flags.size() - 1);
1492  StringRef Prev;
1493  if (Flags.size() >= 2) {
1494  Prev = Flags.at(Flags.size() - 2);
1495  SuggestedCompletions = Opts->suggestValueCompletions(Prev, Cur);
1496  }
1497 
1498  if (SuggestedCompletions.empty())
1499  SuggestedCompletions = Opts->suggestValueCompletions(Cur, "");
1500 
1501  if (SuggestedCompletions.empty()) {
1502  // If the flag is in the form of "--autocomplete=-foo",
1503  // we were requested to print out all option names that start with "-foo".
1504  // For example, "--autocomplete=-fsyn" is expanded to "-fsyntax-only".
1505  SuggestedCompletions = Opts->findByPrefix(Cur, DisableFlags);
1506 
1507  // We have to query the -W flags manually as they're not in the OptTable.
1508  // TODO: Find a good way to add them to OptTable instead and them remove
1509  // this code.
1510  for (StringRef S : DiagnosticIDs::getDiagnosticFlags())
1511  if (S.startswith(Cur))
1512  SuggestedCompletions.push_back(S);
1513  }
1514 
1515  // Sort the autocomplete candidates so that shells print them out in a
1516  // deterministic order. We could sort in any way, but we chose
1517  // case-insensitive sorting for consistency with the -help option
1518  // which prints out options in the case-insensitive alphabetical order.
1519  llvm::sort(SuggestedCompletions.begin(), SuggestedCompletions.end(),
1520  [](StringRef A, StringRef B) {
1521  if (int X = A.compare_lower(B))
1522  return X < 0;
1523  return A.compare(B) > 0;
1524  });
1525 
1526  llvm::outs() << llvm::join(SuggestedCompletions, "\n") << '\n';
1527 }
1528 
1530  // The order these options are handled in gcc is all over the place, but we
1531  // don't expect inconsistencies w.r.t. that to matter in practice.
1532 
1533  if (C.getArgs().hasArg(options::OPT_dumpmachine)) {
1534  llvm::outs() << C.getDefaultToolChain().getTripleString() << '\n';
1535  return false;
1536  }
1537 
1538  if (C.getArgs().hasArg(options::OPT_dumpversion)) {
1539  // Since -dumpversion is only implemented for pedantic GCC compatibility, we
1540  // return an answer which matches our definition of __VERSION__.
1541  //
1542  // If we want to return a more correct answer some day, then we should
1543  // introduce a non-pedantically GCC compatible mode to Clang in which we
1544  // provide sensible definitions for -dumpversion, __VERSION__, etc.
1545  llvm::outs() << "4.2.1\n";
1546  return false;
1547  }
1548 
1549  if (C.getArgs().hasArg(options::OPT__print_diagnostic_categories)) {
1550  PrintDiagnosticCategories(llvm::outs());
1551  return false;
1552  }
1553 
1554  if (C.getArgs().hasArg(options::OPT_help) ||
1555  C.getArgs().hasArg(options::OPT__help_hidden)) {
1556  PrintHelp(C.getArgs().hasArg(options::OPT__help_hidden));
1557  return false;
1558  }
1559 
1560  if (C.getArgs().hasArg(options::OPT__version)) {
1561  // Follow gcc behavior and use stdout for --version and stderr for -v.
1562  PrintVersion(C, llvm::outs());
1563  return false;
1564  }
1565 
1566  if (C.getArgs().hasArg(options::OPT_v) ||
1567  C.getArgs().hasArg(options::OPT__HASH_HASH_HASH)) {
1568  PrintVersion(C, llvm::errs());
1569  SuppressMissingInputWarning = true;
1570  }
1571 
1572  if (C.getArgs().hasArg(options::OPT_v)) {
1573  if (!SystemConfigDir.empty())
1574  llvm::errs() << "System configuration file directory: "
1575  << SystemConfigDir << "\n";
1576  if (!UserConfigDir.empty())
1577  llvm::errs() << "User configuration file directory: "
1578  << UserConfigDir << "\n";
1579  }
1580 
1581  const ToolChain &TC = C.getDefaultToolChain();
1582 
1583  if (C.getArgs().hasArg(options::OPT_v))
1584  TC.printVerboseInfo(llvm::errs());
1585 
1586  if (C.getArgs().hasArg(options::OPT_print_resource_dir)) {
1587  llvm::outs() << ResourceDir << '\n';
1588  return false;
1589  }
1590 
1591  if (C.getArgs().hasArg(options::OPT_print_search_dirs)) {
1592  llvm::outs() << "programs: =";
1593  bool separator = false;
1594  for (const std::string &Path : TC.getProgramPaths()) {
1595  if (separator)
1596  llvm::outs() << ':';
1597  llvm::outs() << Path;
1598  separator = true;
1599  }
1600  llvm::outs() << "\n";
1601  llvm::outs() << "libraries: =" << ResourceDir;
1602 
1603  StringRef sysroot = C.getSysRoot();
1604 
1605  for (const std::string &Path : TC.getFilePaths()) {
1606  // Always print a separator. ResourceDir was the first item shown.
1607  llvm::outs() << ':';
1608  // Interpretation of leading '=' is needed only for NetBSD.
1609  if (Path[0] == '=')
1610  llvm::outs() << sysroot << Path.substr(1);
1611  else
1612  llvm::outs() << Path;
1613  }
1614  llvm::outs() << "\n";
1615  return false;
1616  }
1617 
1618  // FIXME: The following handlers should use a callback mechanism, we don't
1619  // know what the client would like to do.
1620  if (Arg *A = C.getArgs().getLastArg(options::OPT_print_file_name_EQ)) {
1621  llvm::outs() << GetFilePath(A->getValue(), TC) << "\n";
1622  return false;
1623  }
1624 
1625  if (Arg *A = C.getArgs().getLastArg(options::OPT_print_prog_name_EQ)) {
1626  StringRef ProgName = A->getValue();
1627 
1628  // Null program name cannot have a path.
1629  if (! ProgName.empty())
1630  llvm::outs() << GetProgramPath(ProgName, TC);
1631 
1632  llvm::outs() << "\n";
1633  return false;
1634  }
1635 
1636  if (Arg *A = C.getArgs().getLastArg(options::OPT_autocomplete)) {
1637  StringRef PassedFlags = A->getValue();
1638  HandleAutocompletions(PassedFlags);
1639  return false;
1640  }
1641 
1642  if (C.getArgs().hasArg(options::OPT_print_libgcc_file_name)) {
1644  const llvm::Triple Triple(TC.ComputeEffectiveClangTriple(C.getArgs()));
1645  RegisterEffectiveTriple TripleRAII(TC, Triple);
1646  switch (RLT) {
1648  llvm::outs() << TC.getCompilerRT(C.getArgs(), "builtins") << "\n";
1649  break;
1650  case ToolChain::RLT_Libgcc:
1651  llvm::outs() << GetFilePath("libgcc.a", TC) << "\n";
1652  break;
1653  }
1654  return false;
1655  }
1656 
1657  if (C.getArgs().hasArg(options::OPT_print_multi_lib)) {
1658  for (const Multilib &Multilib : TC.getMultilibs())
1659  llvm::outs() << Multilib << "\n";
1660  return false;
1661  }
1662 
1663  if (C.getArgs().hasArg(options::OPT_print_multi_directory)) {
1664  const Multilib &Multilib = TC.getMultilib();
1665  if (Multilib.gccSuffix().empty())
1666  llvm::outs() << ".\n";
1667  else {
1668  StringRef Suffix(Multilib.gccSuffix());
1669  assert(Suffix.front() == '/');
1670  llvm::outs() << Suffix.substr(1) << "\n";
1671  }
1672  return false;
1673  }
1674 
1675  if (C.getArgs().hasArg(options::OPT_print_target_triple)) {
1676  llvm::outs() << TC.getTripleString() << "\n";
1677  return false;
1678  }
1679 
1680  if (C.getArgs().hasArg(options::OPT_print_effective_triple)) {
1681  const llvm::Triple Triple(TC.ComputeEffectiveClangTriple(C.getArgs()));
1682  llvm::outs() << Triple.getTriple() << "\n";
1683  return false;
1684  }
1685 
1686  return true;
1687 }
1688 
1689 // Display an action graph human-readably. Action A is the "sink" node
1690 // and latest-occuring action. Traversal is in pre-order, visiting the
1691 // inputs to each action before printing the action itself.
1692 static unsigned PrintActions1(const Compilation &C, Action *A,
1693  std::map<Action *, unsigned> &Ids) {
1694  if (Ids.count(A)) // A was already visited.
1695  return Ids[A];
1696 
1697  std::string str;
1698  llvm::raw_string_ostream os(str);
1699 
1700  os << Action::getClassName(A->getKind()) << ", ";
1701  if (InputAction *IA = dyn_cast<InputAction>(A)) {
1702  os << "\"" << IA->getInputArg().getValue() << "\"";
1703  } else if (BindArchAction *BIA = dyn_cast<BindArchAction>(A)) {
1704  os << '"' << BIA->getArchName() << '"' << ", {"
1705  << PrintActions1(C, *BIA->input_begin(), Ids) << "}";
1706  } else if (OffloadAction *OA = dyn_cast<OffloadAction>(A)) {
1707  bool IsFirst = true;
1708  OA->doOnEachDependence(
1709  [&](Action *A, const ToolChain *TC, const char *BoundArch) {
1710  // E.g. for two CUDA device dependences whose bound arch is sm_20 and
1711  // sm_35 this will generate:
1712  // "cuda-device" (nvptx64-nvidia-cuda:sm_20) {#ID}, "cuda-device"
1713  // (nvptx64-nvidia-cuda:sm_35) {#ID}
1714  if (!IsFirst)
1715  os << ", ";
1716  os << '"';
1717  if (TC)
1718  os << A->getOffloadingKindPrefix();
1719  else
1720  os << "host";
1721  os << " (";
1722  os << TC->getTriple().normalize();
1723 
1724  if (BoundArch)
1725  os << ":" << BoundArch;
1726  os << ")";
1727  os << '"';
1728  os << " {" << PrintActions1(C, A, Ids) << "}";
1729  IsFirst = false;
1730  });
1731  } else {
1732  const ActionList *AL = &A->getInputs();
1733 
1734  if (AL->size()) {
1735  const char *Prefix = "{";
1736  for (Action *PreRequisite : *AL) {
1737  os << Prefix << PrintActions1(C, PreRequisite, Ids);
1738  Prefix = ", ";
1739  }
1740  os << "}";
1741  } else
1742  os << "{}";
1743  }
1744 
1745  // Append offload info for all options other than the offloading action
1746  // itself (e.g. (cuda-device, sm_20) or (cuda-host)).
1747  std::string offload_str;
1748  llvm::raw_string_ostream offload_os(offload_str);
1749  if (!isa<OffloadAction>(A)) {
1750  auto S = A->getOffloadingKindPrefix();
1751  if (!S.empty()) {
1752  offload_os << ", (" << S;
1753  if (A->getOffloadingArch())
1754  offload_os << ", " << A->getOffloadingArch();
1755  offload_os << ")";
1756  }
1757  }
1758 
1759  unsigned Id = Ids.size();
1760  Ids[A] = Id;
1761  llvm::errs() << Id << ": " << os.str() << ", "
1762  << types::getTypeName(A->getType()) << offload_os.str() << "\n";
1763 
1764  return Id;
1765 }
1766 
1767 // Print the action graphs in a compilation C.
1768 // For example "clang -c file1.c file2.c" is composed of two subgraphs.
1769 void Driver::PrintActions(const Compilation &C) const {
1770  std::map<Action *, unsigned> Ids;
1771  for (Action *A : C.getActions())
1772  PrintActions1(C, A, Ids);
1773 }
1774 
1775 /// Check whether the given input tree contains any compilation or
1776 /// assembly actions.
1778  if (isa<CompileJobAction>(A) || isa<BackendJobAction>(A) ||
1779  isa<AssembleJobAction>(A))
1780  return true;
1781 
1782  for (const Action *Input : A->inputs())
1784  return true;
1785 
1786  return false;
1787 }
1788 
1790  const InputList &BAInputs) const {
1791  DerivedArgList &Args = C.getArgs();
1792  ActionList &Actions = C.getActions();
1793  llvm::PrettyStackTraceString CrashInfo("Building universal build actions");
1794  // Collect the list of architectures. Duplicates are allowed, but should only
1795  // be handled once (in the order seen).
1796  llvm::StringSet<> ArchNames;
1798  for (Arg *A : Args) {
1799  if (A->getOption().matches(options::OPT_arch)) {
1800  // Validate the option here; we don't save the type here because its
1801  // particular spelling may participate in other driver choices.
1802  llvm::Triple::ArchType Arch =
1804  if (Arch == llvm::Triple::UnknownArch) {
1805  Diag(clang::diag::err_drv_invalid_arch_name) << A->getAsString(Args);
1806  continue;
1807  }
1808 
1809  A->claim();
1810  if (ArchNames.insert(A->getValue()).second)
1811  Archs.push_back(A->getValue());
1812  }
1813  }
1814 
1815  // When there is no explicit arch for this platform, make sure we still bind
1816  // the architecture (to the default) so that -Xarch_ is handled correctly.
1817  if (!Archs.size())
1818  Archs.push_back(Args.MakeArgString(TC.getDefaultUniversalArchName()));
1819 
1820  ActionList SingleActions;
1821  BuildActions(C, Args, BAInputs, SingleActions);
1822 
1823  // Add in arch bindings for every top level action, as well as lipo and
1824  // dsymutil steps if needed.
1825  for (Action* Act : SingleActions) {
1826  // Make sure we can lipo this kind of output. If not (and it is an actual
1827  // output) then we disallow, since we can't create an output file with the
1828  // right name without overwriting it. We could remove this oddity by just
1829  // changing the output names to include the arch, which would also fix
1830  // -save-temps. Compatibility wins for now.
1831 
1832  if (Archs.size() > 1 && !types::canLipoType(Act->getType()))
1833  Diag(clang::diag::err_drv_invalid_output_with_multiple_archs)
1834  << types::getTypeName(Act->getType());
1835 
1836  ActionList Inputs;
1837  for (unsigned i = 0, e = Archs.size(); i != e; ++i)
1838  Inputs.push_back(C.MakeAction<BindArchAction>(Act, Archs[i]));
1839 
1840  // Lipo if necessary, we do it this way because we need to set the arch flag
1841  // so that -Xarch_ gets overwritten.
1842  if (Inputs.size() == 1 || Act->getType() == types::TY_Nothing)
1843  Actions.append(Inputs.begin(), Inputs.end());
1844  else
1845  Actions.push_back(C.MakeAction<LipoJobAction>(Inputs, Act->getType()));
1846 
1847  // Handle debug info queries.
1848  Arg *A = Args.getLastArg(options::OPT_g_Group);
1849  if (A && !A->getOption().matches(options::OPT_g0) &&
1850  !A->getOption().matches(options::OPT_gstabs) &&
1851  ContainsCompileOrAssembleAction(Actions.back())) {
1852 
1853  // Add a 'dsymutil' step if necessary, when debug info is enabled and we
1854  // have a compile input. We need to run 'dsymutil' ourselves in such cases
1855  // because the debug info will refer to a temporary object file which
1856  // will be removed at the end of the compilation process.
1857  if (Act->getType() == types::TY_Image) {
1858  ActionList Inputs;
1859  Inputs.push_back(Actions.back());
1860  Actions.pop_back();
1861  Actions.push_back(
1862  C.MakeAction<DsymutilJobAction>(Inputs, types::TY_dSYM));
1863  }
1864 
1865  // Verify the debug info output.
1866  if (Args.hasArg(options::OPT_verify_debug_info)) {
1867  Action* LastAction = Actions.back();
1868  Actions.pop_back();
1869  Actions.push_back(C.MakeAction<VerifyDebugInfoJobAction>(
1870  LastAction, types::TY_Nothing));
1871  }
1872  }
1873  }
1874 }
1875 
1876 /// Check that the file referenced by Value exists. If it doesn't,
1877 /// issue a diagnostic and return false.
1878 static bool DiagnoseInputExistence(const Driver &D, const DerivedArgList &Args,
1879  StringRef Value, types::ID Ty) {
1880  if (!D.getCheckInputsExist())
1881  return true;
1882 
1883  // stdin always exists.
1884  if (Value == "-")
1885  return true;
1886 
1887  SmallString<64> Path(Value);
1888  if (Arg *WorkDir = Args.getLastArg(options::OPT_working_directory)) {
1889  if (!llvm::sys::path::is_absolute(Path)) {
1890  SmallString<64> Directory(WorkDir->getValue());
1891  llvm::sys::path::append(Directory, Value);
1892  Path.assign(Directory);
1893  }
1894  }
1895 
1896  if (llvm::sys::fs::exists(Twine(Path)))
1897  return true;
1898 
1899  if (D.IsCLMode()) {
1900  if (!llvm::sys::path::is_absolute(Twine(Path)) &&
1901  llvm::sys::Process::FindInEnvPath("LIB", Value))
1902  return true;
1903 
1904  if (Args.hasArg(options::OPT__SLASH_link) && Ty == types::TY_Object) {
1905  // Arguments to the /link flag might cause the linker to search for object
1906  // and library files in paths we don't know about. Don't error in such
1907  // cases.
1908  return true;
1909  }
1910  }
1911 
1912  D.Diag(clang::diag::err_drv_no_such_file) << Path;
1913  return false;
1914 }
1915 
1916 // Construct a the list of inputs and their types.
1917 void Driver::BuildInputs(const ToolChain &TC, DerivedArgList &Args,
1918  InputList &Inputs) const {
1919  // Track the current user specified (-x) input. We also explicitly track the
1920  // argument used to set the type; we only want to claim the type when we
1921  // actually use it, so we warn about unused -x arguments.
1922  types::ID InputType = types::TY_Nothing;
1923  Arg *InputTypeArg = nullptr;
1924 
1925  // The last /TC or /TP option sets the input type to C or C++ globally.
1926  if (Arg *TCTP = Args.getLastArgNoClaim(options::OPT__SLASH_TC,
1927  options::OPT__SLASH_TP)) {
1928  InputTypeArg = TCTP;
1929  InputType = TCTP->getOption().matches(options::OPT__SLASH_TC)
1930  ? types::TY_C
1931  : types::TY_CXX;
1932 
1933  Arg *Previous = nullptr;
1934  bool ShowNote = false;
1935  for (Arg *A : Args.filtered(options::OPT__SLASH_TC, options::OPT__SLASH_TP)) {
1936  if (Previous) {
1937  Diag(clang::diag::warn_drv_overriding_flag_option)
1938  << Previous->getSpelling() << A->getSpelling();
1939  ShowNote = true;
1940  }
1941  Previous = A;
1942  }
1943  if (ShowNote)
1944  Diag(clang::diag::note_drv_t_option_is_global);
1945 
1946  // No driver mode exposes -x and /TC or /TP; we don't support mixing them.
1947  assert(!Args.hasArg(options::OPT_x) && "-x and /TC or /TP is not allowed");
1948  }
1949 
1950  for (Arg *A : Args) {
1951  if (A->getOption().getKind() == Option::InputClass) {
1952  const char *Value = A->getValue();
1954 
1955  // Infer the input type if necessary.
1956  if (InputType == types::TY_Nothing) {
1957  // If there was an explicit arg for this, claim it.
1958  if (InputTypeArg)
1959  InputTypeArg->claim();
1960 
1961  // stdin must be handled specially.
1962  if (memcmp(Value, "-", 2) == 0) {
1963  // If running with -E, treat as a C input (this changes the builtin
1964  // macros, for example). This may be overridden by -ObjC below.
1965  //
1966  // Otherwise emit an error but still use a valid type to avoid
1967  // spurious errors (e.g., no inputs).
1968  if (!Args.hasArgNoClaim(options::OPT_E) && !CCCIsCPP())
1969  Diag(IsCLMode() ? clang::diag::err_drv_unknown_stdin_type_clang_cl
1970  : clang::diag::err_drv_unknown_stdin_type);
1971  Ty = types::TY_C;
1972  } else {
1973  // Otherwise lookup by extension.
