clang  7.0.0svn
BackendUtil.cpp
Go to the documentation of this file.
1 //===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
11 #include "clang/Basic/Diagnostic.h"
16 #include "clang/Frontend/Utils.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/ADT/StringExtras.h"
20 #include "llvm/ADT/StringSwitch.h"
21 #include "llvm/ADT/Triple.h"
22 #include "llvm/Analysis/TargetLibraryInfo.h"
23 #include "llvm/Analysis/TargetTransformInfo.h"
24 #include "llvm/Bitcode/BitcodeReader.h"
25 #include "llvm/Bitcode/BitcodeWriter.h"
26 #include "llvm/Bitcode/BitcodeWriterPass.h"
27 #include "llvm/CodeGen/RegAllocRegistry.h"
28 #include "llvm/CodeGen/SchedulerRegistry.h"
29 #include "llvm/CodeGen/TargetSubtargetInfo.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/IRPrintingPasses.h"
32 #include "llvm/IR/LegacyPassManager.h"
33 #include "llvm/IR/Module.h"
34 #include "llvm/IR/ModuleSummaryIndex.h"
35 #include "llvm/IR/Verifier.h"
36 #include "llvm/LTO/LTOBackend.h"
37 #include "llvm/MC/MCAsmInfo.h"
38 #include "llvm/MC/SubtargetFeature.h"
39 #include "llvm/Passes/PassBuilder.h"
40 #include "llvm/Support/CommandLine.h"
41 #include "llvm/Support/MemoryBuffer.h"
42 #include "llvm/Support/PrettyStackTrace.h"
43 #include "llvm/Support/TargetRegistry.h"
44 #include "llvm/Support/Timer.h"
45 #include "llvm/Support/raw_ostream.h"
46 #include "llvm/Target/TargetMachine.h"
47 #include "llvm/Target/TargetOptions.h"
48 #include "llvm/Transforms/Coroutines.h"
49 #include "llvm/Transforms/IPO.h"
50 #include "llvm/Transforms/IPO/AlwaysInliner.h"
51 #include "llvm/Transforms/IPO/PassManagerBuilder.h"
52 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h"
53 #include "llvm/Transforms/InstCombine/InstCombine.h"
54 #include "llvm/Transforms/Instrumentation.h"
55 #include "llvm/Transforms/Instrumentation/BoundsChecking.h"
56 #include "llvm/Transforms/Instrumentation/GCOVProfiler.h"
57 #include "llvm/Transforms/ObjCARC.h"
58 #include "llvm/Transforms/Scalar.h"
59 #include "llvm/Transforms/Scalar/GVN.h"
60 #include "llvm/Transforms/Utils.h"
61 #include "llvm/Transforms/Utils/NameAnonGlobals.h"
62 #include "llvm/Transforms/Utils/SymbolRewriter.h"
63 #include <memory>
64 using namespace clang;
65 using namespace llvm;
66 
67 namespace {
68 
69 // Default filename used for profile generation.
70 static constexpr StringLiteral DefaultProfileGenName = "default_%m.profraw";
71 
72 class EmitAssemblyHelper {
73  DiagnosticsEngine &Diags;
74  const HeaderSearchOptions &HSOpts;
75  const CodeGenOptions &CodeGenOpts;
76  const clang::TargetOptions &TargetOpts;
77  const LangOptions &LangOpts;
78  Module *TheModule;
79 
80  Timer CodeGenerationTime;
81 
82  std::unique_ptr<raw_pwrite_stream> OS;
83 
84  TargetIRAnalysis getTargetIRAnalysis() const {
85  if (TM)
86  return TM->getTargetIRAnalysis();
87 
88  return TargetIRAnalysis();
89  }
90 
91  void CreatePasses(legacy::PassManager &MPM, legacy::FunctionPassManager &FPM);
92 
93  /// Generates the TargetMachine.
94  /// Leaves TM unchanged if it is unable to create the target machine.
95  /// Some of our clang tests specify triples which are not built
96  /// into clang. This is okay because these tests check the generated
97  /// IR, and they require DataLayout which depends on the triple.
98  /// In this case, we allow this method to fail and not report an error.
99  /// When MustCreateTM is used, we print an error if we are unable to load
100  /// the requested target.
101  void CreateTargetMachine(bool MustCreateTM);
102 
103  /// Add passes necessary to emit assembly or LLVM IR.
104  ///
105  /// \return True on success.
