clang  7.0.0svn
BackendUtil.cpp
Go to the documentation of this file.
1 //===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
11 #include "clang/Basic/Diagnostic.h"
16 #include "clang/Frontend/Utils.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/ADT/StringExtras.h"
20 #include "llvm/ADT/StringSwitch.h"
21 #include "llvm/ADT/Triple.h"
22 #include "llvm/Analysis/TargetLibraryInfo.h"
23 #include "llvm/Analysis/TargetTransformInfo.h"
24 #include "llvm/Bitcode/BitcodeReader.h"
25 #include "llvm/Bitcode/BitcodeWriter.h"
26 #include "llvm/Bitcode/BitcodeWriterPass.h"
27 #include "llvm/CodeGen/RegAllocRegistry.h"
28 #include "llvm/CodeGen/SchedulerRegistry.h"
29 #include "llvm/CodeGen/TargetSubtargetInfo.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/IRPrintingPasses.h"
32 #include "llvm/IR/LegacyPassManager.h"
33 #include "llvm/IR/Module.h"
34 #include "llvm/IR/ModuleSummaryIndex.h"
35 #include "llvm/IR/Verifier.h"
36 #include "llvm/LTO/LTOBackend.h"
37 #include "llvm/MC/MCAsmInfo.h"
38 #include "llvm/MC/SubtargetFeature.h"
39 #include "llvm/Passes/PassBuilder.h"
40 #include "llvm/Support/CommandLine.h"
41 #include "llvm/Support/MemoryBuffer.h"
42 #include "llvm/Support/PrettyStackTrace.h"
43 #include "llvm/Support/TargetRegistry.h"
44 #include "llvm/Support/Timer.h"
45 #include "llvm/Support/raw_ostream.h"
46 #include "llvm/Target/TargetMachine.h"
47 #include "llvm/Target/TargetOptions.h"
48 #include "llvm/Transforms/Coroutines.h"
49 #include "llvm/Transforms/IPO.h"
50 #include "llvm/Transforms/IPO/AlwaysInliner.h"
51 #include "llvm/Transforms/IPO/PassManagerBuilder.h"
52 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h"
53 #include "llvm/Transforms/Instrumentation.h"
54 #include "llvm/Transforms/Instrumentation/BoundsChecking.h"
55 #include "llvm/Transforms/Instrumentation/GCOVProfiler.h"
56 #include "llvm/Transforms/ObjCARC.h"
57 #include "llvm/Transforms/Scalar.h"
58 #include "llvm/Transforms/Scalar/GVN.h"
59 #include "llvm/Transforms/Utils.h"
60 #include "llvm/Transforms/Utils/NameAnonGlobals.h"
61 #include "llvm/Transforms/Utils/SymbolRewriter.h"
62 #include <memory>
63 using namespace clang;
64 using namespace llvm;
65 
66 namespace {
67 
68 // Default filename used for profile generation.
69 static constexpr StringLiteral DefaultProfileGenName = "default_%m.profraw";
70 
71 class EmitAssemblyHelper {
72  DiagnosticsEngine &Diags;
73  const HeaderSearchOptions &HSOpts;
74  const CodeGenOptions &CodeGenOpts;
75  const clang::TargetOptions &TargetOpts;
76  const LangOptions &LangOpts;
77  Module *TheModule;
78 
79  Timer CodeGenerationTime;
80 
81  std::unique_ptr<raw_pwrite_stream> OS;
82 
83  TargetIRAnalysis getTargetIRAnalysis() const {
84  if (TM)
85  return TM->getTargetIRAnalysis();
86 
87  return TargetIRAnalysis();
88  }
89 
90  void CreatePasses(legacy::PassManager &MPM, legacy::FunctionPassManager &FPM);
91 
92  /// Generates the TargetMachine.
93  /// Leaves TM unchanged if it is unable to create the target machine.
94  /// Some of our clang tests specify triples which are not built
95  /// into clang. This is okay because these tests check the generated
96  /// IR, and they require DataLayout which depends on the triple.
97  /// In this case, we allow this method to fail and not report an error.
98  /// When MustCreateTM is used, we print an error if we are unable to load
99  /// the requested target.
100  void CreateTargetMachine(bool MustCreateTM);
101 
102  /// Add passes necessary to emit assembly or LLVM IR.
103  ///
104  /// \return True on success.
105  bool AddEmitPasses(legacy::PassManager &CodeGenPasses, BackendAction Action,
106  raw_pwrite_stream &OS);
107 
108 public:
109  EmitAssemblyHelper(DiagnosticsEngine &_Diags,
110  const HeaderSearchOptions &HeaderSearchOpts,
111  const CodeGenOptions &CGOpts,
112  const clang::TargetOptions &TOpts,
113  const LangOptions &LOpts, Module *M)
114  : Diags(_Diags), HSOpts(HeaderSearchOpts), CodeGenOpts(CGOpts),
115  TargetOpts(TOpts), LangOpts(LOpts), TheModule(M),
116  CodeGenerationTime("codegen", "Code Generation Time") {}
117 
118  ~EmitAssemblyHelper() {
119  if (CodeGenOpts.DisableFree)
120  BuryPointer(std::move(TM));
121  }
122 
123  std::unique_ptr<TargetMachine> TM;
124 
125  void EmitAssembly(BackendAction Action,
126  std::unique_ptr<raw_pwrite_stream> OS);
127 
128  void EmitAssemblyWithNewPassManager(BackendAction Action,
129  std::unique_ptr<raw_pwrite_stream> OS);
130 };
131 
132 // We need this wrapper to access LangOpts and CGOpts from extension functions
133 // that we add to the PassManagerBuilder.
134 class PassManagerBuilderWrapper : public PassManagerBuilder {
135 public:
136  PassManagerBuilderWrapper(const Triple &TargetTriple,
137  const CodeGenOptions &CGOpts,
138  const LangOptions &LangOpts)
139  : PassManagerBuilder(), TargetTriple(TargetTriple), CGOpts(CGOpts),
140  LangOpts(LangOpts) {}
141  const Triple &getTargetTriple() const { return TargetTriple; }
142  const CodeGenOptions &getCGOpts() const { return CGOpts; }
143  const LangOptions &getLangOpts() const { return LangOpts; }
144 
145 private:
146  const Triple &TargetTriple;
147  const CodeGenOptions &CGOpts;
148  const LangOptions &LangOpts;
149 };
150 }
151 
152 static void addObjCARCAPElimPass(const PassManagerBuilder &Builder, PassManagerBase &PM) {
153  if (Builder.OptLevel > 0)
154  PM.add(createObjCARCAPElimPass());
155 }
156 
157 static void addObjCARCExpandPass(const PassManagerBuilder &Builder, PassManagerBase &PM) {
158  if (Builder.OptLevel > 0)
159  PM.add(createObjCARCExpandPass());
160 }
161 
162 static void addObjCARCOptPass(const PassManagerBuilder &Builder, PassManagerBase &PM) {
163  if (Builder.OptLevel > 0)
164  PM.add(createObjCARCOptPass());
165 }
166 
167 static void addAddDiscriminatorsPass(const PassManagerBuilder &Builder,
168  legacy::PassManagerBase &PM) {
169  PM.add(createAddDiscriminatorsPass());
170 }
171 
172 static void addBoundsCheckingPass(const PassManagerBuilder &Builder,
173  legacy::PassManagerBase &PM) {
174  PM.add(createBoundsCheckingLegacyPass());
175 }
176 
177 static void addSanitizerCoveragePass(const PassManagerBuilder &Builder,
178  legacy::PassManagerBase &PM) {
179  const PassManagerBuilderWrapper &BuilderWrapper =
180  static_cast<const PassManagerBuilderWrapper&>(Builder);
181  const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts();
182  SanitizerCoverageOptions Opts;
183  Opts.CoverageType =
184  static_cast<SanitizerCoverageOptions::Type>(CGOpts.SanitizeCoverageType);
185  Opts.IndirectCalls = CGOpts.SanitizeCoverageIndirectCalls;
186  Opts.TraceBB = CGOpts.SanitizeCoverageTraceBB;
187  Opts.TraceCmp = CGOpts.SanitizeCoverageTraceCmp;
188  Opts.TraceDiv = CGOpts.SanitizeCoverageTraceDiv;
189  Opts.TraceGep = CGOpts.SanitizeCoverageTraceGep;
190  Opts.Use8bitCounters = CGOpts.SanitizeCoverage8bitCounters;
191  Opts.TracePC = CGOpts.SanitizeCoverageTracePC;
192  Opts.TracePCGuard = CGOpts.SanitizeCoverageTracePCGuard;
193  Opts.NoPrune = CGOpts.SanitizeCoverageNoPrune;
194  Opts.Inline8bitCounters = CGOpts.SanitizeCoverageInline8bitCounters;
195  Opts.PCTable = CGOpts.SanitizeCoveragePCTable;
196  Opts.StackDepth = CGOpts.SanitizeCoverageStackDepth;
197  PM.add(createSanitizerCoverageModulePass(Opts));
198 }
199 
200 // Check if ASan should use GC-friendly instrumentation for globals.