1974  // Fallback is C if invoked as C preprocessor or Object otherwise.
1975  // We use a host hook here because Darwin at least has its own
1976  // idea of what .s is.
1977  if (const char *Ext = strrchr(Value, '.'))
1978  Ty = TC.LookupTypeForExtension(Ext + 1);
1979 
1980  if (Ty == types::TY_INVALID) {
1981  if (CCCIsCPP())
1982  Ty = types::TY_C;
1983  else
1984  Ty = types::TY_Object;
1985  }
1986 
1987  // If the driver is invoked as C++ compiler (like clang++ or c++) it
1988  // should autodetect some input files as C++ for g++ compatibility.
1989  if (CCCIsCXX()) {
1990  types::ID OldTy = Ty;
1992 
1993  if (Ty != OldTy)
1994  Diag(clang::diag::warn_drv_treating_input_as_cxx)
1995  << getTypeName(OldTy) << getTypeName(Ty);
1996  }
1997  }
1998 
1999  // -ObjC and -ObjC++ override the default language, but only for "source
2000  // files". We just treat everything that isn't a linker input as a
2001  // source file.
2002  //
2003  // FIXME: Clean this up if we move the phase sequence into the type.
2004  if (Ty != types::TY_Object) {
2005  if (Args.hasArg(options::OPT_ObjC))
2006  Ty = types::TY_ObjC;
2007  else if (Args.hasArg(options::OPT_ObjCXX))
2008  Ty = types::TY_ObjCXX;
2009  }
2010  } else {
2011  assert(InputTypeArg && "InputType set w/o InputTypeArg");
2012  if (!InputTypeArg->getOption().matches(options::OPT_x)) {
2013  // If emulating cl.exe, make sure that /TC and /TP don't affect input
2014  // object files.
2015  const char *Ext = strrchr(Value, '.');
2016  if (Ext && TC.LookupTypeForExtension(Ext + 1) == types::TY_Object)
2017  Ty = types::TY_Object;
2018  }
2019  if (Ty == types::TY_INVALID) {
2020  Ty = InputType;
2021  InputTypeArg->claim();
2022  }
2023  }
2024 
2025  if (DiagnoseInputExistence(*this, Args, Value, Ty))
2026  Inputs.push_back(std::make_pair(Ty, A));
2027 
2028  } else if (A->getOption().matches(options::OPT__SLASH_Tc)) {
2029  StringRef Value = A->getValue();
2030  if (DiagnoseInputExistence(*this, Args, Value, types::TY_C)) {
2031  Arg *InputArg = MakeInputArg(Args, *Opts, A->getValue());
2032  Inputs.push_back(std::make_pair(types::TY_C, InputArg));
2033  }
2034  A->claim();
2035  } else if (A->getOption().matches(options::OPT__SLASH_Tp)) {
2036  StringRef Value = A->getValue();
2037  if (DiagnoseInputExistence(*this, Args, Value, types::TY_CXX)) {
2038  Arg *InputArg = MakeInputArg(Args, *Opts, A->getValue());
2039  Inputs.push_back(std::make_pair(types::TY_CXX, InputArg));
2040  }
2041  A->claim();
2042  } else if (A->getOption().hasFlag(options::LinkerInput)) {
2043  // Just treat as object type, we could make a special type for this if
2044  // necessary.
2045  Inputs.push_back(std::make_pair(types::TY_Object, A));
2046 
2047  } else if (A->getOption().matches(options::OPT_x)) {
2048  InputTypeArg = A;
2049  InputType = types::lookupTypeForTypeSpecifier(A->getValue());
2050  A->claim();
2051 
2052  // Follow gcc behavior and treat as linker input for invalid -x
2053  // options. Its not clear why we shouldn't just revert to unknown; but
2054  // this isn't very important, we might as well be bug compatible.
2055  if (!InputType) {
2056  Diag(clang::diag::err_drv_unknown_language) << A->getValue();
2057  InputType = types::TY_Object;
2058  }
2059  } else if (A->getOption().getID() == options::OPT__SLASH_U) {
2060  assert(A->getNumValues() == 1 && "The /U option has one value.");
2061  StringRef Val = A->getValue(0);
2062  if (Val.find_first_of("/\\") != StringRef::npos) {
2063  // Warn about e.g. "/Users/me/myfile.c".
2064  Diag(diag::warn_slash_u_filename) << Val;
2065  Diag(diag::note_use_dashdash);
2066  }
2067  }
2068  }
2069  if (CCCIsCPP() && Inputs.empty()) {
2070  // If called as standalone preprocessor, stdin is processed
2071  // if no other input is present.
2072  Arg *A = MakeInputArg(Args, *Opts, "-");
2073  Inputs.push_back(std::make_pair(types::TY_C, A));
2074  }
2075 }
2076 
2077 namespace {
2078 /// Provides a convenient interface for different programming models to generate
2079 /// the required device actions.
2080 class OffloadingActionBuilder final {
2081  /// Flag used to trace errors in the builder.
2082  bool IsValid = false;
2083 
2084  /// The compilation that is using this builder.
2085  Compilation &C;
2086 
2087  /// Map between an input argument and the offload kinds used to process it.
2088  std::map<const Arg *, unsigned> InputArgToOffloadKindMap;
2089 
2090  /// Builder interface. It doesn't build anything or keep any state.
2091  class DeviceActionBuilder {
2092  public:
2094 
2095  enum ActionBuilderReturnCode {
2096  // The builder acted successfully on the current action.
2097  ABRT_Success,
2098  // The builder didn't have to act on the current action.
2099  ABRT_Inactive,
2100  // The builder was successful and requested the host action to not be
2101  // generated.
2102  ABRT_Ignore_Host,
2103  };
2104 
2105  protected:
2106  /// Compilation associated with this builder.
2107  Compilation &C;
2108 
2109  /// Tool chains associated with this builder. The same programming
2110  /// model may have associated one or more tool chains.
2112 
2113  /// The derived arguments associated with this builder.
2114  DerivedArgList &Args;
2115 
2116  /// The inputs associated with this builder.
2117  const Driver::InputList &Inputs;
2118 
2119  /// The associated offload kind.
2120  Action::OffloadKind AssociatedOffloadKind = Action::OFK_None;
2121 
2122  public:
2123  DeviceActionBuilder(Compilation &C, DerivedArgList &Args,
2124  const Driver::InputList &Inputs,
2125  Action::OffloadKind AssociatedOffloadKind)
2126  : C(C), Args(Args), Inputs(Inputs),
2127  AssociatedOffloadKind(AssociatedOffloadKind) {}
2128  virtual ~DeviceActionBuilder() {}
2129 
2130  /// Fill up the array \a DA with all the device dependences that should be
2131  /// added to the provided host action \a HostAction. By default it is
2132  /// inactive.
2133  virtual ActionBuilderReturnCode
2134  getDeviceDependences(OffloadAction::DeviceDependences &DA,
2135  phases::ID CurPhase, phases::ID FinalPhase,
2136  PhasesTy &Phases) {
2137  return ABRT_Inactive;
2138  }
2139 
2140  /// Update the state to include the provided host action \a HostAction as a
2141  /// dependency of the current device action. By default it is inactive.
2142  virtual ActionBuilderReturnCode addDeviceDepences(Action *HostAction) {
2143  return ABRT_Inactive;
2144  }
2145 
2146  /// Append top level actions generated by the builder. Return true if errors
2147  /// were found.
2148  virtual void appendTopLevelActions(ActionList &AL) {}
2149 
2150  /// Append linker actions generated by the builder. Return true if errors
2151  /// were found.
2152  virtual void appendLinkDependences(OffloadAction::DeviceDependences &DA) {}
2153 
2154  /// Initialize the builder. Return true if any initialization errors are
2155  /// found.
2156  virtual bool initialize() { return false; }
2157 
2158  /// Return true if the builder can use bundling/unbundling.
2159  virtual bool canUseBundlerUnbundler() const { return false; }
2160 
2161  /// Return true if this builder is valid. We have a valid builder if we have
2162  /// associated device tool chains.
2163  bool isValid() { return !ToolChains.empty(); }
2164 
2165  /// Return the associated offload kind.
2166  Action::OffloadKind getAssociatedOffloadKind() {
2167  return AssociatedOffloadKind;
2168  }
2169  };
2170 
2171  /// Base class for CUDA/HIP action builder. It injects device code in
2172  /// the host backend action.
2173  class CudaActionBuilderBase : public DeviceActionBuilder {
2174  protected:
2175  /// Flags to signal if the user requested host-only or device-only
2176  /// compilation.
2177  bool CompileHostOnly = false;
2178  bool CompileDeviceOnly = false;
2179 
2180  /// List of GPU architectures to use in this compilation.
2181  SmallVector<CudaArch, 4> GpuArchList;
2182 
2183  /// The CUDA actions for the current input.
2184  ActionList CudaDeviceActions;
2185 
2186  /// The CUDA fat binary if it was generated for the current input.
2187  Action *CudaFatBinary = nullptr;
2188 
2189  /// Flag that is set to true if this builder acted on the current input.
2190  bool IsActive = false;
2191  public:
2192  CudaActionBuilderBase(Compilation &C, DerivedArgList &Args,
2193  const Driver::InputList &Inputs,
2194  Action::OffloadKind OFKind)
2195  : DeviceActionBuilder(C, Args, Inputs, OFKind) {}
2196 
2197  ActionBuilderReturnCode addDeviceDepences(Action *HostAction) override {
2198  // While generating code for CUDA, we only depend on the host input action
2199  // to trigger the creation of all the CUDA device actions.
2200 
2201  // If we are dealing with an input action, replicate it for each GPU
2202  // architecture. If we are in host-only mode we return 'success' so that
2203  // the host uses the CUDA offload kind.
2204  if (auto *IA = dyn_cast<InputAction>(HostAction)) {
2205  assert(!GpuArchList.empty() &&
2206  "We should have at least one GPU architecture.");
2207 
2208  // If the host input is not CUDA or HIP, we don't need to bother about
2209  // this input.
2210  if (IA->getType() != types::TY_CUDA &&
2211  IA->getType() != types::TY_HIP) {
2212  // The builder will ignore this input.
2213  IsActive = false;
2214  return ABRT_Inactive;
2215  }
2216 
2217  // Set the flag to true, so that the builder acts on the current input.
2218  IsActive = true;
2219 
2220  if (CompileHostOnly)
2221  return ABRT_Success;
2222 
2223  // Replicate inputs for each GPU architecture.
2224  auto Ty = IA->getType() == types::TY_HIP ? types::TY_HIP_DEVICE
2225  : types::TY_CUDA_DEVICE;
2226  for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) {
2227  CudaDeviceActions.push_back(
2228  C.MakeAction<InputAction>(IA->getInputArg(), Ty));
2229  }
2230 
2231  return ABRT_Success;
2232  }
2233 
2234  // If this is an unbundling action use it as is for each CUDA toolchain.
2235  if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction)) {
2236  CudaDeviceActions.clear();
2237  for (auto Arch : GpuArchList) {
2238  CudaDeviceActions.push_back(UA);
2239  UA->registerDependentActionInfo(ToolChains[0], CudaArchToString(Arch),
2240  AssociatedOffloadKind);
2241  }
2242  return ABRT_Success;
2243  }
2244 
2245  return IsActive ? ABRT_Success : ABRT_Inactive;
2246  }
2247 
2248  void appendTopLevelActions(ActionList &AL) override {
2249  // Utility to append actions to the top level list.
2250  auto AddTopLevel = [&](Action *A, CudaArch BoundArch) {
2252  Dep.add(*A, *ToolChains.front(), CudaArchToString(BoundArch),
2253  AssociatedOffloadKind);
2254  AL.push_back(C.MakeAction<OffloadAction>(Dep, A->getType()));
2255  };
2256 
2257  // If we have a fat binary, add it to the list.
2258  if (CudaFatBinary) {
2259  AddTopLevel(CudaFatBinary, CudaArch::UNKNOWN);
2260  CudaDeviceActions.clear();
2261  CudaFatBinary = nullptr;
2262  return;
2263  }
2264 
2265  if (CudaDeviceActions.empty())
2266  return;
2267 
2268  // If we have CUDA actions at this point, that's because we have a have
2269  // partial compilation, so we should have an action for each GPU
2270  // architecture.
2271  assert(CudaDeviceActions.size() == GpuArchList.size() &&
2272  "Expecting one action per GPU architecture.");
2273  assert(ToolChains.size() == 1 &&
2274  "Expecting to have a sing CUDA toolchain.");
2275  for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I)
2276  AddTopLevel(CudaDeviceActions[I], GpuArchList[I]);
2277 
2278  CudaDeviceActions.clear();
2279  }
2280 
2281  bool initialize() override {
2282  assert(AssociatedOffloadKind == Action::OFK_Cuda ||
2283  AssociatedOffloadKind == Action::OFK_HIP);
2284 
2285  // We don't need to support CUDA.
2286  if (AssociatedOffloadKind == Action::OFK_Cuda &&
2288  return false;
2289 
2290  // We don't need to support HIP.
2291  if (AssociatedOffloadKind == Action::OFK_HIP &&
2293  return false;
2294 
2296  assert(HostTC && "No toolchain for host compilation.");
2297  if (HostTC->getTriple().isNVPTX() ||
2298  HostTC->getTriple().getArch() == llvm::Triple::amdgcn) {
2299  // We do not support targeting NVPTX/AMDGCN for host compilation. Throw
2300  // an error and abort pipeline construction early so we don't trip
2301  // asserts that assume device-side compilation.
2302  C.getDriver().Diag(diag::err_drv_cuda_host_arch)
2303  << HostTC->getTriple().getArchName();
2304  return true;
2305  }
2306 
2307  ToolChains.push_back(
2308  AssociatedOffloadKind == Action::OFK_Cuda
2311 
2312  Arg *PartialCompilationArg = Args.getLastArg(
2313  options::OPT_cuda_host_only, options::OPT_cuda_device_only,
2314  options::OPT_cuda_compile_host_device);
2315  CompileHostOnly = PartialCompilationArg &&
2316  PartialCompilationArg->getOption().matches(
2317  options::OPT_cuda_host_only);
2318  CompileDeviceOnly = PartialCompilationArg &&
2319  PartialCompilationArg->getOption().matches(
2320  options::OPT_cuda_device_only);
2321 
2322  // Collect all cuda_gpu_arch parameters, removing duplicates.
2323  std::set<CudaArch> GpuArchs;
2324  bool Error = false;
2325  for (Arg *A : Args) {
2326  if (!(A->getOption().matches(options::OPT_cuda_gpu_arch_EQ) ||
2327  A->getOption().matches(options::OPT_no_cuda_gpu_arch_EQ)))
2328  continue;
2329  A->claim();
2330 
2331  const StringRef ArchStr = A->getValue();
2332  if (A->getOption().matches(options::OPT_no_cuda_gpu_arch_EQ) &&
2333  ArchStr == "all") {
2334  GpuArchs.clear();
2335  continue;
2336  }
2337  CudaArch Arch = StringToCudaArch(ArchStr);
2338  if (Arch == CudaArch::UNKNOWN) {
2339  C.getDriver().Diag(clang::diag::err_drv_cuda_bad_gpu_arch) << ArchStr;
2340  Error = true;
2341  } else if (A->getOption().matches(options::OPT_cuda_gpu_arch_EQ))
2342  GpuArchs.insert(Arch);
2343  else if (A->getOption().matches(options::OPT_no_cuda_gpu_arch_EQ))
2344  GpuArchs.erase(Arch);
2345  else
2346  llvm_unreachable("Unexpected option.");
2347  }
2348 
2349  // Collect list of GPUs remaining in the set.
2350  for (CudaArch Arch : GpuArchs)
2351  GpuArchList.push_back(Arch);
2352 
2353  // Default to sm_20 which is the lowest common denominator for
2354  // supported GPUs. sm_20 code should work correctly, if
2355  // suboptimally, on all newer GPUs.
2356  if (GpuArchList.empty())
2357  GpuArchList.push_back(CudaArch::SM_20);
2358 
2359  return Error;
2360  }
2361  };
2362 
2363  /// \brief CUDA action builder. It injects device code in the host backend
2364  /// action.
2365  class CudaActionBuilder final : public CudaActionBuilderBase {
2366  public:
2367  CudaActionBuilder(Compilation &C, DerivedArgList &Args,
2368  const Driver::InputList &Inputs)
2369  : CudaActionBuilderBase(C, Args, Inputs, Action::OFK_Cuda) {}
2370 
2371  ActionBuilderReturnCode
2372  getDeviceDependences(OffloadAction::DeviceDependences &DA,
2373  phases::ID CurPhase, phases::ID FinalPhase,
2374  PhasesTy &Phases) override {
2375  if (!IsActive)
2376  return ABRT_Inactive;
2377 
2378  // If we don't have more CUDA actions, we don't have any dependences to
2379  // create for the host.
2380  if (CudaDeviceActions.empty())
2381  return ABRT_Success;
2382 
2383  assert(CudaDeviceActions.size() == GpuArchList.size() &&
2384  "Expecting one action per GPU architecture.");
2385  assert(!CompileHostOnly &&
2386  "Not expecting CUDA actions in host-only compilation.");
2387 
2388  // If we are generating code for the device or we are in a backend phase,
2389  // we attempt to generate the fat binary. We compile each arch to ptx and
2390  // assemble to cubin, then feed the cubin *and* the ptx into a device
2391  // "link" action, which uses fatbinary to combine these cubins into one
2392  // fatbin. The fatbin is then an input to the host action if not in
2393  // device-only mode.
2394  if (CompileDeviceOnly || CurPhase == phases::Backend) {
2395  ActionList DeviceActions;
2396  for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) {
2397  // Produce the device action from the current phase up to the assemble
2398  // phase.
2399  for (auto Ph : Phases) {
2400  // Skip the phases that were already dealt with.
2401  if (Ph < CurPhase)
2402  continue;
2403  // We have to be consistent with the host final phase.
2404  if (Ph > FinalPhase)
2405  break;
2406 
2407  CudaDeviceActions[I] = C.getDriver().ConstructPhaseAction(
2408  C, Args, Ph, CudaDeviceActions[I], Action::OFK_Cuda);
2409 
2410  if (Ph == phases::Assemble)
2411  break;
2412  }
2413 
2414  // If we didn't reach the assemble phase, we can't generate the fat
2415  // binary. We don't need to generate the fat binary if we are not in
2416  // device-only mode.
2417  if (!isa<AssembleJobAction>(CudaDeviceActions[I]) ||
2418  CompileDeviceOnly)
2419  continue;
2420 
2421  Action *AssembleAction = CudaDeviceActions[I];
2422  assert(AssembleAction->getType() == types::TY_Object);
2423  assert(AssembleAction->getInputs().size() == 1);
2424 
2425  Action *BackendAction = AssembleAction->getInputs()[0];
2426  assert(BackendAction->getType() == types::TY_PP_Asm);
2427 
2428  for (auto &A : {AssembleAction, BackendAction}) {
2430  DDep.add(*A, *ToolChains.front(), CudaArchToString(GpuArchList[I]),
2432  DeviceActions.push_back(
2433  C.MakeAction<OffloadAction>(DDep, A->getType()));
2434  }
2435  }
2436 
2437  // We generate the fat binary if we have device input actions.
2438  if (!DeviceActions.empty()) {
2439  CudaFatBinary =
2440  C.MakeAction<LinkJobAction>(DeviceActions, types::TY_CUDA_FATBIN);
2441 
2442  if (!CompileDeviceOnly) {
2443  DA.add(*CudaFatBinary, *ToolChains.front(), /*BoundArch=*/nullptr,
2445  // Clear the fat binary, it is already a dependence to an host
2446  // action.
2447  CudaFatBinary = nullptr;
2448  }
2449 
2450  // Remove the CUDA actions as they are already connected to an host
2451  // action or fat binary.
2452  CudaDeviceActions.clear();
2453  }
2454 
2455  // We avoid creating host action in device-only mode.