106  bool AddEmitPasses(legacy::PassManager &CodeGenPasses, BackendAction Action,
107  raw_pwrite_stream &OS, raw_pwrite_stream *DwoOS);
108 
109  std::unique_ptr<llvm::ToolOutputFile> openOutputFile(StringRef Path) {
110  std::error_code EC;
111  auto F = llvm::make_unique<llvm::ToolOutputFile>(Path, EC,
112  llvm::sys::fs::F_None);
113  if (EC) {
114  Diags.Report(diag::err_fe_unable_to_open_output) << Path << EC.message();
115  F.reset();
116  }
117  return F;
118  }
119 
120 public:
121  EmitAssemblyHelper(DiagnosticsEngine &_Diags,
122  const HeaderSearchOptions &HeaderSearchOpts,
123  const CodeGenOptions &CGOpts,
124  const clang::TargetOptions &TOpts,
125  const LangOptions &LOpts, Module *M)
126  : Diags(_Diags), HSOpts(HeaderSearchOpts), CodeGenOpts(CGOpts),
127  TargetOpts(TOpts), LangOpts(LOpts), TheModule(M),
128  CodeGenerationTime("codegen", "Code Generation Time") {}
129 
130  ~EmitAssemblyHelper() {
131  if (CodeGenOpts.DisableFree)
132  BuryPointer(std::move(TM));
133  }
134 
135  std::unique_ptr<TargetMachine> TM;
136 
137  void EmitAssembly(BackendAction Action,
138  std::unique_ptr<raw_pwrite_stream> OS);
139 
140  void EmitAssemblyWithNewPassManager(BackendAction Action,
141  std::unique_ptr<raw_pwrite_stream> OS);
142 };
143 
144 // We need this wrapper to access LangOpts and CGOpts from extension functions
145 // that we add to the PassManagerBuilder.
146 class PassManagerBuilderWrapper : public PassManagerBuilder {
147 public:
148  PassManagerBuilderWrapper(const Triple &TargetTriple,
149  const CodeGenOptions &CGOpts,
150  const LangOptions &LangOpts)
151  : PassManagerBuilder(), TargetTriple(TargetTriple), CGOpts(CGOpts),
152  LangOpts(LangOpts) {}
153  const Triple &getTargetTriple() const { return TargetTriple; }
154  const CodeGenOptions &getCGOpts() const { return CGOpts; }
155  const LangOptions &getLangOpts() const { return LangOpts; }
156 
157 private:
158  const Triple &TargetTriple;
159  const CodeGenOptions &CGOpts;
160  const LangOptions &LangOpts;
161 };
162 }
163 
164 static void addObjCARCAPElimPass(const PassManagerBuilder &Builder, PassManagerBase &PM) {
165  if (Builder.OptLevel > 0)
166  PM.add(createObjCARCAPElimPass());
167 }
168 
169 static void addObjCARCExpandPass(const PassManagerBuilder &Builder, PassManagerBase &PM) {
170  if (Builder.OptLevel > 0)
171  PM.add(createObjCARCExpandPass());
172 }
173 
174 static void addObjCARCOptPass(const PassManagerBuilder &Builder, PassManagerBase &PM) {
175  if (Builder.OptLevel > 0)
176  PM.add(createObjCARCOptPass());
177 }
178 
179 static void addAddDiscriminatorsPass(const PassManagerBuilder &Builder,
180  legacy::PassManagerBase &PM) {
181  PM.add(createAddDiscriminatorsPass());
182 }
183 
184 static void addBoundsCheckingPass(const PassManagerBuilder &Builder,
185  legacy::PassManagerBase &PM) {
186  PM.add(createBoundsCheckingLegacyPass());
187 }
188 
189 static void addSanitizerCoveragePass(const PassManagerBuilder &Builder,
190  legacy::PassManagerBase &PM) {
191  const PassManagerBuilderWrapper &BuilderWrapper =
192  static_cast<const PassManagerBuilderWrapper&>(Builder);
193  const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts();
194  SanitizerCoverageOptions Opts;
195  Opts.CoverageType =
196  static_cast<SanitizerCoverageOptions::Type>(CGOpts.SanitizeCoverageType);
197  Opts.IndirectCalls = CGOpts.SanitizeCoverageIndirectCalls;
198  Opts.TraceBB = CGOpts.SanitizeCoverageTraceBB;
199  Opts.TraceCmp = CGOpts.SanitizeCoverageTraceCmp;
200  Opts.TraceDiv = CGOpts.SanitizeCoverageTraceDiv;
201  Opts.TraceGep = CGOpts.SanitizeCoverageTraceGep;
202  Opts.Use8bitCounters = CGOpts.SanitizeCoverage8bitCounters;
203  Opts.TracePC = CGOpts.SanitizeCoverageTracePC;
204  Opts.TracePCGuard = CGOpts.SanitizeCoverageTracePCGuard;
205  Opts.NoPrune = CGOpts.SanitizeCoverageNoPrune;
206  Opts.Inline8bitCounters = CGOpts.SanitizeCoverageInline8bitCounters;
207  Opts.PCTable = CGOpts.SanitizeCoveragePCTable;
208  Opts.StackDepth = CGOpts.SanitizeCoverageStackDepth;
209  PM.add(createSanitizerCoverageModulePass(Opts));
210 }
211 
212 // Check if ASan should use GC-friendly instrumentation for globals.