201 // First of all, there is no point if -fdata-sections is off (expect for MachO,
202 // where this is not a factor). Also, on ELF this feature requires an assembler
203 // extension that only works with -integrated-as at the moment.
204 static bool asanUseGlobalsGC(const Triple &T, const CodeGenOptions &CGOpts) {
205  if (!CGOpts.SanitizeAddressGlobalsDeadStripping)
206  return false;
207  switch (T.getObjectFormat()) {
208  case Triple::MachO:
209  case Triple::COFF:
210  return true;
211  case Triple::ELF:
212  return CGOpts.DataSections && !CGOpts.DisableIntegratedAS;
213  default:
214  return false;
215  }
216 }
217 
218 static void addAddressSanitizerPasses(const PassManagerBuilder &Builder,
219  legacy::PassManagerBase &PM) {
220  const PassManagerBuilderWrapper &BuilderWrapper =
221  static_cast<const PassManagerBuilderWrapper&>(Builder);
222  const Triple &T = BuilderWrapper.getTargetTriple();
223  const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts();
224  bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Address);
225  bool UseAfterScope = CGOpts.SanitizeAddressUseAfterScope;
226  bool UseGlobalsGC = asanUseGlobalsGC(T, CGOpts);
227  PM.add(createAddressSanitizerFunctionPass(/*CompileKernel*/ false, Recover,
228  UseAfterScope));
229  PM.add(createAddressSanitizerModulePass(/*CompileKernel*/ false, Recover,
230  UseGlobalsGC));
231 }
232 
233 static void addKernelAddressSanitizerPasses(const PassManagerBuilder &Builder,
234  legacy::PassManagerBase &PM) {
235  PM.add(createAddressSanitizerFunctionPass(
236  /*CompileKernel*/ true, /*Recover*/ true, /*UseAfterScope*/ false));
237  PM.add(createAddressSanitizerModulePass(
238  /*CompileKernel*/ true, /*Recover*/ true));
239 }
240 
241 static void addHWAddressSanitizerPasses(const PassManagerBuilder &Builder,
242  legacy::PassManagerBase &PM) {
243  const PassManagerBuilderWrapper &BuilderWrapper =
244  static_cast<const PassManagerBuilderWrapper &>(Builder);
245  const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts();
246  bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::HWAddress);
247  PM.add(createHWAddressSanitizerPass(/*CompileKernel*/ false, Recover));
248 }
249 
250 static void addKernelHWAddressSanitizerPasses(const PassManagerBuilder &Builder,
251  legacy::PassManagerBase &PM) {
252  PM.add(createHWAddressSanitizerPass(
253  /*CompileKernel*/ true, /*Recover*/ true));
254 }
255 
256 static void addMemorySanitizerPass(const PassManagerBuilder &Builder,
257  legacy::PassManagerBase &PM) {
258  const PassManagerBuilderWrapper &BuilderWrapper =
259  static_cast<const PassManagerBuilderWrapper&>(Builder);
260  const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts();
261  int TrackOrigins = CGOpts.SanitizeMemoryTrackOrigins;
262  bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Memory);
263  PM.add(createMemorySanitizerPass(TrackOrigins, Recover));
264 
265  // MemorySanitizer inserts complex instrumentation that mostly follows
266  // the logic of the original code, but operates on "shadow" values.
267  // It can benefit from re-running some general purpose optimization passes.
268  if (Builder.OptLevel > 0) {
269  PM.add(createEarlyCSEPass());
270  PM.add(createReassociatePass());
271  PM.add(createLICMPass());
272  PM.add(createGVNPass());
273  PM.add(createInstructionCombiningPass());
274  PM.add(createDeadStoreEliminationPass());
275  }
276 }
277 
278 static void addThreadSanitizerPass(const PassManagerBuilder &Builder,
279  legacy::PassManagerBase &PM) {
280  PM.add(createThreadSanitizerPass());
281 }
282 
283 static void addDataFlowSanitizerPass(const PassManagerBuilder &Builder,
284  legacy::PassManagerBase &PM) {
285  const PassManagerBuilderWrapper &BuilderWrapper =
286  static_cast<const PassManagerBuilderWrapper&>(Builder);
287  const LangOptions &LangOpts = BuilderWrapper.getLangOpts();
288  PM.add(createDataFlowSanitizerPass(LangOpts.SanitizerBlacklistFiles));
289 }
290 
291 static void addEfficiencySanitizerPass(const PassManagerBuilder &Builder,
292  legacy::PassManagerBase &PM) {
293  const PassManagerBuilderWrapper &BuilderWrapper =
294  static_cast<const PassManagerBuilderWrapper&>(Builder);
295  const LangOptions &LangOpts = BuilderWrapper.getLangOpts();
296  EfficiencySanitizerOptions Opts;
297  if (LangOpts.Sanitize.has(SanitizerKind::EfficiencyCacheFrag))
298  Opts.ToolType = EfficiencySanitizerOptions::ESAN_CacheFrag;
299  else if (LangOpts.Sanitize.has(SanitizerKind::EfficiencyWorkingSet))
300  Opts.ToolType = EfficiencySanitizerOptions::ESAN_WorkingSet;
301  PM.add(createEfficiencySanitizerPass(Opts));
302 }
303 
304 static TargetLibraryInfoImpl *createTLII(llvm::Triple &TargetTriple,
305  const CodeGenOptions &CodeGenOpts) {
306  TargetLibraryInfoImpl *TLII = new TargetLibraryInfoImpl(TargetTriple);
307  if (!CodeGenOpts.SimplifyLibCalls)
308  TLII->disableAllFunctions();
309  else {
310  // Disable individual libc/libm calls in TargetLibraryInfo.
311  LibFunc F;
312  for (auto &FuncName : CodeGenOpts.getNoBuiltinFuncs())
313  if (TLII->getLibFunc(FuncName, F))
314  TLII->setUnavailable(F);
315  }
316 
317  switch (CodeGenOpts.getVecLib()) {
319  TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::Accelerate);
320  break;
322  TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::SVML);
323  break;
324  default:
325  break;
326  }
327  return TLII;
328 }
329 
330 static void addSymbolRewriterPass(const CodeGenOptions &Opts,
331  legacy::PassManager *MPM) {
332  llvm::SymbolRewriter::RewriteDescriptorList DL;
333 
334  llvm::SymbolRewriter::RewriteMapParser MapParser;
335  for (const auto &MapFile : Opts.RewriteMapFiles)
336  MapParser.parse(MapFile, &DL);
337 
338  MPM->add(createRewriteSymbolsPass(DL));
339 }
340 
341 static CodeGenOpt::Level getCGOptLevel(const CodeGenOptions &CodeGenOpts) {
342  switch (CodeGenOpts.OptimizationLevel) {
343  default:
344  llvm_unreachable("Invalid optimization level!");
345  case 0:
346  return CodeGenOpt::None;
347  case 1:
348  return CodeGenOpt::Less;
349  case 2:
350  return CodeGenOpt::Default; // O2/Os/Oz
351  case 3:
352  return CodeGenOpt::Aggressive;
353  }
354 }
355 
357 getCodeModel(const CodeGenOptions &CodeGenOpts) {
358  unsigned CodeModel = llvm::StringSwitch<unsigned>(CodeGenOpts.CodeModel)
359  .Case("small", llvm::CodeModel::Small)
360  .Case("kernel", llvm::CodeModel::Kernel)
361  .Case("medium", llvm::CodeModel::Medium)
362  .Case("large", llvm::CodeModel::Large)
363  .Case("default", ~1u)
364  .Default(~0u);
365  assert(CodeModel != ~0u && "invalid code model!");
366  if (CodeModel == ~1u)
367  return None;
368  return static_cast<llvm::CodeModel::Model>(CodeModel);
369 }
370 
371 static TargetMachine::CodeGenFileType getCodeGenFileType(BackendAction Action) {
372  if (Action == Backend_EmitObj)
373  return TargetMachine::CGFT_ObjectFile;
374  else if (Action == Backend_EmitMCNull)
375  return TargetMachine::CGFT_Null;
376  else {
377  assert(Action == Backend_EmitAssembly && "Invalid action!");
378  return TargetMachine::CGFT_AssemblyFile;
379  }
380 }
381 
382 static void initTargetOptions(llvm::TargetOptions &Options,
383  const CodeGenOptions &CodeGenOpts,
384  const clang::TargetOptions &TargetOpts,
385  const LangOptions &LangOpts,
386  const HeaderSearchOptions &HSOpts) {
387  Options.ThreadModel =
388  llvm::StringSwitch<llvm::ThreadModel::Model>(CodeGenOpts.ThreadModel)
389  .Case("posix", llvm::ThreadModel::POSIX)
390  .Case("single", llvm::ThreadModel::Single);
391 
392  // Set float ABI type.