2456  return CompileDeviceOnly ? ABRT_Ignore_Host : ABRT_Success;
2457  } else if (CurPhase > phases::Backend) {
2458  // If we are past the backend phase and still have a device action, we
2459  // don't have to do anything as this action is already a device
2460  // top-level action.
2461  return ABRT_Success;
2462  }
2463 
2464  assert(CurPhase < phases::Backend && "Generating single CUDA "
2465  "instructions should only occur "
2466  "before the backend phase!");
2467 
2468  // By default, we produce an action for each device arch.
2469  for (Action *&A : CudaDeviceActions)
2470  A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A);
2471 
2472  return ABRT_Success;
2473  }
2474  };
2475  /// \brief HIP action builder. It injects device code in the host backend
2476  /// action.
2477  class HIPActionBuilder final : public CudaActionBuilderBase {
2478  /// The linker inputs obtained for each device arch.
2479  SmallVector<ActionList, 8> DeviceLinkerInputs;
2480 
2481  public:
2482  HIPActionBuilder(Compilation &C, DerivedArgList &Args,
2483  const Driver::InputList &Inputs)
2484  : CudaActionBuilderBase(C, Args, Inputs, Action::OFK_HIP) {}
2485 
2486  bool canUseBundlerUnbundler() const override { return true; }
2487 
2488  ActionBuilderReturnCode
2489  getDeviceDependences(OffloadAction::DeviceDependences &DA,
2490  phases::ID CurPhase, phases::ID FinalPhase,
2491  PhasesTy &Phases) override {
2492  // amdgcn does not support linking of object files, therefore we skip
2493  // backend and assemble phases to output LLVM IR.
2494  if (CudaDeviceActions.empty() || CurPhase == phases::Backend ||
2495  CurPhase == phases::Assemble)
2496  return ABRT_Success;
2497 
2498  assert((CurPhase == phases::Link ||
2499  CudaDeviceActions.size() == GpuArchList.size()) &&
2500  "Expecting one action per GPU architecture.");
2501  assert(!CompileHostOnly &&
2502  "Not expecting CUDA actions in host-only compilation.");
2503 
2504  // Save CudaDeviceActions to DeviceLinkerInputs for each GPU subarch.
2505  // This happens to each device action originated from each input file.
2506  // Later on, device actions in DeviceLinkerInputs are used to create
2507  // device link actions in appendLinkDependences and the created device
2508  // link actions are passed to the offload action as device dependence.
2509  if (CurPhase == phases::Link) {
2510  DeviceLinkerInputs.resize(CudaDeviceActions.size());
2511  auto LI = DeviceLinkerInputs.begin();
2512  for (auto *A : CudaDeviceActions) {
2513  LI->push_back(A);
2514  ++LI;
2515  }
2516 
2517  // We will pass the device action as a host dependence, so we don't
2518  // need to do anything else with them.
2519  CudaDeviceActions.clear();
2520  return ABRT_Success;
2521  }
2522 
2523  // By default, we produce an action for each device arch.
2524  for (Action *&A : CudaDeviceActions)
2525  A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A,
2526  AssociatedOffloadKind);
2527 
2528  return ABRT_Success;
2529  }
2530 
2531  void appendLinkDependences(OffloadAction::DeviceDependences &DA) override {
2532  // Append a new link action for each device.
2533  unsigned I = 0;
2534  for (auto &LI : DeviceLinkerInputs) {
2535  auto *DeviceLinkAction =
2536  C.MakeAction<LinkJobAction>(LI, types::TY_Image);
2537  DA.add(*DeviceLinkAction, *ToolChains[0],
2538  CudaArchToString(GpuArchList[I]), AssociatedOffloadKind);
2539  ++I;
2540  }
2541  }
2542  };
2543 
2544  /// OpenMP action builder. The host bitcode is passed to the device frontend
2545  /// and all the device linked images are passed to the host link phase.
2546  class OpenMPActionBuilder final : public DeviceActionBuilder {
2547  /// The OpenMP actions for the current input.
2548  ActionList OpenMPDeviceActions;
2549 
2550  /// The linker inputs obtained for each toolchain.
2551  SmallVector<ActionList, 8> DeviceLinkerInputs;
2552 
2553  public:
2554  OpenMPActionBuilder(Compilation &C, DerivedArgList &Args,
2555  const Driver::InputList &Inputs)
2556  : DeviceActionBuilder(C, Args, Inputs, Action::OFK_OpenMP) {}
2557 
2558  ActionBuilderReturnCode
2559  getDeviceDependences(OffloadAction::DeviceDependences &DA,
2560  phases::ID CurPhase, phases::ID FinalPhase,
2561  PhasesTy &Phases) override {
2562 
2563  // We should always have an action for each input.
2564  assert(OpenMPDeviceActions.size() == ToolChains.size() &&
2565  "Number of OpenMP actions and toolchains do not match.");
2566 
2567  // The host only depends on device action in the linking phase, when all
2568  // the device images have to be embedded in the host image.
2569  if (CurPhase == phases::Link) {
2570  assert(ToolChains.size() == DeviceLinkerInputs.size() &&
2571  "Toolchains and linker inputs sizes do not match.");
2572  auto LI = DeviceLinkerInputs.begin();
2573  for (auto *A : OpenMPDeviceActions) {
2574  LI->push_back(A);
2575  ++LI;
2576  }
2577 
2578  // We passed the device action as a host dependence, so we don't need to
2579  // do anything else with them.
2580  OpenMPDeviceActions.clear();
2581  return ABRT_Success;
2582  }
2583 
2584  // By default, we produce an action for each device arch.
2585  for (Action *&A : OpenMPDeviceActions)
2586  A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A);
2587 
2588  return ABRT_Success;
2589  }
2590 
2591  ActionBuilderReturnCode addDeviceDepences(Action *HostAction) override {
2592 
2593  // If this is an input action replicate it for each OpenMP toolchain.
2594  if (auto *IA = dyn_cast<InputAction>(HostAction)) {
2595  OpenMPDeviceActions.clear();
2596  for (unsigned I = 0; I < ToolChains.size(); ++I)
2597  OpenMPDeviceActions.push_back(
2598  C.MakeAction<InputAction>(IA->getInputArg(), IA->getType()));
2599  return ABRT_Success;
2600  }
2601 
2602  // If this is an unbundling action use it as is for each OpenMP toolchain.
2603  if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction)) {
2604  OpenMPDeviceActions.clear();
2605  for (unsigned I = 0; I < ToolChains.size(); ++I) {
2606  OpenMPDeviceActions.push_back(UA);
2607  UA->registerDependentActionInfo(
2608  ToolChains[I], /*BoundArch=*/StringRef(), Action::OFK_OpenMP);
2609  }
2610  return ABRT_Success;
2611  }
2612 
2613  // When generating code for OpenMP we use the host compile phase result as
2614  // a dependence to the device compile phase so that it can learn what
2615  // declarations should be emitted. However, this is not the only use for
2616  // the host action, so we prevent it from being collapsed.
2617  if (isa<CompileJobAction>(HostAction)) {
2619  assert(ToolChains.size() == OpenMPDeviceActions.size() &&
2620  "Toolchains and device action sizes do not match.");
2622  *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
2623  /*BoundArch=*/nullptr, Action::OFK_OpenMP);
2624  auto TC = ToolChains.begin();
2625  for (Action *&A : OpenMPDeviceActions) {
2626  assert(isa<CompileJobAction>(A));
2628  DDep.add(*A, **TC, /*BoundArch=*/nullptr, Action::OFK_OpenMP);
2629  A = C.MakeAction<OffloadAction>(HDep, DDep);
2630  ++TC;
2631  }
2632  }
2633  return ABRT_Success;
2634  }
2635 
2636  void appendTopLevelActions(ActionList &AL) override {
2637  if (OpenMPDeviceActions.empty())
2638  return;
2639 
2640  // We should always have an action for each input.
2641  assert(OpenMPDeviceActions.size() == ToolChains.size() &&
2642  "Number of OpenMP actions and toolchains do not match.");
2643 
2644  // Append all device actions followed by the proper offload action.
2645  auto TI = ToolChains.begin();
2646  for (auto *A : OpenMPDeviceActions) {
2648  Dep.add(*A, **TI, /*BoundArch=*/nullptr, Action::OFK_OpenMP);
2649  AL.push_back(C.MakeAction<OffloadAction>(Dep, A->getType()));
2650  ++TI;
2651  }
2652  // We no longer need the action stored in this builder.
2653  OpenMPDeviceActions.clear();
2654  }
2655 
2656  void appendLinkDependences(OffloadAction::DeviceDependences &DA) override {
2657  assert(ToolChains.size() == DeviceLinkerInputs.size() &&
2658  "Toolchains and linker inputs sizes do not match.");
2659 
2660  // Append a new link action for each device.
2661  auto TC = ToolChains.begin();
2662  for (auto &LI : DeviceLinkerInputs) {
2663  auto *DeviceLinkAction =
2664  C.MakeAction<LinkJobAction>(LI, types::TY_Image);
2665  DA.add(*DeviceLinkAction, **TC, /*BoundArch=*/nullptr,
2667  ++TC;
2668  }
2669  }
2670 
2671  bool initialize() override {
2672  // Get the OpenMP toolchains. If we don't get any, the action builder will
2673  // know there is nothing to do related to OpenMP offloading.
2674  auto OpenMPTCRange = C.getOffloadToolChains<Action::OFK_OpenMP>();
2675  for (auto TI = OpenMPTCRange.first, TE = OpenMPTCRange.second; TI != TE;
2676  ++TI)
2677  ToolChains.push_back(TI->second);
2678 
2679  DeviceLinkerInputs.resize(ToolChains.size());
2680  return false;
2681  }
2682 
2683  bool canUseBundlerUnbundler() const override {
2684  // OpenMP should use bundled files whenever possible.
2685  return true;
2686  }
2687  };
2688 
2689  ///
2690  /// TODO: Add the implementation for other specialized builders here.
2691  ///
2692 
2693  /// Specialized builders being used by this offloading action builder.
2694  SmallVector<DeviceActionBuilder *, 4> SpecializedBuilders;
2695 
2696  /// Flag set to true if all valid builders allow file bundling/unbundling.
2697  bool CanUseBundler;
2698 
2699 public:
2700  OffloadingActionBuilder(Compilation &C, DerivedArgList &Args,
2701  const Driver::InputList &Inputs)
2702  : C(C) {
2703  // Create a specialized builder for each device toolchain.
2704 
2705  IsValid = true;
2706 
2707  // Create a specialized builder for CUDA.
2708  SpecializedBuilders.push_back(new CudaActionBuilder(C, Args, Inputs));
2709 
2710  // Create a specialized builder for HIP.
2711  SpecializedBuilders.push_back(new HIPActionBuilder(C, Args, Inputs));
2712 
2713  // Create a specialized builder for OpenMP.
2714  SpecializedBuilders.push_back(new OpenMPActionBuilder(C, Args, Inputs));
2715 
2716  //
2717  // TODO: Build other specialized builders here.
2718  //
2719 
2720  // Initialize all the builders, keeping track of errors. If all valid
2721  // builders agree that we can use bundling, set the flag to true.
2722  unsigned ValidBuilders = 0u;
2723  unsigned ValidBuildersSupportingBundling = 0u;
2724  for (auto *SB : SpecializedBuilders) {
2725  IsValid = IsValid && !SB->initialize();
2726 
2727  // Update the counters if the builder is valid.
2728  if (SB->isValid()) {
2729  ++ValidBuilders;
2730  if (SB->canUseBundlerUnbundler())
2731  ++ValidBuildersSupportingBundling;
2732  }
2733  }
2734  CanUseBundler =
2735  ValidBuilders && ValidBuilders == ValidBuildersSupportingBundling;
2736  }
2737 
2738  ~OffloadingActionBuilder() {
2739  for (auto *SB : SpecializedBuilders)
2740  delete SB;
2741  }
2742 
2743  /// Generate an action that adds device dependences (if any) to a host action.
2744  /// If no device dependence actions exist, just return the host action \a
2745  /// HostAction. If an error is found or if no builder requires the host action
2746  /// to be generated, return nullptr.
2747  Action *
2748  addDeviceDependencesToHostAction(Action *HostAction, const Arg *InputArg,
2749  phases::ID CurPhase, phases::ID FinalPhase,
2750  DeviceActionBuilder::PhasesTy &Phases) {
2751  if (!IsValid)
2752  return nullptr;
2753 
2754  if (SpecializedBuilders.empty())
2755  return HostAction;
2756 
2757  assert(HostAction && "Invalid host action!");
2758 
2760  // Check if all the programming models agree we should not emit the host
2761  // action. Also, keep track of the offloading kinds employed.
2762  auto &OffloadKind = InputArgToOffloadKindMap[InputArg];
2763  unsigned InactiveBuilders = 0u;
2764  unsigned IgnoringBuilders = 0u;
2765  for (auto *SB : SpecializedBuilders) {
2766  if (!SB->isValid()) {
2767  ++InactiveBuilders;
2768  continue;
2769  }
2770 
2771  auto RetCode =
2772  SB->getDeviceDependences(DDeps, CurPhase, FinalPhase, Phases);
2773 
2774  // If the builder explicitly says the host action should be ignored,
2775  // we need to increment the variable that tracks the builders that request
2776  // the host object to be ignored.
2777  if (RetCode == DeviceActionBuilder::ABRT_Ignore_Host)
2778  ++IgnoringBuilders;
2779 
2780  // Unless the builder was inactive for this action, we have to record the
2781  // offload kind because the host will have to use it.
2782  if (RetCode != DeviceActionBuilder::ABRT_Inactive)
2783  OffloadKind |= SB->getAssociatedOffloadKind();
2784  }
2785 
2786  // If all builders agree that the host object should be ignored, just return
2787  // nullptr.
2788  if (IgnoringBuilders &&
2789  SpecializedBuilders.size() == (InactiveBuilders + IgnoringBuilders))
2790  return nullptr;
2791 
2792  if (DDeps.getActions().empty())
2793  return HostAction;
2794 
2795  // We have dependences we need to bundle together. We use an offload action
2796  // for that.
2798  *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
2799  /*BoundArch=*/nullptr, DDeps);
2800  return C.MakeAction<OffloadAction>(HDep, DDeps);
2801  }
2802 
2803  /// Generate an action that adds a host dependence to a device action. The
2804  /// results will be kept in this action builder. Return true if an error was
2805  /// found.
2806  bool addHostDependenceToDeviceActions(Action *&HostAction,
2807  const Arg *InputArg) {
2808  if (!IsValid)
2809  return true;
2810 
2811  // If we are supporting bundling/unbundling and the current action is an
2812  // input action of non-source file, we replace the host action by the
2813  // unbundling action. The bundler tool has the logic to detect if an input
2814  // is a bundle or not and if the input is not a bundle it assumes it is a
2815  // host file. Therefore it is safe to create an unbundling action even if
2816  // the input is not a bundle.
2817  if (CanUseBundler && isa<InputAction>(HostAction) &&
2818  InputArg->getOption().getKind() == llvm::opt::Option::InputClass &&
2819  !types::isSrcFile(HostAction->getType())) {
2820  auto UnbundlingHostAction =
2821  C.MakeAction<OffloadUnbundlingJobAction>(HostAction);
2822  UnbundlingHostAction->registerDependentActionInfo(
2824  /*BoundArch=*/StringRef(), Action::OFK_Host);
2825  HostAction = UnbundlingHostAction;
2826  }
2827 
2828  assert(HostAction && "Invalid host action!");
2829 
2830  // Register the offload kinds that are used.
2831  auto &OffloadKind = InputArgToOffloadKindMap[InputArg];
2832  for (auto *SB : SpecializedBuilders) {
2833  if (!SB->isValid())
2834  continue;
2835 
2836  auto RetCode = SB->addDeviceDepences(HostAction);
2837 
2838  // Host dependences for device actions are not compatible with that same
2839  // action being ignored.
2840  assert(RetCode != DeviceActionBuilder::ABRT_Ignore_Host &&
2841  "Host dependence not expected to be ignored.!");
2842 
2843  // Unless the builder was inactive for this action, we have to record the
2844  // offload kind because the host will have to use it.
2845  if (RetCode != DeviceActionBuilder::ABRT_Inactive)
2846  OffloadKind |= SB->getAssociatedOffloadKind();
2847  }
2848 
2849  return false;
2850  }
2851 
2852  /// Add the offloading top level actions to the provided action list. This
2853  /// function can replace the host action by a bundling action if the
2854  /// programming models allow it.
2855  bool appendTopLevelActions(ActionList &AL, Action *HostAction,
2856  const Arg *InputArg) {
2857  // Get the device actions to be appended.
2858  ActionList OffloadAL;
2859  for (auto *SB : SpecializedBuilders) {
2860  if (!SB->isValid())
2861  continue;
2862  SB->appendTopLevelActions(OffloadAL);
2863  }
2864 
2865  // If we can use the bundler, replace the host action by the bundling one in
2866  // the resulting list. Otherwise, just append the device actions.
2867  if (CanUseBundler && !OffloadAL.empty()) {
2868  // Add the host action to the list in order to create the bundling action.
2869  OffloadAL.push_back(HostAction);
2870 
2871  // We expect that the host action was just appended to the action list
2872  // before this method was called.
2873  assert(HostAction == AL.back() && "Host action not in the list??");
2874  HostAction = C.MakeAction<OffloadBundlingJobAction>(OffloadAL);
2875  AL.back() = HostAction;
2876  } else
2877  AL.append(OffloadAL.begin(), OffloadAL.end());
2878 
2879  // Propagate to the current host action (if any) the offload information
2880  // associated with the current input.
2881  if (HostAction)
2882  HostAction->propagateHostOffloadInfo(InputArgToOffloadKindMap[InputArg],
2883  /*BoundArch=*/nullptr);
2884  return false;
2885  }
2886 
2887  /// Processes the host linker action. This currently consists of replacing it
2888  /// with an offload action if there are device link objects and propagate to
2889  /// the host action all the offload kinds used in the current compilation. The
2890  /// resulting action is returned.
2891  Action *processHostLinkAction(Action *HostAction) {
2892  // Add all the dependences from the device linking actions.
2894  for (auto *SB : SpecializedBuilders) {
2895  if (!SB->isValid())
2896  continue;
2897 
2898  SB->appendLinkDependences(DDeps);
2899  }
2900 
2901  // Calculate all the offload kinds used in the current compilation.
2902  unsigned ActiveOffloadKinds = 0u;
2903  for (auto &I : InputArgToOffloadKindMap)
2904  ActiveOffloadKinds |= I.second;
2905 
2906  // If we don't have device dependencies, we don't have to create an offload
2907  // action.
2908  if (DDeps.getActions().empty()) {
2909  // Propagate all the active kinds to host action. Given that it is a link
2910  // action it is assumed to depend on all actions generated so far.
2911  HostAction->propagateHostOffloadInfo(ActiveOffloadKinds,
2912  /*BoundArch=*/nullptr);
2913  return HostAction;
2914  }
2915 
2916  // Create the offload action with all dependences. When an offload action
2917  // is created the kinds are propagated to the host action, so we don't have
2918  // to do that explicitly here.
2920  *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
2921  /*BoundArch*/ nullptr, ActiveOffloadKinds);
2922  return C.MakeAction<OffloadAction>(HDep, DDeps);
2923  }
2924 };
2925 } // anonymous namespace.
2926 
2927 void Driver::BuildActions(Compilation &C, DerivedArgList &Args,
2928  const InputList &Inputs, ActionList &Actions) const {
2929  llvm::PrettyStackTraceString CrashInfo("Building compilation actions");
2930 
2931  if (!SuppressMissingInputWarning && Inputs.empty()) {
2932  Diag(clang::diag::err_drv_no_input_files);
2933  return;
2934  }
2935 
2936  Arg *FinalPhaseArg;
2937  phases::ID FinalPhase = getFinalPhase(Args, &FinalPhaseArg);
2938 
2939  if (FinalPhase == phases::Link) {
2940  if (Args.hasArg(options::OPT_emit_llvm))
2941  Diag(clang::diag::err_drv_emit_llvm_link);
2942  if (IsCLMode() && LTOMode != LTOK_None &&
2943  !Args.getLastArgValue(options::OPT_fuse_ld_EQ).equals_lower("lld"))
2944  Diag(clang::diag::err_drv_lto_without_lld);
2945  }
2946 
2947  // Reject -Z* at the top level, these options should never have been exposed
2948  // by gcc.