213 // First of all, there is no point if -fdata-sections is off (expect for MachO,
214 // where this is not a factor). Also, on ELF this feature requires an assembler
215 // extension that only works with -integrated-as at the moment.
216 static bool asanUseGlobalsGC(const Triple &T, const CodeGenOptions &CGOpts) {
217  if (!CGOpts.SanitizeAddressGlobalsDeadStripping)
218  return false;
219  switch (T.getObjectFormat()) {
220  case Triple::MachO:
221  case Triple::COFF:
222  return true;
223  case Triple::ELF:
224  return CGOpts.DataSections && !CGOpts.DisableIntegratedAS;
225  default:
226  return false;
227  }
228 }
229 
230 static void addAddressSanitizerPasses(const PassManagerBuilder &Builder,
231  legacy::PassManagerBase &PM) {
232  const PassManagerBuilderWrapper &BuilderWrapper =
233  static_cast<const PassManagerBuilderWrapper&>(Builder);
234  const Triple &T = BuilderWrapper.getTargetTriple();
235  const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts();
236  bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Address);
237  bool UseAfterScope = CGOpts.SanitizeAddressUseAfterScope;
238  bool UseGlobalsGC = asanUseGlobalsGC(T, CGOpts);
239  PM.add(createAddressSanitizerFunctionPass(/*CompileKernel*/ false, Recover,
240  UseAfterScope));
241  PM.add(createAddressSanitizerModulePass(/*CompileKernel*/ false, Recover,
242  UseGlobalsGC));
243 }
244 
245 static void addKernelAddressSanitizerPasses(const PassManagerBuilder &Builder,
246  legacy::PassManagerBase &PM) {
247  PM.add(createAddressSanitizerFunctionPass(
248  /*CompileKernel*/ true, /*Recover*/ true, /*UseAfterScope*/ false));
249  PM.add(createAddressSanitizerModulePass(
250  /*CompileKernel*/ true, /*Recover*/ true));
251 }
252 
253 static void addHWAddressSanitizerPasses(const PassManagerBuilder &Builder,
254  legacy::PassManagerBase &PM) {
255  const PassManagerBuilderWrapper &BuilderWrapper =
256  static_cast<const PassManagerBuilderWrapper &>(Builder);
257  const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts();
258  bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::HWAddress);
259  PM.add(createHWAddressSanitizerPass(/*CompileKernel*/ false, Recover));
260 }
261 
262 static void addKernelHWAddressSanitizerPasses(const PassManagerBuilder &Builder,
263  legacy::PassManagerBase &PM) {
264  PM.add(createHWAddressSanitizerPass(
265  /*CompileKernel*/ true, /*Recover*/ true));
266 }
267 
268 static void addMemorySanitizerPass(const PassManagerBuilder &Builder,
269  legacy::PassManagerBase &PM) {
270  const PassManagerBuilderWrapper &BuilderWrapper =
271  static_cast<const PassManagerBuilderWrapper&>(Builder);
272  const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts();
273  int TrackOrigins = CGOpts.SanitizeMemoryTrackOrigins;
274  bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Memory);
275  PM.add(createMemorySanitizerPass(TrackOrigins, Recover));
276 
277  // MemorySanitizer inserts complex instrumentation that mostly follows
278  // the logic of the original code, but operates on "shadow" values.
279  // It can benefit from re-running some general purpose optimization passes.