393  assert((CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp" ||
394  CodeGenOpts.FloatABI == "hard" || CodeGenOpts.FloatABI.empty()) &&
395  "Invalid Floating Point ABI!");
396  Options.FloatABIType =
397  llvm::StringSwitch<llvm::FloatABI::ABIType>(CodeGenOpts.FloatABI)
398  .Case("soft", llvm::FloatABI::Soft)
399  .Case("softfp", llvm::FloatABI::Soft)
400  .Case("hard", llvm::FloatABI::Hard)
401  .Default(llvm::FloatABI::Default);
402 
403  // Set FP fusion mode.
404  switch (LangOpts.getDefaultFPContractMode()) {
406  // Preserve any contraction performed by the front-end. (Strict performs
407  // splitting of the muladd instrinsic in the backend.)
408  Options.AllowFPOpFusion = llvm::FPOpFusion::Standard;
409  break;
410  case LangOptions::FPC_On:
411  Options.AllowFPOpFusion = llvm::FPOpFusion::Standard;
412  break;
414  Options.AllowFPOpFusion = llvm::FPOpFusion::Fast;
415  break;
416  }
417 
418  Options.UseInitArray = CodeGenOpts.UseInitArray;
419  Options.DisableIntegratedAS = CodeGenOpts.DisableIntegratedAS;
420  Options.CompressDebugSections = CodeGenOpts.getCompressDebugSections();
421  Options.RelaxELFRelocations = CodeGenOpts.RelaxELFRelocations;
422 
423  // Set EABI version.
424  Options.EABIVersion = TargetOpts.EABIVersion;
425 
426  if (LangOpts.SjLjExceptions)
427  Options.ExceptionModel = llvm::ExceptionHandling::SjLj;
428  if (LangOpts.SEHExceptions)
429  Options.ExceptionModel = llvm::ExceptionHandling::WinEH;
430  if (LangOpts.DWARFExceptions)
431  Options.ExceptionModel = llvm::ExceptionHandling::DwarfCFI;
432 
433  Options.NoInfsFPMath = CodeGenOpts.NoInfsFPMath;
434  Options.NoNaNsFPMath = CodeGenOpts.NoNaNsFPMath;
435  Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS;
436  Options.UnsafeFPMath = CodeGenOpts.UnsafeFPMath;
437  Options.StackAlignmentOverride = CodeGenOpts.StackAlignment;
438  Options.FunctionSections = CodeGenOpts.FunctionSections;
439  Options.DataSections = CodeGenOpts.DataSections;
440  Options.UniqueSectionNames = CodeGenOpts.UniqueSectionNames;
441  Options.EmulatedTLS = CodeGenOpts.EmulatedTLS;
442  Options.ExplicitEmulatedTLS = CodeGenOpts.ExplicitEmulatedTLS;
443  Options.DebuggerTuning = CodeGenOpts.getDebuggerTuning();
444  Options.EmitStackSizeSection = CodeGenOpts.StackSizeSection;
445 
446  if (CodeGenOpts.EnableSplitDwarf)
447  Options.MCOptions.SplitDwarfFile = CodeGenOpts.SplitDwarfFile;
448  Options.MCOptions.MCRelaxAll = CodeGenOpts.RelaxAll;
449  Options.MCOptions.MCSaveTempLabels = CodeGenOpts.SaveTempLabels;
450  Options.MCOptions.MCUseDwarfDirectory = !CodeGenOpts.NoDwarfDirectoryAsm;
451  Options.MCOptions.MCNoExecStack = CodeGenOpts.NoExecStack;
452  Options.MCOptions.MCIncrementalLinkerCompatible =
453  CodeGenOpts.IncrementalLinkerCompatible;
454  Options.MCOptions.MCPIECopyRelocations = CodeGenOpts.PIECopyRelocations;
455  Options.MCOptions.MCFatalWarnings = CodeGenOpts.FatalWarnings;
456  Options.MCOptions.AsmVerbose = CodeGenOpts.AsmVerbose;
457  Options.MCOptions.PreserveAsmComments = CodeGenOpts.PreserveAsmComments;
458  Options.MCOptions.ABIName = TargetOpts.ABI;
459  for (const auto &Entry : HSOpts.UserEntries)
460  if (!Entry.IsFramework &&
461  (Entry.Group == frontend::IncludeDirGroup::Quoted ||
462  Entry.Group == frontend::IncludeDirGroup::Angled ||
463  Entry.Group == frontend::IncludeDirGroup::System))
464  Options.MCOptions.IASSearchPaths.push_back(
465  Entry.IgnoreSysRoot ? Entry.Path : HSOpts.Sysroot + Entry.Path);
466 }
468  if (CodeGenOpts.DisableGCov)
469  return None;
470  if (!CodeGenOpts.EmitGcovArcs && !CodeGenOpts.EmitGcovNotes)
471  return None;
472  // Not using 'GCOVOptions::getDefault' allows us to avoid exiting if
473  // LLVM's -default-gcov-version flag is set to something invalid.
474  GCOVOptions Options;
475  Options.EmitNotes = CodeGenOpts.EmitGcovNotes;
476  Options.EmitData = CodeGenOpts.EmitGcovArcs;
477  llvm::copy(CodeGenOpts.CoverageVersion, std::begin(Options.Version));
478  Options.UseCfgChecksum = CodeGenOpts.CoverageExtraChecksum;
479  Options.NoRedZone = CodeGenOpts.DisableRedZone;
480  Options.FunctionNamesInData = !CodeGenOpts.CoverageNoFunctionNamesInData;
481  Options.ExitBlockBeforeBody = CodeGenOpts.CoverageExitBlockBeforeBody;
482  return Options;
483 }
484 
485 void EmitAssemblyHelper::CreatePasses(legacy::PassManager &MPM,
486  legacy::FunctionPassManager &FPM) {
487  // Handle disabling of all LLVM passes, where we want to preserve the
488  // internal module before any optimization.
489  if (CodeGenOpts.DisableLLVMPasses)
490  return;
491 
492  // Figure out TargetLibraryInfo. This needs to be added to MPM and FPM
493  // manually (and not via PMBuilder), since some passes (eg. InstrProfiling)
494  // are inserted before PMBuilder ones - they'd get the default-constructed
495  // TLI with an unknown target otherwise.
496  Triple TargetTriple(TheModule->getTargetTriple());
497  std::unique_ptr<TargetLibraryInfoImpl> TLII(
498  createTLII(TargetTriple, CodeGenOpts));
499 
500  PassManagerBuilderWrapper PMBuilder(TargetTriple, CodeGenOpts, LangOpts);
501 
502  // At O0 and O1 we only run the always inliner which is more efficient. At
503  // higher optimization levels we run the normal inliner.
504  if (CodeGenOpts.OptimizationLevel <= 1) {
505  bool InsertLifetimeIntrinsics = (CodeGenOpts.OptimizationLevel != 0 &&
506  !CodeGenOpts.DisableLifetimeMarkers);
507  PMBuilder.Inliner = createAlwaysInlinerLegacyPass(InsertLifetimeIntrinsics);
508  } else {
509  // We do not want to inline hot callsites for SamplePGO module-summary build
510  // because profile annotation will happen again in ThinLTO backend, and we
511  // want the IR of the hot path to match the profile.