2949  if (Arg *A = Args.getLastArg(options::OPT_Z_Joined))
2950  Diag(clang::diag::err_drv_use_of_Z_option) << A->getAsString(Args);
2951 
2952  // Diagnose misuse of /Fo.
2953  if (Arg *A = Args.getLastArg(options::OPT__SLASH_Fo)) {
2954  StringRef V = A->getValue();
2955  if (Inputs.size() > 1 && !V.empty() &&
2956  !llvm::sys::path::is_separator(V.back())) {
2957  // Check whether /Fo tries to name an output file for multiple inputs.
2958  Diag(clang::diag::err_drv_out_file_argument_with_multiple_sources)
2959  << A->getSpelling() << V;
2960  Args.eraseArg(options::OPT__SLASH_Fo);
2961  }
2962  }
2963 
2964  // Diagnose misuse of /Fa.
2965  if (Arg *A = Args.getLastArg(options::OPT__SLASH_Fa)) {
2966  StringRef V = A->getValue();
2967  if (Inputs.size() > 1 && !V.empty() &&
2968  !llvm::sys::path::is_separator(V.back())) {
2969  // Check whether /Fa tries to name an asm file for multiple inputs.
2970  Diag(clang::diag::err_drv_out_file_argument_with_multiple_sources)
2971  << A->getSpelling() << V;
2972  Args.eraseArg(options::OPT__SLASH_Fa);
2973  }
2974  }
2975 
2976  // Diagnose misuse of /o.
2977  if (Arg *A = Args.getLastArg(options::OPT__SLASH_o)) {
2978  if (A->getValue()[0] == '\0') {
2979  // It has to have a value.
2980  Diag(clang::diag::err_drv_missing_argument) << A->getSpelling() << 1;
2981  Args.eraseArg(options::OPT__SLASH_o);
2982  }
2983  }
2984 
2985  // Ignore /Yc/Yu if both /Yc and /Yu passed but with different filenames.
2986  Arg *YcArg = Args.getLastArg(options::OPT__SLASH_Yc);
2987  Arg *YuArg = Args.getLastArg(options::OPT__SLASH_Yu);
2988  if (YcArg && YuArg && strcmp(YcArg->getValue(), YuArg->getValue()) != 0) {
2989  Diag(clang::diag::warn_drv_ycyu_different_arg_clang_cl);
2990  Args.eraseArg(options::OPT__SLASH_Yc);
2991  Args.eraseArg(options::OPT__SLASH_Yu);
2992  YcArg = YuArg = nullptr;
2993  }
2994  if (YcArg && Inputs.size() > 1) {
2995  Diag(clang::diag::warn_drv_yc_multiple_inputs_clang_cl);
2996  Args.eraseArg(options::OPT__SLASH_Yc);
2997  YcArg = nullptr;
2998  }
2999  if (FinalPhase == phases::Preprocess || Args.hasArg(options::OPT__SLASH_Y_)) {
3000  // If only preprocessing or /Y- is used, all pch handling is disabled.
3001  // Rather than check for it everywhere, just remove clang-cl pch-related
3002  // flags here.
3003  Args.eraseArg(options::OPT__SLASH_Fp);
3004  Args.eraseArg(options::OPT__SLASH_Yc);
3005  Args.eraseArg(options::OPT__SLASH_Yu);
3006  YcArg = YuArg = nullptr;
3007  }
3008 
3009  // Builder to be used to build offloading actions.
3010  OffloadingActionBuilder OffloadBuilder(C, Args, Inputs);
3011 
3012  // Construct the actions to perform.
3013  HeaderModulePrecompileJobAction *HeaderModuleAction = nullptr;
3014  ActionList LinkerInputs;
3015 
3017  for (auto &I : Inputs) {
3018  types::ID InputType = I.first;
3019  const Arg *InputArg = I.second;
3020 
3021  PL.clear();
3022  types::getCompilationPhases(InputType, PL);
3023 
3024  // If the first step comes after the final phase we are doing as part of
3025  // this compilation, warn the user about it.
3026  phases::ID InitialPhase = PL[0];
3027  if (InitialPhase > FinalPhase) {
3028  if (InputArg->isClaimed())
3029  continue;
3030 
3031  // Claim here to avoid the more general unused warning.
3032  InputArg->claim();
3033 
3034  // Suppress all unused style warnings with -Qunused-arguments
3035  if (Args.hasArg(options::OPT_Qunused_arguments))
3036  continue;
3037 
3038  // Special case when final phase determined by binary name, rather than
3039  // by a command-line argument with a corresponding Arg.
3040  if (CCCIsCPP())
3041  Diag(clang::diag::warn_drv_input_file_unused_by_cpp)
3042  << InputArg->getAsString(Args) << getPhaseName(InitialPhase);
3043  // Special case '-E' warning on a previously preprocessed file to make
3044  // more sense.
3045  else if (InitialPhase == phases::Compile &&
3046  FinalPhase == phases::Preprocess &&
3047  getPreprocessedType(InputType) == types::TY_INVALID)
3048  Diag(clang::diag::warn_drv_preprocessed_input_file_unused)
3049  << InputArg->getAsString(Args) << !!FinalPhaseArg
3050  << (FinalPhaseArg ? FinalPhaseArg->getOption().getName() : "");
3051  else
3052  Diag(clang::diag::warn_drv_input_file_unused)
3053  << InputArg->getAsString(Args) << getPhaseName(InitialPhase)
3054  << !!FinalPhaseArg
3055  << (FinalPhaseArg ? FinalPhaseArg->getOption().getName() : "");
3056  continue;
3057  }
3058 
3059  if (YcArg) {
3060  // Add a separate precompile phase for the compile phase.
3061  if (FinalPhase >= phases::Compile) {
3062  const types::ID HeaderType = lookupHeaderTypeForSourceType(InputType);
3064  types::getCompilationPhases(HeaderType, PCHPL);
3065  // Build the pipeline for the pch file.
3066  Action *ClangClPch =
3067  C.MakeAction<InputAction>(*InputArg, HeaderType);
3068  for (phases::ID Phase : PCHPL)
3069  ClangClPch = ConstructPhaseAction(C, Args, Phase, ClangClPch);
3070  assert(ClangClPch);
3071  Actions.push_back(ClangClPch);
3072  // The driver currently exits after the first failed command. This
3073  // relies on that behavior, to make sure if the pch generation fails,
3074  // the main compilation won't run.
3075  // FIXME: If the main compilation fails, the PCH generation should
3076  // probably not be considered successful either.
3077  }
3078  }
3079 
3080  // Build the pipeline for this file.
3081  Action *Current = C.MakeAction<InputAction>(*InputArg, InputType);
3082 
3083  // Use the current host action in any of the offloading actions, if
3084  // required.
3085  if (OffloadBuilder.addHostDependenceToDeviceActions(Current, InputArg))
3086  break;
3087 
3088  for (SmallVectorImpl<phases::ID>::iterator i = PL.begin(), e = PL.end();
3089  i != e; ++i) {
3090  phases::ID Phase = *i;
3091 
3092  // We are done if this step is past what the user requested.
3093  if (Phase > FinalPhase)
3094  break;
3095 
3096  // Add any offload action the host action depends on.
3097  Current = OffloadBuilder.addDeviceDependencesToHostAction(
3098  Current, InputArg, Phase, FinalPhase, PL);
3099  if (!Current)
3100  break;
3101 
3102  // Queue linker inputs.
3103  if (Phase == phases::Link) {
3104  assert((i + 1) == e && "linking must be final compilation step.");
3105  LinkerInputs.push_back(Current);
3106  Current = nullptr;
3107  break;
3108  }
3109 
3110  // Each precompiled header file after a module file action is a module
3111  // header of that same module file, rather than being compiled to a
3112  // separate PCH.
3113  if (Phase == phases::Precompile && HeaderModuleAction &&
3114  getPrecompiledType(InputType) == types::TY_PCH) {
3115  HeaderModuleAction->addModuleHeaderInput(Current);
3116  Current = nullptr;
3117  break;
3118  }
3119 
3120  // FIXME: Should we include any prior module file outputs as inputs of
3121  // later actions in the same command line?
3122 
3123  // Otherwise construct the appropriate action.
3124  Action *NewCurrent = ConstructPhaseAction(C, Args, Phase, Current);
3125 
3126  // We didn't create a new action, so we will just move to the next phase.
3127  if (NewCurrent == Current)
3128  continue;
3129 
3130  if (auto *HMA = dyn_cast<HeaderModulePrecompileJobAction>(NewCurrent))
3131  HeaderModuleAction = HMA;
3132 
3133  Current = NewCurrent;
3134 
3135  // Use the current host action in any of the offloading actions, if
3136  // required.
3137  if (OffloadBuilder.addHostDependenceToDeviceActions(Current, InputArg))
3138  break;
3139 
3140  if (Current->getType() == types::TY_Nothing)
3141  break;
3142  }
3143 
3144  // If we ended with something, add to the output list.
3145  if (Current)
3146  Actions.push_back(Current);
3147 
3148  // Add any top level actions generated for offloading.
3149  OffloadBuilder.appendTopLevelActions(Actions, Current, InputArg);
3150  }
3151 
3152  // Add a link action if necessary.
3153  if (!LinkerInputs.empty()) {
3154  Action *LA = C.MakeAction<LinkJobAction>(LinkerInputs, types::TY_Image);
3155  LA = OffloadBuilder.processHostLinkAction(LA);
3156  Actions.push_back(LA);
3157  }
3158 
3159  // If we are linking, claim any options which are obviously only used for
3160  // compilation.
3161  if (FinalPhase == phases::Link && PL.size() == 1) {
3162  Args.ClaimAllArgs(options::OPT_CompileOnly_Group);
3163  Args.ClaimAllArgs(options::OPT_cl_compile_Group);
3164  }
3165 
3166  // Claim ignored clang-cl options.
3167  Args.ClaimAllArgs(options::OPT_cl_ignored_Group);
3168 
3169  // Claim --cuda-host-only and --cuda-compile-host-device, which may be passed
3170  // to non-CUDA compilations and should not trigger warnings there.
3171  Args.ClaimAllArgs(options::OPT_cuda_host_only);
3172  Args.ClaimAllArgs(options::OPT_cuda_compile_host_device);
3173 }
3174 
3176  Compilation &C, const ArgList &Args, phases::ID Phase, Action *Input,
3177  Action::OffloadKind TargetDeviceOffloadKind) const {
3178  llvm::PrettyStackTraceString CrashInfo("Constructing phase actions");
3179 
3180  // Some types skip the assembler phase (e.g., llvm-bc), but we can't
3181  // encode this in the steps because the intermediate type depends on
3182  // arguments. Just special case here.
3183  if (Phase == phases::Assemble && Input->getType() != types::TY_PP_Asm)
3184  return Input;
3185 
3186  // Build the appropriate action.
3187  switch (Phase) {
3188  case phases::Link:
3189  llvm_unreachable("link action invalid here.");
3190  case phases::Preprocess: {
3191  types::ID OutputTy;
3192  // -{M, MM} alter the output type.
3193  if (Args.hasArg(options::OPT_M, options::OPT_MM)) {
3194  OutputTy = types::TY_Dependencies;
3195  } else {
3196  OutputTy = Input->getType();
3197  if (!Args.hasFlag(options::OPT_frewrite_includes,
3198  options::OPT_fno_rewrite_includes, false) &&
3199  !Args.hasFlag(options::OPT_frewrite_imports,
3200  options::OPT_fno_rewrite_imports, false) &&
3202  OutputTy = types::getPreprocessedType(OutputTy);
3203  assert(OutputTy != types::TY_INVALID &&
3204  "Cannot preprocess this input type!");
3205  }
3206  return C.MakeAction<PreprocessJobAction>(Input, OutputTy);
3207  }
3208  case phases::Precompile: {
3209  types::ID OutputTy = getPrecompiledType(Input->getType());
3210  assert(OutputTy != types::TY_INVALID &&
3211  "Cannot precompile this input type!");
3212 
3213  // If we're given a module name, precompile header file inputs as a
3214  // module, not as a precompiled header.
3215  const char *ModName = nullptr;
3216  if (OutputTy == types::TY_PCH) {
3217  if (Arg *A = Args.getLastArg(options::OPT_fmodule_name_EQ))
3218  ModName = A->getValue();
3219  if (ModName)
3220  OutputTy = types::TY_ModuleFile;
3221  }
3222 
3223  if (Args.hasArg(options::OPT_fsyntax_only)) {
3224  // Syntax checks should not emit a PCH file
3225  OutputTy = types::TY_Nothing;
3226  }
3227 
3228  if (ModName)
3229  return C.MakeAction<HeaderModulePrecompileJobAction>(Input, OutputTy,
3230  ModName);
3231  return C.MakeAction<PrecompileJobAction>(Input, OutputTy);
3232  }
3233  case phases::Compile: {
3234  if (Args.hasArg(options::OPT_fsyntax_only))
3235  return C.MakeAction<CompileJobAction>(Input, types::TY_Nothing);
3236  if (Args.hasArg(options::OPT_rewrite_objc))
3237  return C.MakeAction<CompileJobAction>(Input, types::TY_RewrittenObjC);
3238  if (Args.hasArg(options::OPT_rewrite_legacy_objc))
3239  return C.MakeAction<CompileJobAction>(Input,
3240  types::TY_RewrittenLegacyObjC);
3241  if (Args.hasArg(options::OPT__analyze, options::OPT__analyze_auto))
3242  return C.MakeAction<AnalyzeJobAction>(Input, types::TY_Plist);
3243  if (Args.hasArg(options::OPT__migrate))
3244  return C.MakeAction<MigrateJobAction>(Input, types::TY_Remap);
3245  if (Args.hasArg(options::OPT_emit_ast))
3246  return C.MakeAction<CompileJobAction>(Input, types::TY_AST);
3247  if (Args.hasArg(options::OPT_module_file_info))
3248  return C.MakeAction<CompileJobAction>(Input, types::TY_ModuleFile);
3249  if (Args.hasArg(options::OPT_verify_pch))
3250  return C.MakeAction<VerifyPCHJobAction>(Input, types::TY_Nothing);
3251  return C.MakeAction<CompileJobAction>(Input, types::TY_LLVM_BC);
3252  }
3253  case phases::Backend: {
3254  if (isUsingLTO() && TargetDeviceOffloadKind == Action::OFK_None) {
3255  types::ID Output =
3256  Args.hasArg(options::OPT_S) ? types::TY_LTO_IR : types::TY_LTO_BC;
3257  return C.MakeAction<BackendJobAction>(Input, Output);
3258  }
3259  if (Args.hasArg(options::OPT_emit_llvm)) {
3260  types::ID Output =
3261  Args.hasArg(options::OPT_S) ? types::TY_LLVM_IR : types::TY_LLVM_BC;
3262  return C.MakeAction<BackendJobAction>(Input, Output);
3263  }
3264  return C.MakeAction<BackendJobAction>(Input, types::TY_PP_Asm);
3265  }
3266  case phases::Assemble:
3267  return C.MakeAction<AssembleJobAction>(std::move(Input), types::TY_Object);
3268  }
3269 
3270  llvm_unreachable("invalid phase in ConstructPhaseAction");
3271 }
3272 
3274  llvm::PrettyStackTraceString CrashInfo("Building compilation jobs");
3275 
3276  Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o);
3277 
3278  // It is an error to provide a -o option if we are making multiple output
3279  // files.
3280  if (FinalOutput) {
3281  unsigned NumOutputs = 0;
3282  for (const Action *A : C.getActions())
3283  if (A->getType() != types::TY_Nothing)
3284  ++NumOutputs;
3285 
3286  if (NumOutputs > 1) {
3287  Diag(clang::diag::err_drv_output_argument_with_multiple_files);
3288  FinalOutput = nullptr;
3289  }
3290  }
3291 
3292  // Collect the list of architectures.
3293  llvm::StringSet<> ArchNames;
3294  if (C.getDefaultToolChain().getTriple().isOSBinFormatMachO())
3295  for (const Arg *A : C.getArgs())
3296  if (A->getOption().matches(options::OPT_arch))
3297  ArchNames.insert(A->getValue());
3298 
3299  // Set of (Action, canonical ToolChain triple) pairs we've built jobs for.
3300  std::map<std::pair<const Action *, std::string>, InputInfo> CachedResults;
3301  for (Action *A : C.getActions()) {
3302  // If we are linking an image for multiple archs then the linker wants
3303  // -arch_multiple and -final_output <final image name>. Unfortunately, this
3304  // doesn't fit in cleanly because we have to pass this information down.
3305  //
3306  // FIXME: This is a hack; find a cleaner way to integrate this into the
3307  // process.
3308  const char *LinkingOutput = nullptr;
3309  if (isa<LipoJobAction>(A)) {
3310  if (FinalOutput)
3311  LinkingOutput = FinalOutput->getValue();
3312  else
3313  LinkingOutput = getDefaultImageName();
3314  }
3315 
3317  /*BoundArch*/ StringRef(),
3318  /*AtTopLevel*/ true,
3319  /*MultipleArchs*/ ArchNames.size() > 1,
3320  /*LinkingOutput*/ LinkingOutput, CachedResults,
3321  /*TargetDeviceOffloadKind*/ Action::OFK_None);
3322  }
3323 
3324  // If the user passed -Qunused-arguments or there were errors, don't warn
3325  // about any unused arguments.
3326  if (Diags.hasErrorOccurred() ||
3327  C.getArgs().hasArg(options::OPT_Qunused_arguments))
3328  return;
3329 
3330  // Claim -### here.
3331  (void)C.getArgs().hasArg(options::OPT__HASH_HASH_HASH);
3332 
3333  // Claim --driver-mode, --rsp-quoting, it was handled earlier.
3334  (void)C.getArgs().hasArg(options::OPT_driver_mode);
3335  (void)C.getArgs().hasArg(options::OPT_rsp_quoting);
3336 
3337  for (Arg *A : C.getArgs()) {
3338  // FIXME: It would be nice to be able to send the argument to the
3339  // DiagnosticsEngine, so that extra values, position, and so on could be
3340  // printed.
3341  if (!A->isClaimed()) {
3342  if (A->getOption().hasFlag(options::NoArgumentUnused))
3343  continue;
3344 
3345  // Suppress the warning automatically if this is just a flag, and it is an
3346  // instance of an argument we already claimed.
3347  const Option &Opt = A->getOption();
3348  if (Opt.getKind() == Option::FlagClass) {
3349  bool DuplicateClaimed = false;
3350 
3351  for (const Arg *AA : C.getArgs().filtered(&Opt)) {
3352  if (AA->isClaimed()) {
3353  DuplicateClaimed = true;
3354  break;
3355  }
3356  }
3357 
3358  if (DuplicateClaimed)
3359  continue;
3360  }
3361 
3362  // In clang-cl, don't mention unknown arguments here since they have
3363  // already been warned about.
3364  if (!IsCLMode() || !A->getOption().matches(options::OPT_UNKNOWN))
3365  Diag(clang::diag::warn_drv_unused_argument)
3366  << A->getAsString(C.getArgs());
3367  }
3368  }
3369 }
3370 
3371 namespace {
3372 /// Utility class to control the collapse of dependent actions and select the
3373 /// tools accordingly.
3374 class ToolSelector final {
3375  /// The tool chain this selector refers to.
3376  const ToolChain &TC;
3377 
3378  /// The compilation this selector refers to.
3379  const Compilation &C;
3380 
3381  /// The base action this selector refers to.
3382  const JobAction *BaseAction;
3383 
3384  /// Set to true if the current toolchain refers to host actions.
3385  bool IsHostSelector;
3386 
3387  /// Set to true if save-temps and embed-bitcode functionalities are active.
3388  bool SaveTemps;
3389  bool EmbedBitcode;
3390 
3391  /// Get previous dependent action or null if that does not exist. If
3392  /// \a CanBeCollapsed is false, that action must be legal to collapse or
3393  /// null will be returned.
3394  const JobAction *getPrevDependentAction(const ActionList &Inputs,
3395  ActionList &SavedOffloadAction,
3396  bool CanBeCollapsed = true) {
3397  // An option can be collapsed only if it has a single input.
3398  if (Inputs.size() != 1)
3399  return nullptr;
3400 
3401  Action *CurAction = *Inputs.begin();
3402  if (CanBeCollapsed &&
3404  return nullptr;
3405 
3406  // If the input action is an offload action. Look through it and save any
3407  // offload action that can be dropped in the event of a collapse.
3408  if (auto *OA = dyn_cast<OffloadAction>(CurAction)) {
3409  // If the dependent action is a device action, we will attempt to collapse
3410  // only with other device actions. Otherwise, we would do the same but
3411  // with host actions only.
3412  if (!IsHostSelector) {
3413  if (OA->hasSingleDeviceDependence(/*DoNotConsiderHostActions=*/true)) {
3414  CurAction =
3415  OA->getSingleDeviceDependence(/*DoNotConsiderHostActions=*/true);
3416  if (CanBeCollapsed &&
3418  return nullptr;
3419  SavedOffloadAction.push_back(OA);
3420  return dyn_cast<JobAction>(CurAction);
3421  }
3422  } else if (OA->hasHostDependence()) {
3423  CurAction = OA->getHostDependence();
3424  if (CanBeCollapsed &&
3426  return nullptr;
3427  SavedOffloadAction.push_back(OA);
3428  return dyn_cast<JobAction>(CurAction);
3429  }
3430  return nullptr;
3431  }
3432 
3433  return dyn_cast<JobAction>(CurAction);
3434  }
3435 
3436  /// Return true if an assemble action can be collapsed.
3437  bool canCollapseAssembleAction() const {
3438  return TC.useIntegratedAs() && !SaveTemps &&
3439  !C.getArgs().hasArg(options::OPT_via_file_asm) &&
3440  !C.getArgs().hasArg(options::OPT__SLASH_FA) &&
3441  !C.getArgs().hasArg(options::OPT__SLASH_Fa);
3442  }
3443 
3444  /// Return true if a preprocessor action can be collapsed.
3445  bool canCollapsePreprocessorAction() const {
3446  return !C.getArgs().hasArg(options::OPT_no_integrated_cpp) &&
3447  !C.getArgs().hasArg(options::OPT_traditional_cpp) && !SaveTemps &&
3448  !C.getArgs().hasArg(options::OPT_rewrite_objc);
3449  }
3450 
3451  /// Struct that relates an action with the offload actions that would be
3452  /// collapsed with it.
3453  struct JobActionInfo final {
3454  /// The action this info refers to.
3455  const JobAction *JA = nullptr;
3456  /// The offload actions we need to take care off if this action is
3457  /// collapsed.
3458  ActionList SavedOffloadAction;
3459  };
3460 
3461  /// Append collapsed offload actions from the give nnumber of elements in the
3462  /// action info array.
3463  static void AppendCollapsedOffloadAction(ActionList &CollapsedOffloadAction,
3464  ArrayRef<JobActionInfo> &ActionInfo,
3465  unsigned ElementNum) {
3466  assert(ElementNum <= ActionInfo.size() && "Invalid number of elements.");
3467  for (unsigned I = 0; I < ElementNum; ++I)
3468  CollapsedOffloadAction.append(ActionInfo[I].SavedOffloadAction.begin(),
3469  ActionInfo[I].SavedOffloadAction.end());
3470  }
3471 
3472  /// Functions that attempt to perform the combining. They detect if that is
3473  /// legal, and if so they update the inputs \a Inputs and the offload action
3474  /// that were collapsed in \a CollapsedOffloadAction. A tool that deals with
3475  /// the combined action is returned. If the combining is not legal or if the
3476  /// tool does not exist, null is returned.
3477  /// Currently three kinds of collapsing are supported:
3478  /// - Assemble + Backend + Compile;
3479  /// - Assemble + Backend ;
3480  /// - Backend + Compile.
3481  const Tool *
3482  combineAssembleBackendCompile(ArrayRef<JobActionInfo> ActionInfo,
3483  ActionList &Inputs,
3484  ActionList &CollapsedOffloadAction) {
3485  if (ActionInfo.size() < 3 || !canCollapseAssembleAction())
3486  return nullptr;
3487  auto *AJ = dyn_cast<AssembleJobAction>(ActionInfo[0].JA);
3488  auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[1].JA);
3489  auto *CJ = dyn_cast<CompileJobAction>(ActionInfo[2].JA);
3490  if (!AJ || !BJ || !CJ)
3491  return nullptr;
3492 
3493  // Get compiler tool.
3494  const Tool *T = TC.SelectTool(*CJ);
3495  if (!T)
3496  return nullptr;
3497 
3498  // When using -fembed-bitcode, it is required to have the same tool (clang)
3499  // for both CompilerJA and BackendJA. Otherwise, combine two stages.
3500  if (EmbedBitcode) {
3501  const Tool *BT = TC.SelectTool(*BJ);
3502  if (BT == T)
3503  return nullptr;
3504  }
3505 
3506  if (!T->hasIntegratedAssembler())
3507  return nullptr;
3508 
3509  Inputs = CJ->getInputs();
3510  AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo,
3511  /*NumElements=*/3);
3512  return T;
3513  }
3514  const Tool *combineAssembleBackend(ArrayRef<JobActionInfo> ActionInfo,
3515  ActionList &Inputs,
3516  ActionList &CollapsedOffloadAction) {
3517  if (ActionInfo.size() < 2 || !canCollapseAssembleAction())
3518  return nullptr;
3519  auto *AJ = dyn_cast<AssembleJobAction>(ActionInfo[0].JA);
3520  auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[1].JA);
3521  if (!AJ || !BJ)
3522  return nullptr;
3523 
3524  // Retrieve the compile job, backend action must always be preceded by one.
3525  ActionList CompileJobOffloadActions;
3526  auto *CJ = getPrevDependentAction(BJ->getInputs(), CompileJobOffloadActions,
3527  /*CanBeCollapsed=*/false);
3528  if (!AJ || !BJ || !CJ)
3529  return nullptr;
3530 
3531  assert(isa<CompileJobAction>(CJ) &&
3532  "Expecting compile job preceding backend job.");
3533 
3534  // Get compiler tool.
3535  const Tool *T = TC.SelectTool(*CJ);
3536  if (!T)
3537  return nullptr;
3538 
3539  if (!T->hasIntegratedAssembler())
3540  return nullptr;
3541 
3542  Inputs = BJ->getInputs();
3543  AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo,
3544  /*NumElements=*/2);
3545  return T;
3546  }
3547  const Tool *combineBackendCompile(ArrayRef<JobActionInfo> ActionInfo,
3548  ActionList &Inputs,
3549  ActionList &CollapsedOffloadAction) {
3550  if (ActionInfo.size() < 2)
3551  return nullptr;
3552  auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[0].JA);
3553  auto *CJ = dyn_cast<CompileJobAction>(ActionInfo[1].JA);
3554  if (!BJ || !CJ)
3555  return nullptr;
3556 
3557  // Check if the initial input (to the compile job or its predessor if one
3558  // exists) is LLVM bitcode. In that case, no preprocessor step is required
3559  // and we can still collapse the compile and backend jobs when we have
3560  // -save-temps. I.e. there is no need for a separate compile job just to
3561  // emit unoptimized bitcode.
3562  bool InputIsBitcode = true;
3563  for (size_t i = 1; i < ActionInfo.size(); i++)
3564  if (ActionInfo[i].JA->getType() != types::TY_LLVM_BC &&
3565  ActionInfo[i].JA->getType() != types::TY_LTO_BC) {
3566  InputIsBitcode = false;
3567  break;
3568  }
3569  if (!InputIsBitcode && !canCollapsePreprocessorAction())
3570  return nullptr;
3571 
3572  // Get compiler tool.
3573  const Tool *T = TC.SelectTool(*CJ);
3574  if (!T)
3575  return nullptr;
3576 
3577  if (T->canEmitIR() && ((SaveTemps && !InputIsBitcode) || EmbedBitcode))
3578  return nullptr;
3579 
3580  Inputs = CJ->getInputs();
3581  AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo,
3582  /*NumElements=*/2);
3583  return T;
3584  }
3585 
3586  /// Updates the inputs if the obtained tool supports combining with
3587  /// preprocessor action, and the current input is indeed a preprocessor
3588  /// action. If combining results in the collapse of offloading actions, those
3589  /// are appended to \a CollapsedOffloadAction.
3590  void combineWithPreprocessor(const Tool *T, ActionList &Inputs,
3591  ActionList &CollapsedOffloadAction) {
3592  if (!T || !canCollapsePreprocessorAction() || !T->hasIntegratedCPP())
3593  return;
3594 
3595  // Attempt to get a preprocessor action dependence.
3596  ActionList PreprocessJobOffloadActions;
3597  ActionList NewInputs;
3598  for (Action *A : Inputs) {
3599  auto *PJ = getPrevDependentAction({A}, PreprocessJobOffloadActions);
3600  if (!PJ || !isa<PreprocessJobAction>(PJ)) {
3601  NewInputs.push_back(A);
3602  continue;
3603  }
3604 
3605  // This is legal to combine. Append any offload action we found and add the
3606  // current input to preprocessor inputs.
3607  CollapsedOffloadAction.append(PreprocessJobOffloadActions.begin(),
3608  PreprocessJobOffloadActions.end());
3609  NewInputs.append(PJ->input_begin(), PJ->input_end());
3610  }
3611  Inputs = NewInputs;
3612  }
3613 
3614 public:
3615  ToolSelector(const JobAction *BaseAction, const ToolChain &TC,
3616  const Compilation &C, bool SaveTemps, bool EmbedBitcode)
3617  : TC(TC), C(C), BaseAction(BaseAction), SaveTemps(SaveTemps),
3618  EmbedBitcode(EmbedBitcode) {
3619  assert(BaseAction && "Invalid base action.");
3620  IsHostSelector = BaseAction->getOffloadingDeviceKind() == Action::OFK_None;
3621  }
3622 
3623  /// Check if a chain of actions can be combined and return the tool that can
3624  /// handle the combination of actions. The pointer to the current inputs \a
3625  /// Inputs and the list of offload actions \a CollapsedOffloadActions
3626  /// connected to collapsed actions are updated accordingly. The latter enables
3627  /// the caller of the selector to process them afterwards instead of just
3628  /// dropping them. If no suitable tool is found, null will be returned.
3629  const Tool *getTool(ActionList &Inputs,
3630  ActionList &CollapsedOffloadAction) {
3631  //
3632  // Get the largest chain of actions that we could combine.
3633  //
3634 
3635  SmallVector<JobActionInfo, 5> ActionChain(1);
3636  ActionChain.back().JA = BaseAction;
3637  while (ActionChain.back().JA) {
3638  const Action *CurAction = ActionChain.back().JA;
3639 
3640  // Grow the chain by one element.
3641  ActionChain.resize(ActionChain.size() + 1);
3642  JobActionInfo &AI = ActionChain.back();
3643 
3644  // Attempt to fill it with the
3645  AI.JA =
3646  getPrevDependentAction(CurAction->getInputs(), AI.SavedOffloadAction);
3647  }
3648 
3649  // Pop the last action info as it could not be filled.
3650  ActionChain.pop_back();
3651 
3652  //
3653  // Attempt to combine actions. If all combining attempts failed, just return
3654  // the tool of the provided action. At the end we attempt to combine the
3655  // action with any preprocessor action it may depend on.
3656  //
3657 
3658  const Tool *T = combineAssembleBackendCompile(ActionChain, Inputs,
3659  CollapsedOffloadAction);
3660  if (!T)
3661  T = combineAssembleBackend(ActionChain, Inputs, CollapsedOffloadAction);
3662  if (!T)
3663  T = combineBackendCompile(ActionChain, Inputs, CollapsedOffloadAction);
3664  if (!T) {
3665  Inputs = BaseAction->getInputs();
3666  T = TC.SelectTool(*BaseAction);
3667  }
3668 
3669  combineWithPreprocessor(T, Inputs, CollapsedOffloadAction);
3670  return T;
3671  }
3672 };
3673 }
3674 
3675 /// Return a string that uniquely identifies the result of a job. The bound arch
3676 /// is not necessarily represented in the toolchain's triple -- for example,
3677 /// armv7 and armv7s both map to the same triple -- so we need both in our map.
3678 /// Also, we need to add the offloading device kind, as the same tool chain can
3679 /// be used for host and device for some programming models, e.g. OpenMP.
3680 static std::string GetTriplePlusArchString(const ToolChain *TC,
3681  StringRef BoundArch,
3682  Action::OffloadKind OffloadKind) {
3683  std::string TriplePlusArch = TC->getTriple().normalize();
3684  if (!BoundArch.empty()) {
3685  TriplePlusArch += "-";
3686  TriplePlusArch += BoundArch;
3687  }
3688  TriplePlusArch += "-";
3689  TriplePlusArch += Action::GetOffloadKindName(OffloadKind);
3690  return TriplePlusArch;
3691 }
3692 
3694  Compilation &C, const Action *A, const ToolChain *TC, StringRef BoundArch,
3695  bool AtTopLevel, bool MultipleArchs, const char *LinkingOutput,
3696  std::map<std::pair<const Action *, std::string>, InputInfo> &CachedResults,
3697  Action::OffloadKind TargetDeviceOffloadKind) const {
3698  std::pair<const Action *, std::string> ActionTC = {
3699  A, GetTriplePlusArchString(TC, BoundArch, TargetDeviceOffloadKind)};
3700  auto CachedResult = CachedResults.find(ActionTC);
3701  if (CachedResult != CachedResults.end()) {
3702  return CachedResult->second;
3703  }
3704  InputInfo Result = BuildJobsForActionNoCache(
3705  C, A, TC, BoundArch, AtTopLevel, MultipleArchs, LinkingOutput,
3706  CachedResults, TargetDeviceOffloadKind);
3707  CachedResults[ActionTC] = Result;
3708  return Result;
3709 }
3710 
3711 InputInfo Driver::BuildJobsForActionNoCache(
3712  Compilation &C, const Action *A, const ToolChain *TC, StringRef BoundArch,
3713  bool AtTopLevel, bool MultipleArchs, const char *LinkingOutput,
3714  std::map<std::pair<const Action *, std::string>, InputInfo> &CachedResults,
3715  Action::OffloadKind TargetDeviceOffloadKind) const {
3716  llvm::PrettyStackTraceString CrashInfo("Building compilation jobs");
3717 
3718  InputInfoList OffloadDependencesInputInfo;
3719  bool BuildingForOffloadDevice = TargetDeviceOffloadKind != Action::OFK_None;
3720  if (const OffloadAction *OA = dyn_cast<OffloadAction>(A)) {
3721  // The 'Darwin' toolchain is initialized only when its arguments are
3722  // computed. Get the default arguments for OFK_None to ensure that
3723  // initialization is performed before processing the offload action.
3724  // FIXME: Remove when darwin's toolchain is initialized during construction.
3725  C.getArgsForToolChain(TC, BoundArch, Action::OFK_None);
3726 
3727  // The offload action is expected to be used in four different situations.
3728  //
3729  // a) Set a toolchain/architecture/kind for a host action:
3730  // Host Action 1 -> OffloadAction -> Host Action 2
3731  //
3732  // b) Set a toolchain/architecture/kind for a device action;
3733  // Device Action 1 -> OffloadAction -> Device Action 2
3734  //
3735  // c) Specify a device dependence to a host action;
3736  // Device Action 1 _
3737  // \
3738  // Host Action 1 ---> OffloadAction -> Host Action 2
3739  //
3740  // d) Specify a host dependence to a device action.
3741  // Host Action 1 _
3742  // \
3743  // Device Action 1 ---> OffloadAction -> Device Action 2
3744  //
3745  // For a) and b), we just return the job generated for the dependence. For
3746  // c) and d) we override the current action with the host/device dependence
3747  // if the current toolchain is host/device and set the offload dependences
3748  // info with the jobs obtained from the device/host dependence(s).
3749 
3750  // If there is a single device option, just generate the job for it.
3751  if (OA->hasSingleDeviceDependence()) {
3752  InputInfo DevA;
3753  OA->doOnEachDeviceDependence([&](Action *DepA, const ToolChain *DepTC,
3754  const char *DepBoundArch) {
3755  DevA =
3756  BuildJobsForAction(C, DepA, DepTC, DepBoundArch, AtTopLevel,
3757  /*MultipleArchs*/ !!DepBoundArch, LinkingOutput,
3758  CachedResults, DepA->getOffloadingDeviceKind());
3759  });
3760  return DevA;
3761  }
3762 
3763  // If 'Action 2' is host, we generate jobs for the device dependences and
3764  // override the current action with the host dependence. Otherwise, we
3765  // generate the host dependences and override the action with the device
3766  // dependence. The dependences can't therefore be a top-level action.
3767  OA->doOnEachDependence(
3768  /*IsHostDependence=*/BuildingForOffloadDevice,
3769  [&](Action *DepA, const ToolChain *DepTC, const char *DepBoundArch) {
3770  OffloadDependencesInputInfo.push_back(BuildJobsForAction(
3771  C, DepA, DepTC, DepBoundArch, /*AtTopLevel=*/false,
3772  /*MultipleArchs*/ !!DepBoundArch, LinkingOutput, CachedResults,
3773  DepA->getOffloadingDeviceKind()));
3774  });
3775 
3776  A = BuildingForOffloadDevice
3777  ? OA->getSingleDeviceDependence(/*DoNotConsiderHostActions=*/true)
3778  : OA->getHostDependence();
3779  }
3780 
3781  if (const InputAction *IA = dyn_cast<InputAction>(A)) {
3782  // FIXME: It would be nice to not claim this here; maybe the old scheme of
3783  // just using Args was better?
3784  const Arg &Input = IA->getInputArg();
3785  Input.claim();
3786  if (Input.getOption().matches(options::OPT_INPUT)) {
3787  const char *Name = Input.getValue();
3788  return InputInfo(A, Name, /* BaseInput = */ Name);
3789  }
3790  return InputInfo(A, &Input, /* BaseInput = */ "");
3791  }
3792 
3793  if (const BindArchAction *BAA = dyn_cast<BindArchAction>(A)) {
3794  const ToolChain *TC;
3795  StringRef ArchName = BAA->getArchName();
3796 
3797  if (!ArchName.empty())
3798  TC = &getToolChain(C.getArgs(),
3799  computeTargetTriple(*this, TargetTriple,
3800  C.getArgs(), ArchName));
3801  else
3802  TC = &C.getDefaultToolChain();
3803 
3804  return BuildJobsForAction(C, *BAA->input_begin(), TC, ArchName, AtTopLevel,
3805  MultipleArchs, LinkingOutput, CachedResults,
3806  TargetDeviceOffloadKind);
3807  }
3808 
3809 
3810  ActionList Inputs = A->getInputs();
3811 
3812  const JobAction *JA = cast<JobAction>(A);
3813  ActionList CollapsedOffloadActions;
3814 
3815  ToolSelector TS(JA, *TC, C, isSaveTempsEnabled(),
3817  const Tool *T = TS.getTool(Inputs, CollapsedOffloadActions);
3818 
3819  if (!T)
3820  return InputInfo();
3821 
3822  // If we've collapsed action list that contained OffloadAction we
3823  // need to build jobs for host/device-side inputs it may have held.
3824  for (const auto *OA : CollapsedOffloadActions)
3825  cast<OffloadAction>(OA)->doOnEachDependence(
3826  /*IsHostDependence=*/BuildingForOffloadDevice,
3827  [&](Action *DepA, const ToolChain *DepTC, const char *DepBoundArch) {
3828  OffloadDependencesInputInfo.push_back(BuildJobsForAction(
3829  C, DepA, DepTC, DepBoundArch, /* AtTopLevel */ false,
3830  /*MultipleArchs=*/!!DepBoundArch, LinkingOutput, CachedResults,
3831  DepA->getOffloadingDeviceKind()));
3832  });
3833 
3834  // Only use pipes when there is exactly one input.