512  PMBuilder.Inliner = createFunctionInliningPass(
513  CodeGenOpts.OptimizationLevel, CodeGenOpts.OptimizeSize,
514  (!CodeGenOpts.SampleProfileFile.empty() &&
515  CodeGenOpts.EmitSummaryIndex));
516  }
517 
518  PMBuilder.OptLevel = CodeGenOpts.OptimizationLevel;
519  PMBuilder.SizeLevel = CodeGenOpts.OptimizeSize;
520  PMBuilder.SLPVectorize = CodeGenOpts.VectorizeSLP;
521  PMBuilder.LoopVectorize = CodeGenOpts.VectorizeLoop;
522 
523  PMBuilder.DisableUnrollLoops = !CodeGenOpts.UnrollLoops;
524  PMBuilder.MergeFunctions = CodeGenOpts.MergeFunctions;
525  PMBuilder.PrepareForThinLTO = CodeGenOpts.EmitSummaryIndex;
526  PMBuilder.PrepareForLTO = CodeGenOpts.PrepareForLTO;
527  PMBuilder.RerollLoops = CodeGenOpts.RerollLoops;
528 
529  MPM.add(new TargetLibraryInfoWrapperPass(*TLII));
530 
531  if (TM)
532  TM->adjustPassManager(PMBuilder);
533 
534  if (CodeGenOpts.DebugInfoForProfiling ||
535  !CodeGenOpts.SampleProfileFile.empty())
536  PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible,
538 
539  // In ObjC ARC mode, add the main ARC optimization passes.
540  if (LangOpts.ObjCAutoRefCount) {
541  PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible,
543  PMBuilder.addExtension(PassManagerBuilder::EP_ModuleOptimizerEarly,
545  PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate,
547  }
548 
549  if (LangOpts.CoroutinesTS)
550  addCoroutinePassesToExtensionPoints(PMBuilder);
551 
552  if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) {
553  PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate,
555  PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
557  }
558 
559  if (CodeGenOpts.SanitizeCoverageType ||
560  CodeGenOpts.SanitizeCoverageIndirectCalls ||
561  CodeGenOpts.SanitizeCoverageTraceCmp) {
562  PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
564  PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
566  }
567 
568  if (LangOpts.Sanitize.has(SanitizerKind::Address)) {
569  PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
571  PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
573  }
574 
575  if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) {
576  PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
578  PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
580  }
581 
582  if (LangOpts.Sanitize.has(SanitizerKind::HWAddress)) {
583  PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
585  PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
587  }
588 
589  if (LangOpts.Sanitize.has(SanitizerKind::KernelHWAddress)) {
590  PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
592  PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
594  }
595 
596  if (LangOpts.Sanitize.has(SanitizerKind::Memory)) {
597  PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
599  PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
601  }
602 
603  if (LangOpts.Sanitize.has(SanitizerKind::Thread)) {
604  PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
606  PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
608  }
609 
610  if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) {
611  PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
613  PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
615  }
616 
617  if (LangOpts.Sanitize.hasOneOf(SanitizerKind::Efficiency)) {
618  PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
620  PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
622  }
623 
624  // Set up the per-function pass manager.
625  FPM.add(new TargetLibraryInfoWrapperPass(*TLII));
626  if (CodeGenOpts.VerifyModule)
627  FPM.add(createVerifierPass());
628 
629  // Set up the per-module pass manager.
630  if (!CodeGenOpts.RewriteMapFiles.empty())
631  addSymbolRewriterPass(CodeGenOpts, &MPM);
632 
633  if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) {
634  MPM.add(createGCOVProfilerPass(*Options));
635  if (CodeGenOpts.getDebugInfo() == codegenoptions::NoDebugInfo)
636  MPM.add(createStripSymbolsPass(true));
637  }
638 
639  if (CodeGenOpts.hasProfileClangInstr()) {
640  InstrProfOptions Options;
641  Options.NoRedZone = CodeGenOpts.DisableRedZone;
642  Options.InstrProfileOutput = CodeGenOpts.InstrProfileOutput;
643  MPM.add(createInstrProfilingLegacyPass(Options));
644  }
645  if (CodeGenOpts.hasProfileIRInstr()) {
646  PMBuilder.EnablePGOInstrGen = true;
647  if (!CodeGenOpts.InstrProfileOutput.empty())
648  PMBuilder.PGOInstrGen = CodeGenOpts.InstrProfileOutput;
649  else
650  PMBuilder.PGOInstrGen = DefaultProfileGenName;
651  }
652  if (CodeGenOpts.hasProfileIRUse())
653  PMBuilder.PGOInstrUse = CodeGenOpts.ProfileInstrumentUsePath;
654 
655  if (!CodeGenOpts.SampleProfileFile.empty())
656  PMBuilder.PGOSampleUse = CodeGenOpts.SampleProfileFile;
657 
658  PMBuilder.populateFunctionPassManager(FPM);
659  PMBuilder.populateModulePassManager(MPM);
660 }
661 
662 static void setCommandLineOpts(const CodeGenOptions &CodeGenOpts) {
663  SmallVector<const char *, 16> BackendArgs;
664  BackendArgs.push_back("clang"); // Fake program name.
665  if (!CodeGenOpts.DebugPass.empty()) {
666  BackendArgs.push_back("-debug-pass");
667  BackendArgs.push_back(CodeGenOpts.DebugPass.c_str());
668  }
669  if (!CodeGenOpts.LimitFloatPrecision.empty()) {
670  BackendArgs.push_back("-limit-float-precision");
671  BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str());
672  }
673  BackendArgs.push_back(nullptr);
674  llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1,
675  BackendArgs.data());
676 }
677 
678 void EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) {
679  // Create the TargetMachine for generating code.
680  std::string Error;
681  std::string Triple = TheModule->getTargetTriple();
682  const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error);
683  if (!TheTarget) {
684  if (MustCreateTM)
685  Diags.Report(diag::err_fe_unable_to_create_target) << Error;
686  return;
687  }
688 
690  std::string FeaturesStr =
691  llvm::join(TargetOpts.Features.begin(), TargetOpts.Features.end(), ",");
692  llvm::Reloc::Model RM = CodeGenOpts.RelocationModel;
693  CodeGenOpt::Level OptLevel = getCGOptLevel(CodeGenOpts);
694 
695  llvm::TargetOptions Options;
696  initTargetOptions(Options, CodeGenOpts, TargetOpts, LangOpts, HSOpts);
697  TM.reset(TheTarget->createTargetMachine(Triple, TargetOpts.CPU, FeaturesStr,
698  Options, RM, CM, OptLevel));
699 }
700 
701 bool EmitAssemblyHelper::AddEmitPasses(legacy::PassManager &CodeGenPasses,
702  BackendAction Action,
703  raw_pwrite_stream &OS) {
704  // Add LibraryInfo.
705  llvm::Triple TargetTriple(TheModule->getTargetTriple());
706  std::unique_ptr<TargetLibraryInfoImpl> TLII(
707  createTLII(TargetTriple, CodeGenOpts));
708  CodeGenPasses.add(new TargetLibraryInfoWrapperPass(*TLII));
709 
710  // Normal mode, emit a .s or .o file by running the code generator. Note,
711  // this also adds codegenerator level optimization passes.
712  TargetMachine::CodeGenFileType CGFT = getCodeGenFileType(Action);
713 
714  // Add ObjC ARC final-cleanup optimizations. This is done as part of the
715  // "codegen" passes so that it isn't run multiple times when there is
716  // inlining happening.
717  if (CodeGenOpts.OptimizationLevel > 0)
718  CodeGenPasses.add(createObjCARCContractPass());
719 
720  if (TM->addPassesToEmitFile(CodeGenPasses, OS, CGFT,
721  /*DisableVerify=*/!CodeGenOpts.VerifyModule)) {
722  Diags.Report(diag::err_fe_unable_to_interface_with_target);
723  return false;
724  }
725 
726  return true;
727 }
728 
730  std::unique_ptr<raw_pwrite_stream> OS) {
731  TimeRegion Region(llvm::TimePassesIsEnabled ? &CodeGenerationTime : nullptr);
732 
733  setCommandLineOpts(CodeGenOpts);
734 
735  bool UsesCodeGen = (Action != Backend_EmitNothing &&
736  Action != Backend_EmitBC &&
737  Action != Backend_EmitLL);
738  CreateTargetMachine(UsesCodeGen);
739 
740  if (UsesCodeGen && !TM)
741  return;
742  if (TM)
743  TheModule->setDataLayout(TM->createDataLayout());
744 
745  legacy::PassManager PerModulePasses;
746  PerModulePasses.add(
747  createTargetTransformInfoWrapperPass(getTargetIRAnalysis()));
748 
749  legacy::FunctionPassManager PerFunctionPasses(TheModule);
750  PerFunctionPasses.add(
751  createTargetTransformInfoWrapperPass(getTargetIRAnalysis()));
752 
753  CreatePasses(PerModulePasses, PerFunctionPasses);
754 
755  legacy::PassManager CodeGenPasses;
756  CodeGenPasses.add(
757  createTargetTransformInfoWrapperPass(getTargetIRAnalysis()));
758 
759  std::unique_ptr<raw_fd_ostream> ThinLinkOS;
760 
761  switch (Action) {
762  case Backend_EmitNothing:
763  break;
764 
765  case Backend_EmitBC:
766  if (CodeGenOpts.EmitSummaryIndex) {
767  if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) {
768  std::error_code EC;
769  ThinLinkOS.reset(new llvm::raw_fd_ostream(
770  CodeGenOpts.ThinLinkBitcodeFile, EC,
771  llvm::sys::fs::F_None));
772  if (EC) {
773  Diags.Report(diag::err_fe_unable_to_open_output) << CodeGenOpts.ThinLinkBitcodeFile
774  << EC.message();
775  return;
776  }
777  }
778  PerModulePasses.add(
779  createWriteThinLTOBitcodePass(*OS, ThinLinkOS.get()));
780  }
781  else
782  PerModulePasses.add(
783  createBitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists));
784  break;
785 
786  case Backend_EmitLL:
787  PerModulePasses.add(
788  createPrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists));
789  break;
790 
791  default:
792  if (!AddEmitPasses(CodeGenPasses, Action, *OS))
793  return;
794  }
795 
796  // Before executing passes, print the final values of the LLVM options.