3835  InputInfoList InputInfos;
3836  for (const Action *Input : Inputs) {
3837  // Treat dsymutil and verify sub-jobs as being at the top-level too, they
3838  // shouldn't get temporary output names.
3839  // FIXME: Clean this up.
3840  bool SubJobAtTopLevel =
3841  AtTopLevel && (isa<DsymutilJobAction>(A) || isa<VerifyJobAction>(A));
3842  InputInfos.push_back(BuildJobsForAction(
3843  C, Input, TC, BoundArch, SubJobAtTopLevel, MultipleArchs, LinkingOutput,
3844  CachedResults, A->getOffloadingDeviceKind()));
3845  }
3846 
3847  // Always use the first input as the base input.
3848  const char *BaseInput = InputInfos[0].getBaseInput();
3849 
3850  // ... except dsymutil actions, which use their actual input as the base
3851  // input.
3852  if (JA->getType() == types::TY_dSYM)
3853  BaseInput = InputInfos[0].getFilename();
3854 
3855  // ... and in header module compilations, which use the module name.
3856  if (auto *ModuleJA = dyn_cast<HeaderModulePrecompileJobAction>(JA))
3857  BaseInput = ModuleJA->getModuleName();
3858 
3859  // Append outputs of offload device jobs to the input list
3860  if (!OffloadDependencesInputInfo.empty())
3861  InputInfos.append(OffloadDependencesInputInfo.begin(),
3862  OffloadDependencesInputInfo.end());
3863 
3864  // Set the effective triple of the toolchain for the duration of this job.
3865  llvm::Triple EffectiveTriple;
3866  const ToolChain &ToolTC = T->getToolChain();
3867  const ArgList &Args =
3868  C.getArgsForToolChain(TC, BoundArch, A->getOffloadingDeviceKind());
3869  if (InputInfos.size() != 1) {
3870  EffectiveTriple = llvm::Triple(ToolTC.ComputeEffectiveClangTriple(Args));
3871  } else {
3872  // Pass along the input type if it can be unambiguously determined.
3873  EffectiveTriple = llvm::Triple(
3874  ToolTC.ComputeEffectiveClangTriple(Args, InputInfos[0].getType()));
3875  }
3876  RegisterEffectiveTriple TripleRAII(ToolTC, EffectiveTriple);
3877 
3878  // Determine the place to write output to, if any.
3879  InputInfo Result;
3880  InputInfoList UnbundlingResults;
3881  if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(JA)) {
3882  // If we have an unbundling job, we need to create results for all the
3883  // outputs. We also update the results cache so that other actions using
3884  // this unbundling action can get the right results.
3885  for (auto &UI : UA->getDependentActionsInfo()) {
3886  assert(UI.DependentOffloadKind != Action::OFK_None &&
3887  "Unbundling with no offloading??");
3888 
3889  // Unbundling actions are never at the top level. When we generate the
3890  // offloading prefix, we also do that for the host file because the
3891  // unbundling action does not change the type of the output which can
3892  // cause a overwrite.
3893  std::string OffloadingPrefix = Action::GetOffloadingFileNamePrefix(
3894  UI.DependentOffloadKind,
3895  UI.DependentToolChain->getTriple().normalize(),
3896  /*CreatePrefixForHost=*/true);
3897  auto CurI = InputInfo(
3898  UA,
3899  GetNamedOutputPath(C, *UA, BaseInput, UI.DependentBoundArch,
3900  /*AtTopLevel=*/false,
3901  MultipleArchs ||
3902  UI.DependentOffloadKind == Action::OFK_HIP,
3903  OffloadingPrefix),
3904  BaseInput);
3905  // Save the unbundling result.
3906  UnbundlingResults.push_back(CurI);
3907 
3908  // Get the unique string identifier for this dependence and cache the
3909  // result.
3910  StringRef Arch;
3911  if (TargetDeviceOffloadKind == Action::OFK_HIP) {
3912  if (UI.DependentOffloadKind == Action::OFK_Host)
3913  Arch = StringRef();
3914  else
3915  Arch = UI.DependentBoundArch;
3916  } else
3917  Arch = BoundArch;
3918 
3919  CachedResults[{A, GetTriplePlusArchString(UI.DependentToolChain, Arch,
3920  UI.DependentOffloadKind)}] =
3921  CurI;
3922  }
3923 
3924  // Now that we have all the results generated, select the one that should be
3925  // returned for the current depending action.
3926  std::pair<const Action *, std::string> ActionTC = {
3927  A, GetTriplePlusArchString(TC, BoundArch, TargetDeviceOffloadKind)};
3928  assert(CachedResults.find(ActionTC) != CachedResults.end() &&
3929  "Result does not exist??");
3930  Result = CachedResults[ActionTC];
3931  } else if (JA->getType() == types::TY_Nothing)
3932  Result = InputInfo(A, BaseInput);
3933  else {
3934  // We only have to generate a prefix for the host if this is not a top-level
3935  // action.
3936  std::string OffloadingPrefix = Action::GetOffloadingFileNamePrefix(
3937  A->getOffloadingDeviceKind(), TC->getTriple().normalize(),
3938  /*CreatePrefixForHost=*/!!A->getOffloadingHostActiveKinds() &&
3939  !AtTopLevel);
3940  Result = InputInfo(A, GetNamedOutputPath(C, *JA, BaseInput, BoundArch,
3941  AtTopLevel, MultipleArchs,
3942  OffloadingPrefix),
3943  BaseInput);
3944  }
3945 
3947  llvm::errs() << "# \"" << T->getToolChain().getTripleString() << '"'
3948  << " - \"" << T->getName() << "\", inputs: [";
3949  for (unsigned i = 0, e = InputInfos.size(); i != e; ++i) {
3950  llvm::errs() << InputInfos[i].getAsString();
3951  if (i + 1 != e)
3952  llvm::errs() << ", ";
3953  }
3954  if (UnbundlingResults.empty())
3955  llvm::errs() << "], output: " << Result.getAsString() << "\n";
3956  else {
3957  llvm::errs() << "], outputs: [";
3958  for (unsigned i = 0, e = UnbundlingResults.size(); i != e; ++i) {
3959  llvm::errs() << UnbundlingResults[i].getAsString();
3960  if (i + 1 != e)
3961  llvm::errs() << ", ";
3962  }
3963  llvm::errs() << "] \n";
3964  }
3965  } else {
3966  if (UnbundlingResults.empty())
3967  T->ConstructJob(
3968  C, *JA, Result, InputInfos,
3969  C.getArgsForToolChain(TC, BoundArch, JA->getOffloadingDeviceKind()),
3970  LinkingOutput);
3971  else
3973  C, *JA, UnbundlingResults, InputInfos,
3974  C.getArgsForToolChain(TC, BoundArch, JA->getOffloadingDeviceKind()),
3975  LinkingOutput);
3976  }
3977  return Result;
3978 }
3979 
3980 const char *Driver::getDefaultImageName() const {
3981  llvm::Triple Target(llvm::Triple::normalize(TargetTriple));
3982  return Target.isOSWindows() ? "a.exe" : "a.out";
3983 }
3984 
3985 /// Create output filename based on ArgValue, which could either be a
3986 /// full filename, filename without extension, or a directory. If ArgValue
3987 /// does not provide a filename, then use BaseName, and use the extension
3988 /// suitable for FileType.
3989 static const char *MakeCLOutputFilename(const ArgList &Args, StringRef ArgValue,
3990  StringRef BaseName,
3991  types::ID FileType) {
3992  SmallString<128> Filename = ArgValue;
3993 
3994  if (ArgValue.empty()) {
3995  // If the argument is empty, output to BaseName in the current dir.
3996  Filename = BaseName;
3997  } else if (llvm::sys::path::is_separator(Filename.back())) {
3998  // If the argument is a directory, output to BaseName in that dir.
3999  llvm::sys::path::append(Filename, BaseName);
4000  }
4001 
4002  if (!llvm::sys::path::has_extension(ArgValue)) {
4003  // If the argument didn't provide an extension, then set it.
4004  const char *Extension = types::getTypeTempSuffix(FileType, true);
4005 
4006  if (FileType == types::TY_Image &&
4007  Args.hasArg(options::OPT__SLASH_LD, options::OPT__SLASH_LDd)) {
4008  // The output file is a dll.
4009  Extension = "dll";
4010  }
4011 
4012  llvm::sys::path::replace_extension(Filename, Extension);
4013  }
4014 
4015  return Args.MakeArgString(Filename.c_str());
4016 }
4017 
4019  const char *BaseInput,
4020  StringRef BoundArch, bool AtTopLevel,
4021  bool MultipleArchs,
4022  StringRef OffloadingPrefix) const {
4023  llvm::PrettyStackTraceString CrashInfo("Computing output path");
4024  // Output to a user requested destination?
4025  if (AtTopLevel && !isa<DsymutilJobAction>(JA) && !isa<VerifyJobAction>(JA)) {
4026  if (Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o))
4027  return C.addResultFile(FinalOutput->getValue(), &JA);
4028  }
4029 
4030  // For /P, preprocess to file named after BaseInput.
4031  if (C.getArgs().hasArg(options::OPT__SLASH_P)) {
4032  assert(AtTopLevel && isa<PreprocessJobAction>(JA));
4033  StringRef BaseName = llvm::sys::path::filename(BaseInput);
4034  StringRef NameArg;
4035  if (Arg *A = C.getArgs().getLastArg(options::OPT__SLASH_Fi))
4036  NameArg = A->getValue();
4037  return C.addResultFile(
4038  MakeCLOutputFilename(C.getArgs(), NameArg, BaseName, types::TY_PP_C),
4039  &JA);
4040  }
4041 
4042  // Default to writing to stdout?
4043  if (AtTopLevel && !CCGenDiagnostics && isa<PreprocessJobAction>(JA))
4044  return "-";
4045 
4046  // Is this the assembly listing for /FA?
4047  if (JA.getType() == types::TY_PP_Asm &&
4048  (C.getArgs().hasArg(options::OPT__SLASH_FA) ||
4049  C.getArgs().hasArg(options::OPT__SLASH_Fa))) {
4050  // Use /Fa and the input filename to determine the asm file name.
4051  StringRef BaseName = llvm::sys::path::filename(BaseInput);
4052  StringRef FaValue = C.getArgs().getLastArgValue(options::OPT__SLASH_Fa);
4053  return C.addResultFile(
4054  MakeCLOutputFilename(C.getArgs(), FaValue, BaseName, JA.getType()),
4055  &JA);
4056  }
4057 
4058  // Output to a temporary file?
4059  if ((!AtTopLevel && !isSaveTempsEnabled() &&
4060  !C.getArgs().hasArg(options::OPT__SLASH_Fo)) ||
4061  CCGenDiagnostics) {
4062  StringRef Name = llvm::sys::path::filename(BaseInput);
4063  std::pair<StringRef, StringRef> Split = Name.split('.');
4064  SmallString<128> TmpName;
4065  const char *Suffix = types::getTypeTempSuffix(JA.getType(), IsCLMode());
4066  Arg *A = C.getArgs().getLastArg(options::OPT_fcrash_diagnostics_dir);
4067  if (CCGenDiagnostics && A) {
4068  SmallString<128> CrashDirectory(A->getValue());
4069  llvm::sys::path::append(CrashDirectory, Split.first);
4070  const char *Middle = Suffix ? "-%%%%%%." : "-%%%%%%";
4071  std::error_code EC =
4072  llvm::sys::fs::createUniqueFile(CrashDirectory + Middle + Suffix, TmpName);
4073  if (EC) {
4074  Diag(clang::diag::err_unable_to_make_temp) << EC.message();
4075  return "";
4076  }
4077  } else {
4078  TmpName = GetTemporaryPath(Split.first, Suffix);
4079  }
4080  return C.addTempFile(C.getArgs().MakeArgString(TmpName));
4081  }
4082 
4083  SmallString<128> BasePath(BaseInput);
4084  StringRef BaseName;
4085 
4086  // Dsymutil actions should use the full path.
4087  if (isa<DsymutilJobAction>(JA) || isa<VerifyJobAction>(JA))
4088  BaseName = BasePath;
4089  else
4090  BaseName = llvm::sys::path::filename(BasePath);
4091 
4092  // Determine what the derived output name should be.
4093  const char *NamedOutput;
4094 
4095  if ((JA.getType() == types::TY_Object || JA.getType() == types::TY_LTO_BC) &&
4096  C.getArgs().hasArg(options::OPT__SLASH_Fo, options::OPT__SLASH_o)) {
4097  // The /Fo or /o flag decides the object filename.
4098  StringRef Val =
4099  C.getArgs()
4100  .getLastArg(options::OPT__SLASH_Fo, options::OPT__SLASH_o)
4101  ->getValue();
4102  NamedOutput =
4103  MakeCLOutputFilename(C.getArgs(), Val, BaseName, types::TY_Object);
4104  } else if (JA.getType() == types::TY_Image &&
4105  C.getArgs().hasArg(options::OPT__SLASH_Fe,
4106  options::OPT__SLASH_o)) {
4107  // The /Fe or /o flag names the linked file.
4108  StringRef Val =
4109  C.getArgs()
4110  .getLastArg(options::OPT__SLASH_Fe, options::OPT__SLASH_o)
4111  ->getValue();
4112  NamedOutput =
4113  MakeCLOutputFilename(C.getArgs(), Val, BaseName, types::TY_Image);
4114  } else if (JA.getType() == types::TY_Image) {
4115  if (IsCLMode()) {
4116  // clang-cl uses BaseName for the executable name.
4117  NamedOutput =
4118  MakeCLOutputFilename(C.getArgs(), "", BaseName, types::TY_Image);
4119  } else {
4121  Output += OffloadingPrefix;
4122  if (MultipleArchs && !BoundArch.empty()) {
4123  Output += "-";
4124  Output.append(BoundArch);
4125  }
4126  NamedOutput = C.getArgs().MakeArgString(Output.c_str());
4127  }
4128  } else if (JA.getType() == types::TY_PCH && IsCLMode()) {
4129  NamedOutput = C.getArgs().MakeArgString(GetClPchPath(C, BaseName));
4130  } else {
4131  const char *Suffix = types::getTypeTempSuffix(JA.getType(), IsCLMode());
4132  assert(Suffix && "All types used for output should have a suffix.");
4133 
4134  std::string::size_type End = std::string::npos;
4136  End = BaseName.rfind('.');
4137  SmallString<128> Suffixed(BaseName.substr(0, End));
4138  Suffixed += OffloadingPrefix;
4139  if (MultipleArchs && !BoundArch.empty()) {
4140  Suffixed += "-";
4141  Suffixed.append(BoundArch);
4142  }
4143  // When using both -save-temps and -emit-llvm, use a ".tmp.bc" suffix for
4144  // the unoptimized bitcode so that it does not get overwritten by the ".bc"
4145  // optimized bitcode output.
4146  if (!AtTopLevel && C.getArgs().hasArg(options::OPT_emit_llvm) &&
4147  JA.getType() == types::TY_LLVM_BC)
4148  Suffixed += ".tmp";
4149  Suffixed += '.';
4150  Suffixed += Suffix;
4151  NamedOutput = C.getArgs().MakeArgString(Suffixed.c_str());
4152  }
4153 
4154  // Prepend object file path if -save-temps=obj
4155  if (!AtTopLevel && isSaveTempsObj() && C.getArgs().hasArg(options::OPT_o) &&
4156  JA.getType() != types::TY_PCH) {
4157  Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o);
4158  SmallString<128> TempPath(FinalOutput->getValue());
4159  llvm::sys::path::remove_filename(TempPath);
4160  StringRef OutputFileName = llvm::sys::path::filename(NamedOutput);
4161  llvm::sys::path::append(TempPath, OutputFileName);
4162  NamedOutput = C.getArgs().MakeArgString(TempPath.c_str());
4163  }
4164 
4165  // If we're saving temps and the temp file conflicts with the input file,
4166  // then avoid overwriting input file.
4167  if (!AtTopLevel && isSaveTempsEnabled() && NamedOutput == BaseName) {
4168  bool SameFile = false;
4169  SmallString<256> Result;
4170  llvm::sys::fs::current_path(Result);
4171  llvm::sys::path::append(Result, BaseName);
4172  llvm::sys::fs::equivalent(BaseInput, Result.c_str(), SameFile);
4173  // Must share the same path to conflict.
4174  if (SameFile) {
4175  StringRef Name = llvm::sys::path::filename(BaseInput);
4176  std::pair<StringRef, StringRef> Split = Name.split('.');
4177  std::string TmpName = GetTemporaryPath(
4178  Split.first, types::getTypeTempSuffix(JA.getType(), IsCLMode()));
4179  return C.addTempFile(C.getArgs().MakeArgString(TmpName));
4180  }
4181  }
4182 
4183  // As an annoying special case, PCH generation doesn't strip the pathname.
4184  if (JA.getType() == types::TY_PCH && !IsCLMode()) {
4185  llvm::sys::path::remove_filename(BasePath);
4186  if (BasePath.empty())
4187  BasePath = NamedOutput;
4188  else
4189  llvm::sys::path::append(BasePath, NamedOutput);
4190  return C.addResultFile(C.getArgs().MakeArgString(BasePath.c_str()), &JA);
4191  } else {
4192  return C.addResultFile(NamedOutput, &JA);
4193  }
4194 }
4195 
4196 std::string Driver::GetFilePath(StringRef Name, const ToolChain &TC) const {
4197  // Seach for Name in a list of paths.
4198  auto SearchPaths = [&](const llvm::SmallVectorImpl<std::string> &P)
4200  // Respect a limited subset of the '-Bprefix' functionality in GCC by
4201  // attempting to use this prefix when looking for file paths.
4202  for (const auto &Dir : P) {
4203  if (Dir.empty())
4204  continue;
4205  SmallString<128> P(Dir[0] == '=' ? SysRoot + Dir.substr(1) : Dir);
4206  llvm::sys::path::append(P, Name);
4207  if (llvm::sys::fs::exists(Twine(P)))
4208  return P.str().str();
4209  }
4210  return None;
4211  };
4212 
4213  if (auto P = SearchPaths(PrefixDirs))
4214  return *P;
4215 
4217  llvm::sys::path::append(R, Name);
4218  if (llvm::sys::fs::exists(Twine(R)))
4219  return R.str();
4220 
4222  llvm::sys::path::append(P, Name);
4223  if (llvm::sys::fs::exists(Twine(P)))
4224  return P.str();
4225 
4226  if (auto P = SearchPaths(TC.getLibraryPaths()))
4227  return *P;
4228 
4229  if (auto P = SearchPaths(TC.getFilePaths()))
4230  return *P;
4231 
4232  return Name;
4233 }
4234 
4235 void Driver::generatePrefixedToolNames(
4236  StringRef Tool, const ToolChain &TC,
4237  SmallVectorImpl<std::string> &Names) const {
4238  // FIXME: Needs a better variable than TargetTriple
4239  Names.emplace_back((TargetTriple + "-" + Tool).str());
4240  Names.emplace_back(Tool);
4241 
4242  // Allow the discovery of tools prefixed with LLVM's default target triple.
4243  std::string DefaultTargetTriple = llvm::sys::getDefaultTargetTriple();
4244  if (DefaultTargetTriple != TargetTriple)
4245  Names.emplace_back((DefaultTargetTriple + "-" + Tool).str());
4246 }
4247 
4249  ArrayRef<std::string> Names) {
4250  for (const auto &Name : Names) {
4251  llvm::sys::path::append(Dir, Name);
4252  if (llvm::sys::fs::can_execute(Twine(Dir)))
4253  return true;
4254  llvm::sys::path::remove_filename(Dir);
4255  }
4256  return false;
4257 }
4258 
4259 std::string Driver::GetProgramPath(StringRef Name, const ToolChain &TC) const {
4260  SmallVector<std::string, 2> TargetSpecificExecutables;
4261  generatePrefixedToolNames(Name, TC, TargetSpecificExecutables);
4262 
4263  // Respect a limited subset of the '-Bprefix' functionality in GCC by
4264  // attempting to use this prefix when looking for program paths.