797  cl::PrintOptionValues();
798 
799  // Run passes. For now we do all passes at once, but eventually we
800  // would like to have the option of streaming code generation.
801 
802  {
803  PrettyStackTraceString CrashInfo("Per-function optimization");
804 
805  PerFunctionPasses.doInitialization();
806  for (Function &F : *TheModule)
807  if (!F.isDeclaration())
808  PerFunctionPasses.run(F);
809  PerFunctionPasses.doFinalization();
810  }
811 
812  {
813  PrettyStackTraceString CrashInfo("Per-module optimization passes");
814  PerModulePasses.run(*TheModule);
815  }
816 
817  {
818  PrettyStackTraceString CrashInfo("Code generation");
819  CodeGenPasses.run(*TheModule);
820  }
821 }
822 
823 static PassBuilder::OptimizationLevel mapToLevel(const CodeGenOptions &Opts) {
824  switch (Opts.OptimizationLevel) {
825  default:
826  llvm_unreachable("Invalid optimization level!");
827 
828  case 1:
829  return PassBuilder::O1;
830 
831  case 2:
832  switch (Opts.OptimizeSize) {
833  default:
834  llvm_unreachable("Invalid optimization level for size!");
835 
836  case 0:
837  return PassBuilder::O2;
838 
839  case 1:
840  return PassBuilder::Os;
841 
842  case 2:
843  return PassBuilder::Oz;
844  }
845 
846  case 3:
847  return PassBuilder::O3;
848  }
849 }
850 
851 /// A clean version of `EmitAssembly` that uses the new pass manager.
852 ///
853 /// Not all features are currently supported in this system, but where
854 /// necessary it falls back to the legacy pass manager to at least provide
855 /// basic functionality.
856 ///
857 /// This API is planned to have its functionality finished and then to replace
858 /// `EmitAssembly` at some point in the future when the default switches.
859 void EmitAssemblyHelper::EmitAssemblyWithNewPassManager(
860  BackendAction Action, std::unique_ptr<raw_pwrite_stream> OS) {
861  TimeRegion Region(llvm::TimePassesIsEnabled ? &CodeGenerationTime : nullptr);
862  setCommandLineOpts(CodeGenOpts);
863 
864  // The new pass manager always makes a target machine available to passes
865  // during construction.
866  CreateTargetMachine(/*MustCreateTM*/ true);
867  if (!TM)
868  // This will already be diagnosed, just bail.
869  return;
870  TheModule->setDataLayout(TM->createDataLayout());
871 
872  Optional<PGOOptions> PGOOpt;
873 
874  if (CodeGenOpts.hasProfileIRInstr())
875  // -fprofile-generate.
876  PGOOpt = PGOOptions(CodeGenOpts.InstrProfileOutput.empty()
877  ? DefaultProfileGenName
878  : CodeGenOpts.InstrProfileOutput,
879  "", "", true, CodeGenOpts.DebugInfoForProfiling);
880  else if (CodeGenOpts.hasProfileIRUse())
881  // -fprofile-use.
882  PGOOpt = PGOOptions("", CodeGenOpts.ProfileInstrumentUsePath, "", false,
883  CodeGenOpts.DebugInfoForProfiling);
884  else if (!CodeGenOpts.SampleProfileFile.empty())
885  // -fprofile-sample-use
886  PGOOpt = PGOOptions("", "", CodeGenOpts.SampleProfileFile, false,
887  CodeGenOpts.DebugInfoForProfiling);
888  else if (CodeGenOpts.DebugInfoForProfiling)
889  // -fdebug-info-for-profiling
890  PGOOpt = PGOOptions("", "", "", false, true);
891 
892  PassBuilder PB(TM.get(), PGOOpt);
893 
894  LoopAnalysisManager LAM(CodeGenOpts.DebugPassManager);
895  FunctionAnalysisManager FAM(CodeGenOpts.DebugPassManager);
896  CGSCCAnalysisManager CGAM(CodeGenOpts.DebugPassManager);
897  ModuleAnalysisManager MAM(CodeGenOpts.DebugPassManager);
898 
899  // Register the AA manager first so that our version is the one used.
900  FAM.registerPass([&] { return PB.buildDefaultAAPipeline(); });
901 
902  // Register the target library analysis directly and give it a customized
903  // preset TLI.
904  Triple TargetTriple(TheModule->getTargetTriple());
905  std::unique_ptr<TargetLibraryInfoImpl> TLII(
906  createTLII(TargetTriple, CodeGenOpts));
907  FAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); });
908  MAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); });
909 
910  // Register all the basic analyses with the managers.
911  PB.registerModuleAnalyses(MAM);
912  PB.registerCGSCCAnalyses(CGAM);
913  PB.registerFunctionAnalyses(FAM);
914  PB.registerLoopAnalyses(LAM);
915  PB.crossRegisterProxies(LAM, FAM, CGAM, MAM);
916 
917  ModulePassManager MPM(CodeGenOpts.DebugPassManager);
918 
919  if (!CodeGenOpts.DisableLLVMPasses) {
920  bool IsThinLTO = CodeGenOpts.EmitSummaryIndex;
921  bool IsLTO = CodeGenOpts.PrepareForLTO;
922 
923  if (CodeGenOpts.OptimizationLevel == 0) {
924  if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts))
925  MPM.addPass(GCOVProfilerPass(*Options));
926 
927  // Build a minimal pipeline based on the semantics required by Clang,
928  // which is just that always inlining occurs.
929  MPM.addPass(AlwaysInlinerPass());
930 
931  // At -O0 we directly run necessary sanitizer passes.
932  if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds))
933  MPM.addPass(createModuleToFunctionPassAdaptor(BoundsCheckingPass()));
934 
935  // Lastly, add a semantically necessary pass for ThinLTO.
936  if (IsThinLTO)
937  MPM.addPass(NameAnonGlobalPass());
938  } else {
939  // Map our optimization levels into one of the distinct levels used to
940  // configure the pipeline.
941  PassBuilder::OptimizationLevel Level = mapToLevel(CodeGenOpts);
942 
943  // Register callbacks to schedule sanitizer passes at the appropriate part of
944  // the pipeline.
945  if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds))
946  PB.registerScalarOptimizerLateEPCallback(
947  [](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) {
948  FPM.addPass(BoundsCheckingPass());
949  });
950  if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts))
951  PB.registerPipelineStartEPCallback([Options](ModulePassManager &MPM) {
952  MPM.addPass(GCOVProfilerPass(*Options));
953  });
954 
955  if (IsThinLTO) {
956  MPM = PB.buildThinLTOPreLinkDefaultPipeline(
957  Level, CodeGenOpts.DebugPassManager);
958  MPM.addPass(NameAnonGlobalPass());
959  } else if (IsLTO) {
960  MPM = PB.buildLTOPreLinkDefaultPipeline(Level,
961  CodeGenOpts.DebugPassManager);
962  } else {
963  MPM = PB.buildPerModuleDefaultPipeline(Level,
964  CodeGenOpts.DebugPassManager);
965  }
966  }
967  }
968 
969  // FIXME: We still use the legacy pass manager to do code generation. We
970  // create that pass manager here and use it as needed below.
971  legacy::PassManager CodeGenPasses;
972  bool NeedCodeGen = false;
973  Optional<raw_fd_ostream> ThinLinkOS;
974 
975  // Append any output we need to the pass manager.
976  switch (Action) {
977  case Backend_EmitNothing:
978  break;
979 
980  case Backend_EmitBC:
981  if (CodeGenOpts.EmitSummaryIndex) {
982  if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) {
983  std::error_code EC;
984  ThinLinkOS.emplace(CodeGenOpts.ThinLinkBitcodeFile, EC,
985  llvm::sys::fs::F_None);
986  if (EC) {
987  Diags.Report(diag::err_fe_unable_to_open_output)
988  << CodeGenOpts.ThinLinkBitcodeFile << EC.message();
989  return;
990  }
991  }
992  MPM.addPass(
993  ThinLTOBitcodeWriterPass(*OS, ThinLinkOS ? &*ThinLinkOS : nullptr));
994  } else {
995  MPM.addPass(BitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists,
996  CodeGenOpts.EmitSummaryIndex,
997  CodeGenOpts.EmitSummaryIndex));
998  }
999  break;
1000 
1001  case Backend_EmitLL:
1002  MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists));
1003  break;
1004 
1005  case Backend_EmitAssembly:
1006  case Backend_EmitMCNull:
1007  case Backend_EmitObj:
1008  NeedCodeGen = true;
1009  CodeGenPasses.add(
1010  createTargetTransformInfoWrapperPass(getTargetIRAnalysis()));
1011  if (!AddEmitPasses(CodeGenPasses, Action, *OS))
1012  // FIXME: Should we handle this error differently?
1013  return;
1014  break;
1015  }
1016 
1017  // Before executing passes, print the final values of the LLVM options.
1018  cl::PrintOptionValues();
1019 
1020  // Now that we have all of the passes ready, run them.
1021  {
1022  PrettyStackTraceString CrashInfo("Optimizer");
1023  MPM.run(*TheModule, MAM);
1024  }
1025 
1026  // Now if needed, run the legacy PM for codegen.
1027  if (NeedCodeGen) {
1028  PrettyStackTraceString CrashInfo("Code generation");
1029  CodeGenPasses.run(*TheModule);
1030  }
1031 }
1032 
1033 Expected<BitcodeModule> clang::FindThinLTOModule(MemoryBufferRef MBRef) {
1034  Expected<std::vector<BitcodeModule>> BMsOrErr = getBitcodeModuleList(MBRef);
1035  if (!BMsOrErr)
1036  return BMsOrErr.takeError();
1037 
1038  // The bitcode file may contain multiple modules, we want the one that is
1039  // marked as being the ThinLTO module.
1040  if (const BitcodeModule *Bm = FindThinLTOModule(*BMsOrErr))
1041  return *Bm;
1042 
1043  return make_error<StringError>("Could not find module summary",
1044  inconvertibleErrorCode());
1045 }
1046 
1048  for (BitcodeModule &BM : BMs) {
1049  Expected<BitcodeLTOInfo> LTOInfo = BM.getLTOInfo();
1050  if (LTOInfo && LTOInfo->IsThinLTO)
1051  return &BM;
1052  }
1053  return nullptr;
1054 }
1055 
1056 static void runThinLTOBackend(ModuleSummaryIndex *CombinedIndex, Module *M,
1057  const HeaderSearchOptions &HeaderOpts,
1058  const CodeGenOptions &CGOpts,
1059  const clang::TargetOptions &TOpts,
1060  const LangOptions &LOpts,
1061  std::unique_ptr<raw_pwrite_stream> OS,
1062  std::string SampleProfile,
1063  BackendAction Action) {
1064  StringMap<DenseMap<GlobalValue::GUID, GlobalValueSummary *>>
1065  ModuleToDefinedGVSummaries;
1066  CombinedIndex->collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries);
1067 
1068  setCommandLineOpts(CGOpts);
1069 
1070  // We can simply import the values mentioned in the combined index, since
1071  // we should only invoke this using the individual indexes written out
1072  // via a WriteIndexesThinBackend.
1073  FunctionImporter::ImportMapTy ImportList;
1074  for (auto &GlobalList : *CombinedIndex) {
1075  // Ignore entries for undefined references.
1076  if (GlobalList.second.SummaryList.empty())
1077  continue;
1078 
1079  auto GUID = GlobalList.first;
1080  assert(GlobalList.second.SummaryList.size() == 1 &&
1081  "Expected individual combined index to have one summary per GUID");
1082  auto &Summary = GlobalList.second.SummaryList[0];
1083  // Skip the summaries for the importing module. These are included to
1084  // e.g. record required linkage changes.
1085  if (Summary->modulePath() == M->getModuleIdentifier())
1086  continue;
1087  // Doesn't matter what value we plug in to the map, just needs an entry
1088  // to provoke importing by thinBackend.
1089  ImportList[Summary->modulePath()][GUID] = 1;
1090  }
1091 
1092  std::vector<std::unique_ptr<llvm::MemoryBuffer>> OwnedImports;
1093  MapVector<llvm::StringRef, llvm::BitcodeModule> ModuleMap;
1094 
1095  for (auto &I : ImportList) {
1096  ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> MBOrErr =
1097  llvm::MemoryBuffer::getFile(I.first());
1098  if (!MBOrErr) {
1099  errs() << "Error loading imported file '" << I.first()
1100  << "': " << MBOrErr.getError().message() << "\n";
1101  return;
1102  }
1103 
1104  Expected<BitcodeModule> BMOrErr = FindThinLTOModule(**MBOrErr);
1105  if (!BMOrErr) {
1106  handleAllErrors(BMOrErr.takeError(), [&](ErrorInfoBase &EIB) {
1107  errs() << "Error loading imported file '" << I.first()
1108  << "': " << EIB.message() << '\n';
1109  });
1110  return;
1111  }
1112  ModuleMap.insert({I.first(), *BMOrErr});
1113 
1114  OwnedImports.push_back(std::move(*MBOrErr));
1115  }
1116  auto AddStream = [&](size_t Task) {
1117  return llvm::make_unique<lto::NativeObjectStream>(std::move(OS));
1118  };
1119  lto::Config Conf;
1120  if (CGOpts.SaveTempsFilePrefix != "") {
1121  if (Error E = Conf.addSaveTemps(CGOpts.SaveTempsFilePrefix + ".",
1122  /* UseInputModulePath */ false)) {
1123  handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) {
1124  errs() << "Error setting up ThinLTO save-temps: " << EIB.message()
1125  << '\n';
1126  });
1127  }
1128  }
1129  Conf.CPU = TOpts.CPU;
1130  Conf.CodeModel = getCodeModel(CGOpts);
1131  Conf.MAttrs = TOpts.Features;
1132  Conf.RelocModel = CGOpts.RelocationModel;
1133  Conf.CGOptLevel = getCGOptLevel(CGOpts);
1134  initTargetOptions(Conf.Options, CGOpts, TOpts, LOpts, HeaderOpts);
1135  Conf.SampleProfile = std::move(SampleProfile);
1136  Conf.UseNewPM = CGOpts.ExperimentalNewPassManager;
1137  Conf.DebugPassManager = CGOpts.DebugPassManager;
1138  switch (Action) {
1139  case Backend_EmitNothing:
1140  Conf.PreCodeGenModuleHook = [](size_t Task, const Module &Mod) {
1141  return false;
1142  };
1143  break;
1144  case Backend_EmitLL:
1145  Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) {
1146  M->print(*OS, nullptr, CGOpts.EmitLLVMUseLists);
1147  return false;
1148  };
1149  break;
1150  case Backend_EmitBC:
1151  Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) {
1152  WriteBitcodeToFile(*M, *OS, CGOpts.EmitLLVMUseLists);
1153  return false;
1154  };
1155  break;
1156  default:
1157  Conf.CGFileType = getCodeGenFileType(Action);
1158  break;
1159  }
1160  if (Error E = thinBackend(
1161  Conf, 0, AddStream, *M, *CombinedIndex, ImportList,
1162  ModuleToDefinedGVSummaries[M->getModuleIdentifier()], ModuleMap)) {
1163  handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) {
1164  errs() << "Error running ThinLTO backend: " << EIB.message() << '\n';
1165  });
1166  }
1167 }
1168 
1170  const HeaderSearchOptions &HeaderOpts,
1171  const CodeGenOptions &CGOpts,
1172  const clang::TargetOptions &TOpts,
1173  const LangOptions &LOpts,
1174  const llvm::DataLayout &TDesc, Module *M,
1175  BackendAction Action,
1176  std::unique_ptr<raw_pwrite_stream> OS) {
1177  std::unique_ptr<llvm::Module> EmptyModule;
1178  if (!CGOpts.ThinLTOIndexFile.empty()) {
1179  // If we are performing a ThinLTO importing compile, load the function index
1180  // into memory and pass it into runThinLTOBackend, which will run the
1181  // function importer and invoke LTO passes.