4265  for (const auto &PrefixDir : PrefixDirs) {
4266  if (llvm::sys::fs::is_directory(PrefixDir)) {
4267  SmallString<128> P(PrefixDir);
4268  if (ScanDirForExecutable(P, TargetSpecificExecutables))
4269  return P.str();
4270  } else {
4271  SmallString<128> P((PrefixDir + Name).str());
4272  if (llvm::sys::fs::can_execute(Twine(P)))
4273  return P.str();
4274  }
4275  }
4276 
4277  const ToolChain::path_list &List = TC.getProgramPaths();
4278  for (const auto &Path : List) {
4279  SmallString<128> P(Path);
4280  if (ScanDirForExecutable(P, TargetSpecificExecutables))
4281  return P.str();
4282  }
4283 
4284  // If all else failed, search the path.
4285  for (const auto &TargetSpecificExecutable : TargetSpecificExecutables)
4286  if (llvm::ErrorOr<std::string> P =
4287  llvm::sys::findProgramByName(TargetSpecificExecutable))
4288  return *P;
4289 
4290  return Name;
4291 }
4292 
4293 std::string Driver::GetTemporaryPath(StringRef Prefix, StringRef Suffix) const {
4294  SmallString<128> Path;
4295  std::error_code EC = llvm::sys::fs::createTemporaryFile(Prefix, Suffix, Path);
4296  if (EC) {
4297  Diag(clang::diag::err_unable_to_make_temp) << EC.message();
4298  return "";
4299  }
4300 
4301  return Path.str();
4302 }
4303 
4304 std::string Driver::GetClPchPath(Compilation &C, StringRef BaseName) const {
4305  SmallString<128> Output;
4306  if (Arg *FpArg = C.getArgs().getLastArg(options::OPT__SLASH_Fp)) {
4307  // FIXME: If anybody needs it, implement this obscure rule:
4308  // "If you specify a directory without a file name, the default file name
4309  // is VCx0.pch., where x is the major version of Visual C++ in use."
4310  Output = FpArg->getValue();
4311 
4312  // "If you do not specify an extension as part of the path name, an
4313  // extension of .pch is assumed. "
4314  if (!llvm::sys::path::has_extension(Output))
4315  Output += ".pch";
4316  } else {
4317  if (Arg *YcArg = C.getArgs().getLastArg(options::OPT__SLASH_Yc))
4318  Output = YcArg->getValue();
4319  if (Output.empty())
4320  Output = BaseName;
4321  llvm::sys::path::replace_extension(Output, ".pch");
4322  }
4323  return Output.str();
4324 }
4325 
4326 const ToolChain &Driver::getToolChain(const ArgList &Args,
4327  const llvm::Triple &Target) const {
4328 
4329  auto &TC = ToolChains[Target.str()];
4330  if (!TC) {
4331  switch (Target.getOS()) {
4332  case llvm::Triple::Haiku:
4333  TC = llvm::make_unique<toolchains::Haiku>(*this, Target, Args);
4334  break;
4335  case llvm::Triple::Ananas:
4336  TC = llvm::make_unique<toolchains::Ananas>(*this, Target, Args);
4337  break;
4338  case llvm::Triple::CloudABI:
4339  TC = llvm::make_unique<toolchains::CloudABI>(*this, Target, Args);
4340  break;
4341  case llvm::Triple::Darwin:
4342  case llvm::Triple::MacOSX:
4343  case llvm::Triple::IOS:
4344  case llvm::Triple::TvOS:
4345  case llvm::Triple::WatchOS:
4346  TC = llvm::make_unique<toolchains::DarwinClang>(*this, Target, Args);
4347  break;
4348  case llvm::Triple::DragonFly:
4349  TC = llvm::make_unique<toolchains::DragonFly>(*this, Target, Args);
4350  break;
4351  case llvm::Triple::OpenBSD:
4352  TC = llvm::make_unique<toolchains::OpenBSD>(*this, Target, Args);
4353  break;
4354  case llvm::Triple::NetBSD:
4355  TC = llvm::make_unique<toolchains::NetBSD>(*this, Target, Args);
4356  break;
4357  case llvm::Triple::FreeBSD:
4358  TC = llvm::make_unique<toolchains::FreeBSD>(*this, Target, Args);
4359  break;
4360  case llvm::Triple::Minix:
4361  TC = llvm::make_unique<toolchains::Minix>(*this, Target, Args);
4362  break;
4363  case llvm::Triple::Linux:
4364  case llvm::Triple::ELFIAMCU:
4365  if (Target.getArch() == llvm::Triple::hexagon)
4366  TC = llvm::make_unique<toolchains::HexagonToolChain>(*this, Target,
4367  Args);
4368  else if ((Target.getVendor() == llvm::Triple::MipsTechnologies) &&
4369  !Target.hasEnvironment())
4370  TC = llvm::make_unique<toolchains::MipsLLVMToolChain>(*this, Target,
4371  Args);
4372  else
4373  TC = llvm::make_unique<toolchains::Linux>(*this, Target, Args);
4374  break;
4375  case llvm::Triple::NaCl:
4376  TC = llvm::make_unique<toolchains::NaClToolChain>(*this, Target, Args);
4377  break;
4378  case llvm::Triple::Fuchsia:
4379  TC = llvm::make_unique<toolchains::Fuchsia>(*this, Target, Args);
4380  break;
4381  case llvm::Triple::Solaris:
4382  TC = llvm::make_unique<toolchains::Solaris>(*this, Target, Args);
4383  break;
4384  case llvm::Triple::AMDHSA:
4385  TC = llvm::make_unique<toolchains::AMDGPUToolChain>(*this, Target, Args);
4386  break;
4387  case llvm::Triple::Win32:
4388  switch (Target.getEnvironment()) {
4389  default:
4390  if (Target.isOSBinFormatELF())
4391  TC = llvm::make_unique<toolchains::Generic_ELF>(*this, Target, Args);
4392  else if (Target.isOSBinFormatMachO())
4393  TC = llvm::make_unique<toolchains::MachO>(*this, Target, Args);
4394  else
4395  TC = llvm::make_unique<toolchains::Generic_GCC>(*this, Target, Args);
4396  break;
4397  case llvm::Triple::GNU:
4398  TC = llvm::make_unique<toolchains::MinGW>(*this, Target, Args);
4399  break;
4400  case llvm::Triple::Itanium:
4401  TC = llvm::make_unique<toolchains::CrossWindowsToolChain>(*this, Target,
4402  Args);
4403  break;
4404  case llvm::Triple::MSVC:
4405  case llvm::Triple::UnknownEnvironment:
4406  if (Args.getLastArgValue(options::OPT_fuse_ld_EQ)
4407  .startswith_lower("bfd"))
4408  TC = llvm::make_unique<toolchains::CrossWindowsToolChain>(
4409  *this, Target, Args);
4410  else
4411  TC =
4412  llvm::make_unique<toolchains::MSVCToolChain>(*this, Target, Args);
4413  break;
4414  }
4415  break;
4416  case llvm::Triple::PS4:
4417  TC = llvm::make_unique<toolchains::PS4CPU>(*this, Target, Args);
4418  break;
4419  case llvm::Triple::Contiki:
4420  TC = llvm::make_unique<toolchains::Contiki>(*this, Target, Args);
4421  break;
4422  default:
4423  // Of these targets, Hexagon is the only one that might have
4424  // an OS of Linux, in which case it got handled above already.
4425  switch (Target.getArch()) {
4426  case llvm::Triple::tce:
4427  TC = llvm::make_unique<toolchains::TCEToolChain>(*this, Target, Args);
4428  break;
4429  case llvm::Triple::tcele:
4430  TC = llvm::make_unique<toolchains::TCELEToolChain>(*this, Target, Args);
4431  break;
4432  case llvm::Triple::hexagon:
4433  TC = llvm::make_unique<toolchains::HexagonToolChain>(*this, Target,
4434  Args);
4435  break;
4436  case llvm::Triple::lanai:
4437  TC = llvm::make_unique<toolchains::LanaiToolChain>(*this, Target, Args);
4438  break;
4439  case llvm::Triple::xcore:
4440  TC = llvm::make_unique<toolchains::XCoreToolChain>(*this, Target, Args);
4441  break;
4442  case llvm::Triple::wasm32:
4443  case llvm::Triple::wasm64:
4444  TC = llvm::make_unique<toolchains::WebAssembly>(*this, Target, Args);
4445  break;
4446  case llvm::Triple::avr:
4447  TC = llvm::make_unique<toolchains::AVRToolChain>(*this, Target, Args);
4448  break;
4449  case llvm::Triple::riscv32:
4450  case llvm::Triple::riscv64:
4451  TC = llvm::make_unique<toolchains::RISCVToolChain>(*this, Target, Args);
4452  break;
4453  default:
4454  if (Target.getVendor() == llvm::Triple::Myriad)
4455  TC = llvm::make_unique<toolchains::MyriadToolChain>(*this, Target,
4456  Args);
4457  else if (toolchains::BareMetal::handlesTarget(Target))
4458  TC = llvm::make_unique<toolchains::BareMetal>(*this, Target, Args);
4459  else if (Target.isOSBinFormatELF())
4460  TC = llvm::make_unique<toolchains::Generic_ELF>(*this, Target, Args);
4461  else if (Target.isOSBinFormatMachO())
4462  TC = llvm::make_unique<toolchains::MachO>(*this, Target, Args);
4463  else
4464  TC = llvm::make_unique<toolchains::Generic_GCC>(*this, Target, Args);
4465  }
4466  }
4467  }
4468 
4469  // Intentionally omitted from the switch above: llvm::Triple::CUDA. CUDA
4470  // compiles always need two toolchains, the CUDA toolchain and the host
4471  // toolchain. So the only valid way to create a CUDA toolchain is via
4472  // CreateOffloadingDeviceToolChains.
4473 
4474  return *TC;
4475 }
4476 
4478  // Say "no" if there is not exactly one input of a type clang understands.
4479  if (JA.size() != 1 ||
4480  !types::isAcceptedByClang((*JA.input_begin())->getType()))
4481  return false;
4482 
4483  // And say "no" if this is not a kind of action clang understands.
4484  if (!isa<PreprocessJobAction>(JA) && !isa<PrecompileJobAction>(JA) &&
4485  !isa<CompileJobAction>(JA) && !isa<BackendJobAction>(JA))
4486  return false;
4487 
4488  return true;
4489 }
4490 
4491 /// GetReleaseVersion - Parse (([0-9]+)(.([0-9]+)(.([0-9]+)?))?)? and return the
4492 /// grouped values as integers. Numbers which are not provided are set to 0.
4493 ///
4494 /// \return True if the entire string was parsed (9.2), or all groups were
4495 /// parsed (10.3.5extrastuff).
4496 bool Driver::GetReleaseVersion(StringRef Str, unsigned &Major, unsigned &Minor,
4497  unsigned &Micro, bool &HadExtra) {
4498  HadExtra = false;
4499 
4500  Major = Minor = Micro = 0;
4501  if (Str.empty())
4502  return false;
4503 
4504  if (Str.consumeInteger(10, Major))
4505  return false;
4506  if (Str.empty())
4507  return true;
4508  if (Str[0] != '.')
4509  return false;
4510 
4511  Str = Str.drop_front(1);
4512 
4513  if (Str.consumeInteger(10, Minor))
4514  return false;
4515  if (Str.empty())
4516  return true;
4517  if (Str[0] != '.')
4518  return false;
4519  Str = Str.drop_front(1);
4520 
4521  if (Str.consumeInteger(10, Micro))
4522  return false;
4523  if (!Str.empty())
4524  HadExtra = true;
4525  return true;
4526 }
4527 
4528 /// Parse digits from a string \p Str and fulfill \p Digits with
4529 /// the parsed numbers. This method assumes that the max number of
4530 /// digits to look for is equal to Digits.size().
4531 ///
4532 /// \return True if the entire string was parsed and there are
4533 /// no extra characters remaining at the end.
4534 bool Driver::GetReleaseVersion(StringRef Str,
4535  MutableArrayRef<unsigned> Digits) {
4536  if (Str.empty())
4537  return false;
4538 
4539  unsigned CurDigit = 0;
4540  while (CurDigit < Digits.size()) {
4541  unsigned Digit;
4542  if (Str.consumeInteger(10, Digit))
4543  return false;
4544  Digits[CurDigit] = Digit;
4545  if (Str.empty())
4546  return true;
4547  if (Str[0] != '.')
4548  return false;
4549  Str = Str.drop_front(1);
4550  CurDigit++;
4551  }
4552 
4553  // More digits than requested, bail out...
4554  return false;
4555 }
4556 
4557 std::pair<unsigned, unsigned> Driver::getIncludeExcludeOptionFlagMasks() const {
4558  unsigned IncludedFlagsBitmask = 0;
4559  unsigned ExcludedFlagsBitmask = options::NoDriverOption;
4560 
4561  if (Mode == CLMode) {
4562  // Include CL and Core options.
4563  IncludedFlagsBitmask |= options::CLOption;
4564  IncludedFlagsBitmask |= options::CoreOption;
4565  } else {
4566  ExcludedFlagsBitmask |= options::CLOption;
4567  }
4568 
4569  return std::make_pair(IncludedFlagsBitmask, ExcludedFlagsBitmask);
4570 }
4571 
4572 bool clang::driver::isOptimizationLevelFast(const ArgList &Args) {
4573  return Args.hasFlag(options::OPT_Ofast, options::OPT_O_Group, false);
4574 }
StringRef getSysRoot() const
Returns the sysroot path.
static bool GetReleaseVersion(StringRef Str, unsigned &Major, unsigned &Minor, unsigned &Micro, bool &HadExtra)
GetReleaseVersion - Parse (([0-9]+)(.
Definition: Driver.cpp:4496
static bool DiagnoseInputExistence(const Driver &D, const DerivedArgList &Args, StringRef Value, types::ID Ty)
Check that the file referenced by Value exists.
Definition: Driver.cpp:1878
ID
ID - Ordered values for successive stages in the compilation process which interact with user options...
Definition: Phases.h:18
static bool ContainsCompileOrAssembleAction(const Action *A)
Check whether the given input tree contains any compilation or assembly actions.
Definition: Driver.cpp:1777
if(T->getSizeExpr()) TRY_TO(TraverseStmt(T -> getSizeExpr()))
SmallVector< std::string, 16 > path_list
Definition: ToolChain.h:90
bool isCollapsingWithNextDependentActionLegal() const
Return true if this function can be collapsed with others.
Definition: Action.h:163
const llvm::opt::ArgStringList & getTempFiles() const
Definition: Compilation.h:208
std::string ModeSuffix
Driver mode part of the executable name, as g++.
Definition: ToolChain.h:66
CudaArch
Definition: Cuda.h:34
const char * CudaArchToString(CudaArch A)
Definition: Cuda.cpp:29
OpenMPRuntimeKind getOpenMPRuntime(const llvm::opt::ArgList &Args) const
Compute the desired OpenMP runtime from the flags provided.
Definition: Driver.cpp:514
std::string getClangFullVersion()
Retrieves a string representing the complete clang version, which includes the clang version number...
Definition: Version.cpp:118
prefix_list PrefixDirs
Definition: Driver.h:146
std::string GetTemporaryPath(StringRef Prefix, StringRef Suffix) const
GetTemporaryPath - Return the pathname of a temporary file to use as part of compilation; the file wi...
Definition: Driver.cpp:4293
const MultilibSet & getMultilibs() const
Definition: ToolChain.h:229
StringRef getArchName() const
Definition: ToolChain.h:202
T * MakeAction(Args &&... Arg)
Creates a new Action owned by this Compilation.
Definition: Compilation.h:197
bool canLipoType(ID Id)
canLipoType - Is this type acceptable as the output of a universal build (currently, just the Nothing, Image, and Object types).
Definition: Types.cpp:88
Set a ToolChain&#39;s effective triple.
Definition: ToolChain.h:553
IntrusiveRefCntPtr< FileSystem > getRealFileSystem()
Gets an vfs::FileSystem for the &#39;real&#39; file system, as seen by the operating system.
const char * getTypeTempSuffix(ID Id, bool CLMode=false)
getTypeTempSuffix - Return the suffix to use when creating a temp file of this type, or null if unspecified.
Definition: Types.cpp:55
unsigned CCCUsePCH
Use lazy precompiled headers for PCH support.
Definition: Driver.h:232
void BuildInputs(const ToolChain &TC, llvm::opt::DerivedArgList &Args, InputList &Inputs) const
BuildInputs - Construct the list of inputs and their types from the given arguments.
Definition: Driver.cpp:1917
StringRef P
void setResponseFile(const char *FileName)
Set to pass arguments via a response file when launching the command.
Definition: Job.cpp:304
bool isUsingLTO() const
Returns true if we are performing any kind of LTO.
Definition: Driver.h:519
virtual std::string getThreadModel() const
getThreadModel() - Which thread model does this target use?
Definition: ToolChain.h:438
virtual void ConstructJob(Compilation &C, const JobAction &JA, const InputInfo &Output, const InputInfoList &Inputs, const llvm::opt::ArgList &TCArgs, const char *LinkingOutput) const =0
ConstructJob - Construct jobs to perform the action JA, writing to Output and with Inputs...
input_range inputs()
Definition: Action.h:150
virtual bool isLinkJob() const
Definition: Tool.h:89
DiagnosticBuilder Report(SourceLocation Loc, unsigned DiagID)
Issue the message to the client.
Definition: Diagnostic.h:1294
std::string GetProgramPath(StringRef Name, const ToolChain &TC) const
GetProgramPath - Lookup Name in the list of program search paths.
Definition: Driver.cpp:4259
virtual bool isThreadModelSupported(const StringRef Model) const
isThreadModelSupported() - Does this target support a thread model?
Definition: ToolChain.cpp:497
std::string DyldPrefix
Dynamic loader prefix, if present.
Definition: Driver.h:152
virtual void printVerboseInfo(raw_ostream &OS) const
Dispatch to the specific toolchain for verbose printing.
Definition: ToolChain.h:302
static StringRef getCategoryNameFromID(unsigned CategoryID)
Given a category ID, return the name of the category.
DiagnosticBuilder Diag(unsigned DiagID) const
Definition: Driver.h:110
InputInfo BuildJobsForAction(Compilation &C, const Action *A, const ToolChain *TC, StringRef BoundArch, bool AtTopLevel, bool MultipleArchs, const char *LinkingOutput, std::map< std::pair< const Action *, std::string >, InputInfo > &CachedResults, Action::OffloadKind TargetDeviceOffloadKind) const
BuildJobsForAction - Construct the jobs to perform for the action A and return an InputInfo for the r...
Definition: Driver.cpp:3693
static ParsedClangName getTargetAndModeFromProgramName(StringRef ProgName)
Return any implicit target and/or mode flag for an invocation of the compiler driver as ProgName...
Definition: ToolChain.cpp:202
ResponseFileSupport getResponseFilesSupport() const
Returns the level of support for response files of this tool, whether it accepts arguments to be pass...
Definition: Tool.h:93
CudaArch StringToCudaArch(llvm::StringRef S)
Definition: Cuda.cpp:93
Type used to communicate device actions.
Definition: Action.h:254
const char * getClassName() const
Definition: Action.h:138
RAII class that determines when any errors have occurred between the time the instance was created an...
Definition: Diagnostic.h:998
virtual void ConstructJobMultipleOutputs(Compilation &C, const JobAction &JA, const InputInfoList &Outputs, const InputInfoList &Inputs, const llvm::opt::ArgList &TCArgs, const char *LinkingOutput) const
Construct jobs to perform the action JA, writing to the Outputs and with Inputs, and add the jobs to ...
Definition: Tool.cpp:26
void registerDependentActionInfo(const ToolChain *TC, StringRef BoundArch, OffloadKind Kind)
Register information about a dependent action.
Definition: Action.h:602
const ArgStringMap & getFailureResultFiles() const
Definition: Compilation.h:212
float __ovld __cnfn normalize(float p)
Returns a vector in the same direction as p but with a length of 1.
Driver(StringRef ClangExecutable, StringRef TargetTriple, DiagnosticsEngine &Diags, IntrusiveRefCntPtr< vfs::FileSystem > VFS=nullptr)
Definition: Driver.cpp:89
const llvm::opt::DerivedArgList & getArgsForToolChain(const ToolChain *TC, StringRef BoundArch, Action::OffloadKind DeviceOffloadKind)
getArgsForToolChain - Return the derived argument list for the tool chain TC (or the default tool cha...
Definition: Compilation.cpp:63
const Multilib & getMultilib() const
Definition: ToolChain.h:231
void addOffloadDeviceToolChain(const ToolChain *DeviceToolChain, Action::OffloadKind OffloadKind)
Definition: Compilation.h:174
Compilation * BuildCompilation(ArrayRef< const char *> Args)
BuildCompilation - Construct a compilation object for a command line argument vector.
Definition: Driver.cpp:876
std::string TargetPrefix
Target part of the executable name, as i686-linux-android.
Definition: ToolChain.h:63
path_list & getProgramPaths()
Definition: ToolChain.h:226
Contains the files in the compilation diagnostic report generated by generateCompilationDiagnostics.
Definition: Driver.h:412
static bool ScanDirForExecutable(SmallString< 128 > &Dir, ArrayRef< std::string > Names)
Definition: Driver.cpp:4248
Definition: Format.h:2031
ActionList & getInputs()
Definition: Action.h:143
std::string Dir
The path the driver executable was in, as invoked from the command line.
Definition: Driver.h:121
ID lookupCXXTypeForCType(ID Id)
lookupCXXTypeForCType - Lookup CXX input type that corresponds to given C type (used for clang++ emul...
Definition: Types.cpp:294
const std::string & gccSuffix() const
Get the detected GCC installation path suffix for the multi-arch target variant.
Definition: Multilib.h:45
Type used to communicate host actions.
Definition: Action.h:295
static unsigned getNumberOfCategories()
Return the number of diagnostic categories.
BackendAction
Definition: BackendUtil.h:31
std::string GetClPchPath(Compilation &C, StringRef BaseName) const
Return the pathname of the pch file in clang-cl mode.
Definition: Driver.cpp:4304
Action - Represent an abstract compilation step to perform.
Definition: Action.h:48
std::string getTripleString() const
Definition: ToolChain.h:210
bool HandleImmediateArgs(const Compilation &C)
HandleImmediateArgs - Handle any arguments which should be treated before building actions or binding...
Definition: Driver.cpp:1529
InputInfo - Wrapper for information about an input source.
Definition: InputInfo.h:23
Concrete class used by the front-end to report problems and issues.
Definition: Diagnostic.h:149
types::ID getType() const
Definition: Action.h:141
bool isOptimizationLevelFast(const llvm::opt::ArgList &Args)
path_list & getFilePaths()
Definition: ToolChain.h:223
CompileCommand Cmd
The LLVM OpenMP runtime.
Definition: Driver.h:96
OffloadKind getOffloadingDeviceKind() const
Definition: Action.h:197
std::unique_ptr< llvm::opt::OptTable > createDriverOptTable()
virtual bool isDsymutilJob() const
Definition: Tool.h:90
Driver - Encapsulate logic for constructing compilation processes from a set of gcc-driver-like comma...
Definition: Driver.h:59
An unknown OpenMP runtime.
Definition: Driver.h:92
const llvm::opt::InputArgList & getInputArgs() const
Definition: Compilation.h:185
input_iterator input_begin()
Definition: Action.h:148
bool isHIP(ID Id)
isHIP - Is this a HIP input.
Definition: Types.cpp:179
static Arg * MakeInputArg(DerivedArgList &Args, OptTable &Opts, StringRef Value, bool Claim=true)
Definition: Driver.cpp:289
bool hasOffloadToolChain() const
Return true if an offloading tool chain of a given kind exists.
Definition: Compilation.h:156
ID getPreprocessedType(ID Id)
getPreprocessedType - Get the ID of the type for this input when it has been preprocessed, or INVALID if this input is not preprocessed.
Definition: Types.cpp:43
StringRef Filename
Definition: Format.cpp:1602
void add(Action &A, const ToolChain &TC, const char *BoundArch, OffloadKind OKind)
Add a action along with the associated toolchain, bound arch, and offload kind.
Definition: Action.cpp:288
void PrintActions(const Compilation &C) const
PrintActions - Print the list of actions.
Definition: Driver.cpp:1769
const ToolChain & getDefaultToolChain() const
Definition: Compilation.h:136
const ArgStringMap & getResultFiles() const
Definition: Compilation.h:210
unsigned GenReproducer
Force clang to emit reproducer for driver invocation.
Definition: Driver.h:237
ID lookupHeaderTypeForSourceType(ID Id)
Lookup header file input type that corresponds to given source file type (used for clang-cl emulation...
Definition: Types.cpp:310
const char * getTypeName(ID Id)
getTypeName - Return the name of the type for Id.
Definition: Types.cpp:39
std::string getAsString() const
getAsString - Return a string name for this input, for debugging.
Definition: InputInfo.h:95
ActionClass getKind() const
Definition: Action.h:140
SourceLocation End
const char * getPhaseName(ID Id)
Definition: Phases.cpp:16
int Id
Definition: ASTDiff.cpp:191
const Tool & getCreator() const
getCreator - Return the Tool which caused the creation of this job.
Definition: Job.h:108
StateNode * Previous
bool isSaveTempsObj() const
Definition: Driver.h:330
Defines version macros and version-related utility functions for Clang.
bool IsCLMode() const
Whether the driver should follow cl.exe like behavior.
Definition: Driver.h:183
virtual types::ID LookupTypeForExtension(StringRef Ext) const
LookupTypeForExtension - Return the default language type to use for the given extension.
Definition: ToolChain.cpp:463
This corresponds to a single GCC Multilib, or a segment of one controlled by a command line flag...
Definition: Multilib.h:29
static std::string GetTriplePlusArchString(const ToolChain *TC, StringRef BoundArch, Action::OffloadKind OffloadKind)
Return a string that uniquely identifies the result of a job.
Definition: Driver.cpp:3680
void HandleAutocompletions(StringRef PassedFlags) const
HandleAutocompletions - Handle –autocomplete by searching and printing possible flags, descriptions, and its arguments.
Definition: Driver.cpp:1464
virtual std::string getCompilerRT(const llvm::opt::ArgList &Args, StringRef Component, bool Shared=false) const
Definition: ToolChain.cpp:363
void getCompilationPhases(ID Id, llvm::SmallVectorImpl< phases::ID > &Phases)
getCompilationPhases - Get the list of compilation phases (&#39;Phases&#39;) to be done for type &#39;Id&#39;...
Definition: Types.cpp:268
void BuildUniversalActions(Compilation &C, const ToolChain &TC, const InputList &BAInputs) const
BuildUniversalActions - Construct the list of actions to perform for the given arguments, which may require a universal build.
Definition: Driver.cpp:1789
size_type size() const
Definition: Action.h:146
llvm::opt::InputArgList ParseArgStrings(ArrayRef< const char *> Args, bool &ContainsError)
ParseArgStrings - Parse the given list of strings into an ArgList.
Definition: Driver.cpp:166
void setCannotBeCollapsedWithNextDependentAction()
Mark this action as not legal to collapse.
Definition: Action.h:158
Action * ConstructPhaseAction(Compilation &C, const llvm::opt::ArgList &Args, phases::ID Phase, Action *Input, Action::OffloadKind TargetDeviceOffloadKind=Action::OFK_None) const
ConstructAction - Construct the appropriate action to do for Phase on the Input, taking in to account...
Definition: Driver.cpp:3175
llvm::Triple::ArchType getArchTypeForMachOArchName(StringRef Str)
Definition: Darwin.cpp:34
const ActionList & getActions() const
Get each of the individual arrays.
Definition: Action.h:285
const_offload_toolchains_range getOffloadToolChains() const
Definition: Compilation.h:151
static void PrintDiagnosticCategories(raw_ostream &OS)
PrintDiagnosticCategories - Implement the –print-diagnostic-categories option.
Definition: Driver.cpp:1457
void Print(llvm::raw_ostream &OS, const char *Terminator, bool Quote, CrashReportInfo *CrashInfo=nullptr) const
Definition: Job.cpp:431
path_list & getLibraryPaths()
Definition: ToolChain.h:220
void PrintHelp(bool ShowHidden) const
PrintHelp - Print the help text.
Definition: Driver.cpp:1416
virtual bool canEmitIR() const
Definition: Tool.h:87
static void printArg(llvm::raw_ostream &OS, StringRef Arg, bool Quote)
Print a command argument, and optionally quote it.
Definition: Job.cpp:101
#define false
Definition: stdbool.h:33
virtual bool hasIntegratedCPP() const =0
void generateCompilationDiagnostics(Compilation &C, const Command &FailingCommand, StringRef AdditionalInformation="", CompilationDiagnosticReport *GeneratedReport=nullptr)
generateCompilationDiagnostics - Generate diagnostics information including preprocessed source file(...
Definition: Driver.cpp:1153
static unsigned PrintActions1(const Compilation &C, Action *A, std::map< Action *, unsigned > &Ids)
Definition: Driver.cpp:1692
bool embedBitcodeInObject() const
Definition: Driver.h:333
Encodes a location in the source.
const llvm::opt::DerivedArgList & getArgs() const
Definition: Compilation.h:187
bool hasErrorOccurred() const
Determine whether any errors have occurred since this object instance was created.
Definition: Diagnostic.h:1009
Command - An executable path/name and argument vector to execute.
Definition: Job.h:45
bool isCuda(ID Id)
isCuda - Is this a CUDA input.
Definition: Types.cpp:167
The legacy name for the LLVM OpenMP runtime from when it was the Intel OpenMP runtime.
Definition: Driver.h:106
std::string InstalledDir
The path to the installed clang directory, if any.
Definition: Driver.h:130
bool CCCIsCXX() const
Whether the driver should follow g++ like behavior.
Definition: Driver.h:174
const char * addResultFile(const char *Name, const JobAction *JA)
addResultFile - Add a file to remove on failure, and returns its argument.
Definition: Compilation.h:240
bool isSaveTempsEnabled() const
Definition: Driver.h:329
static std::vector< std::string > getDiagnosticFlags()
Get the string of all diagnostic flags.
std::string UserConfigDir
User directory for config files.
Definition: Driver.h:139
bool isAcceptedByClang(ID Id)
isAcceptedByClang - Can clang handle this input type.
Definition: Types.cpp:95
virtual bool hasIntegratedAssembler() const
Definition: Tool.h:86
An offload action combines host or/and device actions according to the programming model implementati...
Definition: Action.h:248
const char * getDefaultImageName() const
Returns the default name for linked images (e.g., "a.out").
Definition: Driver.cpp:3980
virtual RuntimeLibType GetRuntimeLibType(const llvm::opt::ArgList &Args) const
Definition: ToolChain.cpp:656
void ExecuteJobs(const JobList &Jobs, SmallVectorImpl< std::pair< int, const Command *>> &FailingCommands) const
ExecuteJob - Execute a single job.
const char * getShortName() const
Definition: Tool.h:82
void setIgnoreAllWarnings(bool Val)
When set to true, any unmapped warnings are ignored.
Definition: Diagnostic.h:587
static bool searchForFile(SmallVectorImpl< char > &FilePath, ArrayRef< std::string > Dirs, StringRef FileName)
Looks the given directories for the specified file.
Definition: Driver.cpp:676
unsigned getOffloadingHostActiveKinds() const
Definition: Action.h:193
void EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts, llvm::MemoryBufferRef Buf)
const Action & getSource() const
getSource - Return the Action which caused the creation of this job.
Definition: Job.h:105
Dataflow Directional Tag Classes.
Level getDiagnosticLevel(unsigned DiagID, SourceLocation Loc) const
Based on the way the client configured the DiagnosticsEngine object, classify the specified diagnosti...
Definition: Diagnostic.h:833
const char * getExecutable() const
Definition: Job.h:125
unsigned CCCPrintBindings
Only print tool bindings, don&#39;t build any jobs.
Definition: Driver.h:186
static llvm::Triple computeTargetTriple(const Driver &D, StringRef TargetTriple, const ArgList &Args, StringRef DarwinArchName="")
Compute target triple from args.
Definition: Driver.cpp:392
virtual std::string ComputeEffectiveClangTriple(const llvm::opt::ArgList &Args, types::ID InputType=types::TY_INVALID) const
ComputeEffectiveClangTriple - Return the Clang triple to use for this target, which may take into acc...
Definition: ToolChain.cpp:633
const llvm::opt::ArgStringList & getArguments() const
Definition: Job.h:127
virtual bool hasGoodDiagnostics() const
Does this tool have "good" standardized diagnostics, or should the driver add an additional "command ...
Definition: Tool.h:117
std::string SysRoot
sysroot, if present
Definition: Driver.h:149
Tool - Information on a specific compilation tool.
Definition: Tool.h:34
void setTripleTypeForMachOArchName(llvm::Triple &T, StringRef Str)
Definition: Darwin.cpp:69
std::string Name
The name the driver was invoked as.
Definition: Driver.h:117
Defines the virtual file system interface vfs::FileSystem.
static bool handlesTarget(const llvm::Triple &Triple)
Definition: BareMetal.cpp:60
The GNU OpenMP runtime.
Definition: Driver.h:101
llvm::SmallVector< std::string, 4 > TemporaryFiles
Definition: Driver.h:413
int ExecuteCompilation(Compilation &C, SmallVectorImpl< std::pair< int, const Command *> > &FailingCommands)
ExecuteCompilation - Execute the compilation according to the command line arguments and return an ap...
Definition: Driver.cpp:1355
ActionList & getActions()
Definition: Compilation.h:191
ParsedClangName ClangNameParts
Target and driver mode components extracted from clang executable name.
Definition: Driver.h:127
bool getCheckInputsExist() const
Definition: Driver.h:303
std::string ClangExecutable
The original path to the clang executable.
Definition: Driver.h:124
void BuildJobs(Compilation &C) const
BuildJobs - Bind actions to concrete tools and translate arguments to form the list of jobs to run...
Definition: Driver.cpp:3273
ID getPrecompiledType(ID Id)
getPrecompiledType - Get the ID of the type for this input when it has been precompiled, or INVALID if this input is not precompiled.
Definition: Types.cpp:47
bool ShouldUseClangCompiler(const JobAction &JA) const
ShouldUseClangCompiler - Should the clang compiler be used to handle this action. ...
Definition: Driver.cpp:4477
StringRef getDefaultUniversalArchName() const
Provide the default architecture name (as expected by -arch) for this toolchain.
Definition: ToolChain.cpp:224
Compilation - A set of tasks to perform for a single driver invocation.
Definition: Compilation.h:46
void BuildActions(Compilation &C, llvm::opt::DerivedArgList &Args, const InputList &Inputs, ActionList &Actions) const
BuildActions - Construct the list of actions to perform for the given arguments, which are only done ...
Definition: Driver.cpp:2927
const Driver & getDriver() const
Definition: Compilation.h:134
const llvm::Triple & getTriple() const
Definition: ToolChain.h:187
static StringRef GetOffloadKindName(OffloadKind Kind)
Return a string containing a offload kind name.
Definition: Action.cpp:144
std::string GetFilePath(StringRef Name, const ToolChain &TC) const
GetFilePath - Lookup Name in the list of file search paths.
Definition: Driver.cpp:4196
static void printArgList(raw_ostream &OS, const llvm::opt::ArgList &Args)
Definition: Driver.cpp:1048
const ToolChain & getToolChain() const
Definition: Tool.h:84
bool CleanupFileMap(const ArgStringMap &Files, const JobAction *JA, bool IssueErrors=false) const
CleanupFileMap - Remove the files in the given map.
virtual std::string getCompilerRTPath() const
Definition: ToolChain.cpp:353
X
Add a minimal nested name specifier fixit hint to allow lookup of a tag name from an outer enclosing ...
Definition: SemaDecl.cpp:13824
void propagateHostOffloadInfo(unsigned OKinds, const char *OArch)
Append the host offload info of this action and propagate it to its dependences.
Definition: Action.cpp:67
static std::string GetOffloadingFileNamePrefix(OffloadKind Kind, StringRef NormalizedTriple, bool CreatePrefixForHost=false)
Return a string that can be used as prefix in order to generate unique files for each offloading kind...
Definition: Action.cpp:128
void ParseDriverMode(StringRef ProgramName, ArrayRef< const char *> Args)
ParseDriverMode - Look for and handle the driver mode option in Args.
Definition: Driver.cpp:133
const char * getName() const
Definition: Tool.h:80
const llvm::opt::OptTable & getOpts() const
Definition: Driver.h:297
virtual Tool * SelectTool(const JobAction &JA) const
Choose a tool to use to handle the action JA.
Definition: ToolChain.cpp:415
const char * addTempFile(const char *Name)
addTempFile - Add a file to remove on exit, and returns its argument.
Definition: Compilation.h:233
std::string getOffloadingKindPrefix() const
Return a string containing the offload kind of the action.
Definition: Action.cpp:89
const ToolChain * getSingleOffloadToolChain() const
Return an offload toolchain of the provided kind.
Definition: Compilation.h:164
__DEVICE__ int max(int __a, int __b)
std::string DriverTitle
Driver title to use with help.
Definition: Driver.h:155
static const char * MakeCLOutputFilename(const ArgList &Args, StringRef ArgValue, StringRef BaseName, types::ID FileType)
Create output filename based on ArgValue, which could either be a full filename, filename without ext...
Definition: Driver.cpp:3989
void initialize(TemplateInstantiationCallbackPtrs &Callbacks, const Sema &TheSema)
bool CCCIsCPP() const
Whether the driver is just the preprocessor.
Definition: Driver.h:177
void PrintVersion(const Compilation &C, raw_ostream &OS) const
PrintVersion - Print the driver version.
Definition: Driver.cpp:1431
void CreateOffloadingDeviceToolChains(Compilation &C, InputList &Inputs)
CreateOffloadingDeviceToolChains - create all the toolchains required to support offloading devices g...
Definition: Driver.cpp:539
bool appendSuffixForType(ID Id)
appendSuffixForType - When generating outputs of this type, should the suffix be appended (instead of...
Definition: Types.cpp:84
ID lookupTypeForTypeSpecifier(const char *Name)
lookupTypeForTypSpecifier - Lookup the type to use for a user specified type name.
Definition: Types.cpp:256
const char * GetNamedOutputPath(Compilation &C, const JobAction &JA, const char *BaseInput, StringRef BoundArch, bool AtTopLevel, bool MultipleArchs, StringRef NormalizedTriple) const
GetNamedOutputPath - Return the name to use for the output of the action JA.
Definition: Driver.cpp:4018
#define true
Definition: stdbool.h:32
void initCompilationForDiagnostics()
initCompilationForDiagnostics - Remove stale state and suppress output so compilation can be reexecut...
bool isSrcFile(ID Id)
isSrcFile - Is this a source file, i.e.
Definition: Types.cpp:191
const char * DriverMode
Corresponding driver mode argument, as &#39;–driver-mode=g++&#39;.
Definition: ToolChain.h:69
const char * getOffloadingArch() const
Definition: Action.h:198
virtual void Print(llvm::raw_ostream &OS, const char *Terminator, bool Quote, CrashReportInfo *CrashInfo=nullptr) const
Definition: Job.cpp:214
unsigned CCGenDiagnostics
Whether the driver is generating diagnostics for debugging purposes.
Definition: Driver.h:202
std::string SystemConfigDir
System directory for config files.
Definition: Driver.h:136
ToolChain - Access to tools for a single platform.
Definition: ToolChain.h:88
std::string ResourceDir
The path to the compiler resource directory.
Definition: Driver.h:133