1183  llvm::getModuleSummaryIndexForFile(CGOpts.ThinLTOIndexFile,
1184  /*IgnoreEmptyThinLTOIndexFile*/true);
1185  if (!IndexOrErr) {
1186  logAllUnhandledErrors(IndexOrErr.takeError(), errs(),
1187  "Error loading index file '" +
1188  CGOpts.ThinLTOIndexFile + "': ");
1189  return;
1190  }
1191  std::unique_ptr<ModuleSummaryIndex> CombinedIndex = std::move(*IndexOrErr);
1192  // A null CombinedIndex means we should skip ThinLTO compilation
1193  // (LLVM will optionally ignore empty index files, returning null instead
1194  // of an error).
1195  if (CombinedIndex) {
1196  if (!CombinedIndex->skipModuleByDistributedBackend()) {
1197  runThinLTOBackend(CombinedIndex.get(), M, HeaderOpts, CGOpts, TOpts,
1198  LOpts, std::move(OS), CGOpts.SampleProfileFile,
1199  Action);
1200  return;
1201  }
1202  // Distributed indexing detected that nothing from the module is needed
1203  // for the final linking. So we can skip the compilation. We sill need to
1204  // output an empty object file to make sure that a linker does not fail
1205  // trying to read it. Also for some features, like CFI, we must skip
1206  // the compilation as CombinedIndex does not contain all required
1207  // information.
1208  EmptyModule = llvm::make_unique<llvm::Module>("empty", M->getContext());
1209  EmptyModule->setTargetTriple(M->getTargetTriple());
1210  M = EmptyModule.get();
1211  }
1212  }
1213 
1214  EmitAssemblyHelper AsmHelper(Diags, HeaderOpts, CGOpts, TOpts, LOpts, M);
1215 
1216  if (CGOpts.ExperimentalNewPassManager)
1217  AsmHelper.EmitAssemblyWithNewPassManager(Action, std::move(OS));
1218  else
1219  AsmHelper.EmitAssembly(Action, std::move(OS));
1220 
1221  // Verify clang's TargetInfo DataLayout against the LLVM TargetMachine's
1222  // DataLayout.
1223  if (AsmHelper.TM) {
1224  std::string DLDesc = M->getDataLayout().getStringRepresentation();
1225  if (DLDesc != TDesc.getStringRepresentation()) {
1226  unsigned DiagID = Diags.getCustomDiagID(
1227  DiagnosticsEngine::Error, "backend data layout '%0' does not match "
1228  "expected target description '%1'");
1229  Diags.Report(DiagID) << DLDesc << TDesc.getStringRepresentation();
1230  }
1231  }
1232 }
1233 
1234 static const char* getSectionNameForBitcode(const Triple &T) {
1235  switch (T.getObjectFormat()) {
1236  case Triple::MachO:
1237  return "__LLVM,__bitcode";
1238  case Triple::COFF:
1239  case Triple::ELF:
1240  case Triple::Wasm:
1241  case Triple::UnknownObjectFormat:
1242  return ".llvmbc";
1243  }
1244  llvm_unreachable("Unimplemented ObjectFormatType");
1245 }
1246 
1247 static const char* getSectionNameForCommandline(const Triple &T) {
1248  switch (T.getObjectFormat()) {
1249  case Triple::MachO:
1250  return "__LLVM,__cmdline";
1251  case Triple::COFF:
1252  case Triple::ELF:
1253  case Triple::Wasm:
1254  case Triple::UnknownObjectFormat:
1255  return ".llvmcmd";
1256  }
1257  llvm_unreachable("Unimplemented ObjectFormatType");
1258 }
1259 
1260 // With -fembed-bitcode, save a copy of the llvm IR as data in the
1261 // __LLVM,__bitcode section.
1262 void clang::EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts,
1263  llvm::MemoryBufferRef Buf) {
1264  if (CGOpts.getEmbedBitcode() == CodeGenOptions::Embed_Off)
1265  return;
1266 
1267  // Save llvm.compiler.used and remote it.
1268  SmallVector<Constant*, 2> UsedArray;
1269  SmallSet<GlobalValue*, 4> UsedGlobals;
1270  Type *UsedElementType = Type::getInt8Ty(M->getContext())->getPointerTo(0);
1271  GlobalVariable *Used = collectUsedGlobalVariables(*M, UsedGlobals, true);
1272  for (auto *GV : UsedGlobals) {
1273  if (GV->getName() != "llvm.embedded.module" &&
1274  GV->getName() != "llvm.cmdline")
1275  UsedArray.push_back(
1276  ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType));
1277  }
1278  if (Used)
1279  Used->eraseFromParent();
1280 
1281  // Embed the bitcode for the llvm module.
1282  std::string Data;
1283  ArrayRef<uint8_t> ModuleData;
1284  Triple T(M->getTargetTriple());
1285  // Create a constant that contains the bitcode.
1286  // In case of embedding a marker, ignore the input Buf and use the empty
1287  // ArrayRef. It is also legal to create a bitcode marker even Buf is empty.
1288  if (CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Marker) {
1289  if (!isBitcode((const unsigned char *)Buf.getBufferStart(),
1290  (const unsigned char *)Buf.getBufferEnd())) {
1291  // If the input is LLVM Assembly, bitcode is produced by serializing
1292  // the module. Use-lists order need to be perserved in this case.
1293  llvm::raw_string_ostream OS(Data);
1294  llvm::WriteBitcodeToFile(*M, OS, /* ShouldPreserveUseListOrder */ true);
1295  ModuleData =
1296  ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size());
1297  } else
1298  // If the input is LLVM bitcode, write the input byte stream directly.
1299  ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(),
1300  Buf.getBufferSize());
1301  }
1302  llvm::Constant *ModuleConstant =
1303  llvm::ConstantDataArray::get(M->getContext(), ModuleData);
1304  llvm::GlobalVariable *GV = new llvm::GlobalVariable(
1305  *M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage,
1306  ModuleConstant);
1307  GV->setSection(getSectionNameForBitcode(T));
1308  UsedArray.push_back(
1309  ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType));
1310  if (llvm::GlobalVariable *Old =
1311  M->getGlobalVariable("llvm.embedded.module", true)) {
1312  assert(Old->hasOneUse() &&
1313  "llvm.embedded.module can only be used once in llvm.compiler.used");
1314  GV->takeName(Old);
1315  Old->eraseFromParent();
1316  } else {
1317  GV->setName("llvm.embedded.module");
1318  }
1319 
1320  // Skip if only bitcode needs to be embedded.
1321  if (CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Bitcode) {
1322  // Embed command-line options.
1323  ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CGOpts.CmdArgs.data()),
1324  CGOpts.CmdArgs.size());
1325  llvm::Constant *CmdConstant =
1326  llvm::ConstantDataArray::get(M->getContext(), CmdData);
1327  GV = new llvm::GlobalVariable(*M, CmdConstant->getType(), true,
1328  llvm::GlobalValue::PrivateLinkage,
1329  CmdConstant);
1330  GV->setSection(getSectionNameForCommandline(T));
1331  UsedArray.push_back(
1332  ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType));
1333  if (llvm::GlobalVariable *Old =
1334  M->getGlobalVariable("llvm.cmdline", true)) {
1335  assert(Old->hasOneUse() &&
1336  "llvm.cmdline can only be used once in llvm.compiler.used");
1337  GV->takeName(Old);
1338  Old->eraseFromParent();
1339  } else {
1340  GV->setName("llvm.cmdline");
1341  }
1342  }
1343 
1344  if (UsedArray.empty())
1345  return;
1346 
1347  // Recreate llvm.compiler.used.
1348  ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size());
1349  auto *NewUsed = new GlobalVariable(
1350  *M, ATy, false, llvm::GlobalValue::AppendingLinkage,
1351  llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used");
1352  NewUsed->setSection("llvm.metadata");
1353 }
std::string ProfileInstrumentUsePath
Name of the profile file to use as input for -fprofile-instr-use.
static void runThinLTOBackend(ModuleSummaryIndex *CombinedIndex, Module *M, const HeaderSearchOptions &HeaderOpts, const CodeGenOptions &CGOpts, const clang::TargetOptions &TOpts, const LangOptions &LOpts, std::unique_ptr< raw_pwrite_stream > OS, std::string SampleProfile, BackendAction Action)
Paths for &#39;#include <>&#39; added by &#39;-I&#39;.
static void addObjCARCExpandPass(const PassManagerBuilder &Builder, PassManagerBase &PM)
if(T->getSizeExpr()) TRY_TO(TraverseStmt(T -> getSizeExpr()))
std::string SaveTempsFilePrefix
Prefix to use for -save-temps output.
Emit human-readable LLVM assembly.
Definition: BackendUtil.h:34
DominatorTree GraphTraits specialization so the DominatorTree can be iterable by generic graph iterat...
Definition: Dominators.h:30
Run CodeGen, but don&#39;t emit anything.
Definition: BackendUtil.h:36
SanitizerSet Sanitize
Set of enabled sanitizers.
Definition: LangOptions.h:142
The base class of the type hierarchy.
Definition: Type.h:1419
std::string SampleProfileFile
Name of the profile file to use with -fprofile-sample-use.
DiagnosticBuilder Report(SourceLocation Loc, unsigned DiagID)
Issue the message to the client.
Definition: Diagnostic.h:1294
Represents an array type, per C99 6.7.5.2 - Array Declarators.
Definition: Type.h:2627
static void addAddressSanitizerPasses(const PassManagerBuilder &Builder, legacy::PassManagerBase &PM)
static Optional< GCOVOptions > getGCOVOptions(const CodeGenOptions &CodeGenOpts)
std::vector< std::string > RewriteMapFiles
Set of files defining the rules for the symbol rewriting.
Don&#39;t emit anything (benchmarking mode)
Definition: BackendUtil.h:35
Options for controlling the target.
Definition: TargetOptions.h:26
std::string SplitDwarfFile
The name for the split debug info file that we&#39;ll break out.
std::string DebugPass
Enable additional debugging information.
SanitizerSet SanitizeRecover
Set of sanitizer checks that are non-fatal (i.e.
bool hasOneOf(SanitizerMask K) const
Check if one or more sanitizers are enabled.
Definition: Sanitizers.h:58
Emit LLVM bitcode files.
Definition: BackendUtil.h:33
std::vector< Entry > UserEntries
User specified include entries.
std::vector< uint8_t > CmdArgs
List of backend command-line options for -fembed-bitcode.
Keeps track of the various options that can be enabled, which controls the dialect of C or C++ that i...
Definition: LangOptions.h:50
std::string CodeModel
The code model to use (-mcmodel).
Describes a module or submodule.
Definition: Module.h:65
BackendAction
Definition: BackendUtil.h:31
Concrete class used by the front-end to report problems and issues.
Definition: Diagnostic.h:149
static void addThreadSanitizerPass(const PassManagerBuilder &Builder, legacy::PassManagerBase &PM)
Defines the Diagnostic-related interfaces.
static CodeGenOpt::Level getCGOptLevel(const CodeGenOptions &CodeGenOpts)
static void setCommandLineOpts(const CodeGenOptions &CodeGenOpts)
static void addSanitizerCoveragePass(const PassManagerBuilder &Builder, legacy::PassManagerBase &PM)
std::string FloatABI
The ABI to use for passing floating point arguments.
std::string ThreadModel
The thread model to use.
char CoverageVersion[4]
The version string to put into coverage files.
std::string LimitFloatPrecision
The float precision limit to use, if non-empty.
Defines the clang::LangOptions interface.
const FunctionProtoType * T
static void addHWAddressSanitizerPasses(const PassManagerBuilder &Builder, legacy::PassManagerBase &PM)
static void addObjCARCAPElimPass(const PassManagerBuilder &Builder, PassManagerBase &PM)
void print(raw_ostream &OS, unsigned Indent=0) const
Print the module map for this module to the given stream.
Definition: Module.cpp:373
static TargetLibraryInfoImpl * createTLII(llvm::Triple &TargetTriple, const CodeGenOptions &CodeGenOpts)
static void addKernelHWAddressSanitizerPasses(const PassManagerBuilder &Builder, legacy::PassManagerBase &PM)
Emit native object files.
Definition: BackendUtil.h:37
Emit native assembly files.
Definition: BackendUtil.h:32
std::string CPU
If given, the name of the target CPU to generate code for.
Definition: TargetOptions.h:36
std::string ABI
If given, the name of the target ABI to use.
Definition: TargetOptions.h:42
static void addKernelAddressSanitizerPasses(const PassManagerBuilder &Builder, legacy::PassManagerBase &PM)
static void addSymbolRewriterPass(const CodeGenOptions &Opts, legacy::PassManager *MPM)
static void addDataFlowSanitizerPass(const PassManagerBuilder &Builder, legacy::PassManagerBase &PM)
Defines the clang::TargetOptions class.
std::vector< std::string > Features
The list of target specific features to enable or disable – this should be a list of strings startin...
Definition: TargetOptions.h:55
static void initTargetOptions(llvm::TargetOptions &Options, const CodeGenOptions &CodeGenOpts, const clang::TargetOptions &TargetOpts, const LangOptions &LangOpts, const HeaderSearchOptions &HSOpts)
static bool asanUseGlobalsGC(const Triple &T, const CodeGenOptions &CGOpts)
unsigned getCustomDiagID(Level L, const char(&FormatString)[N])
Return an ID for a diagnostic with the specified format string and level.
Definition: Diagnostic.h:775
llvm::EABI EABIVersion
The EABI version to use.
Definition: TargetOptions.h:45
&#39;#include ""&#39; paths, added by &#39;gcc -iquote&#39;.
std::string ThinLTOIndexFile
Name of the function summary index file to use for ThinLTO function importing.
Like Angled, but marks system directories.
static TargetMachine::CodeGenFileType getCodeGenFileType(BackendAction Action)
void EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts, llvm::MemoryBufferRef Buf)
Dataflow Directional Tag Classes.
llvm::Reloc::Model RelocationModel
The name of the relocation model to use.
bool hasProfileIRUse() const
Check if IR level profile use is on.
void EmitBackendOutput(DiagnosticsEngine &Diags, const HeaderSearchOptions &, const CodeGenOptions &CGOpts, const TargetOptions &TOpts, const LangOptions &LOpts, const llvm::DataLayout &TDesc, llvm::Module *M, BackendAction Action, std::unique_ptr< raw_pwrite_stream > OS)
bool hasProfileClangInstr() const
Check if Clang profile instrumenation is on.
llvm::Expected< llvm::BitcodeModule > FindThinLTOModule(llvm::MemoryBufferRef MBRef)
static const char * getSectionNameForBitcode(const Triple &T)
static const char * getSectionNameForCommandline(const Triple &T)
void BuryPointer(const void *Ptr)
static void addBoundsCheckingPass(const PassManagerBuilder &Builder, legacy::PassManagerBase &PM)
static void addEfficiencySanitizerPass(const PassManagerBuilder &Builder, legacy::PassManagerBase &PM)
static Optional< llvm::CodeModel::Model > getCodeModel(const CodeGenOptions &CodeGenOpts)
CodeGenOptions - Track various options which control how the code is optimized and passed to the back...
static void addObjCARCOptPass(const PassManagerBuilder &Builder, PassManagerBase &PM)
bool hasProfileIRInstr() const
Check if IR level profile instrumentation is on.
const std::vector< std::string > & getNoBuiltinFuncs() const
bool has(SanitizerMask K) const
Check if a certain (single) sanitizer is enabled.
Definition: Sanitizers.h:52
StringLiteral - This represents a string literal expression, e.g.
Definition: Expr.h:1518
static void addAddDiscriminatorsPass(const PassManagerBuilder &Builder, legacy::PassManagerBase &PM)
HeaderSearchOptions - Helper class for storing options related to the initialization of the HeaderSea...
std::string InstrProfileOutput
Name of the profile file to use as output for -fprofile-instr-generate and -fprofile-generate.
std::string ThinLinkBitcodeFile
Name of a file that can optionally be written with minimized bitcode to be used as input for the Thin...
std::vector< std::string > SanitizerBlacklistFiles
Paths to blacklist files specifying which objects (files, functions, variables) should not be instrum...
Definition: LangOptions.h:146
std::string Sysroot
If non-empty, the directory to use as a "virtual system root" for include paths.
static void addMemorySanitizerPass(const PassManagerBuilder &Builder, legacy::PassManagerBase &PM)
static PassBuilder::OptimizationLevel mapToLevel(const CodeGenOptions &Opts)