280  if (Builder.OptLevel > 0) {
281  PM.add(createEarlyCSEPass());
282  PM.add(createReassociatePass());
283  PM.add(createLICMPass());
284  PM.add(createGVNPass());
285  PM.add(createInstructionCombiningPass());
286  PM.add(createDeadStoreEliminationPass());
287  }
288 }
289 
290 static void addThreadSanitizerPass(const PassManagerBuilder &Builder,
291  legacy::PassManagerBase &PM) {
292  PM.add(createThreadSanitizerPass());
293 }
294 
295 static void addDataFlowSanitizerPass(const PassManagerBuilder &Builder,
296  legacy::PassManagerBase &PM) {
297  const PassManagerBuilderWrapper &BuilderWrapper =
298  static_cast<const PassManagerBuilderWrapper&>(Builder);
299  const LangOptions &LangOpts = BuilderWrapper.getLangOpts();
300  PM.add(createDataFlowSanitizerPass(LangOpts.SanitizerBlacklistFiles));
301 }
302 
303 static void addEfficiencySanitizerPass(const PassManagerBuilder &Builder,
304  legacy::PassManagerBase &PM) {
305  const PassManagerBuilderWrapper &BuilderWrapper =
306  static_cast<const PassManagerBuilderWrapper&>(Builder);
307  const LangOptions &LangOpts = BuilderWrapper.getLangOpts();
308  EfficiencySanitizerOptions Opts;
309  if (LangOpts.Sanitize.has(SanitizerKind::EfficiencyCacheFrag))
310  Opts.ToolType = EfficiencySanitizerOptions::ESAN_CacheFrag;
311  else if (LangOpts.Sanitize.has(SanitizerKind::EfficiencyWorkingSet))
312  Opts.ToolType = EfficiencySanitizerOptions::ESAN_WorkingSet;
313  PM.add(createEfficiencySanitizerPass(Opts));
314 }
315 
316 static TargetLibraryInfoImpl *createTLII(llvm::Triple &TargetTriple,
317  const CodeGenOptions &CodeGenOpts) {
318  TargetLibraryInfoImpl *TLII = new TargetLibraryInfoImpl(TargetTriple);
319  if (!CodeGenOpts.SimplifyLibCalls)
320  TLII->disableAllFunctions();
321  else {
322  // Disable individual libc/libm calls in TargetLibraryInfo.
323  LibFunc F;
324  for (auto &FuncName : CodeGenOpts.getNoBuiltinFuncs())
325  if (TLII->getLibFunc(FuncName, F))
326  TLII->setUnavailable(F);
327  }
328 
329  switch (CodeGenOpts.getVecLib()) {
331  TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::Accelerate);
332  break;
334  TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::SVML);
335  break;
336  default:
337  break;
338  }
339  return TLII;
340 }
341 
342 static void addSymbolRewriterPass(const CodeGenOptions &Opts,
343  legacy::PassManager *MPM) {
344  llvm::SymbolRewriter::RewriteDescriptorList DL;
345 
346  llvm::SymbolRewriter::RewriteMapParser MapParser;
347  for (const auto &MapFile : Opts.RewriteMapFiles)
348  MapParser.parse(MapFile, &DL);
349 
350  MPM->add(createRewriteSymbolsPass(DL));
351 }
352 
353 static CodeGenOpt::Level getCGOptLevel(const CodeGenOptions &CodeGenOpts) {
354  switch (CodeGenOpts.OptimizationLevel) {
355  default:
356  llvm_unreachable("Invalid optimization level!");
357  case 0:
358  return CodeGenOpt::None;
359  case 1:
360  return CodeGenOpt::Less;
361  case 2:
362  return CodeGenOpt::Default; // O2/Os/Oz
363  case 3:
364  return CodeGenOpt::Aggressive;
365  }
366 }
367 
369 getCodeModel(const CodeGenOptions &CodeGenOpts) {
370  unsigned CodeModel = llvm::StringSwitch<unsigned>(CodeGenOpts.CodeModel)
371  .Case("small", llvm::CodeModel::Small)
372  .Case("kernel", llvm::CodeModel::Kernel)
373  .Case("medium", llvm::CodeModel::Medium)
374  .Case("large", llvm::CodeModel::Large)
375  .Case("default", ~1u)
376  .Default(~0u);
377  assert(CodeModel != ~0u && "invalid code model!");
378  if (CodeModel == ~1u)
379  return None;
380  return static_cast<llvm::CodeModel::Model>(CodeModel);
381 }
382 
383 static TargetMachine::CodeGenFileType getCodeGenFileType(BackendAction Action) {
384  if (Action == Backend_EmitObj)
385  return TargetMachine::CGFT_ObjectFile;
386  else if (Action == Backend_EmitMCNull)
387  return TargetMachine::CGFT_Null;
388  else {
389  assert(Action == Backend_EmitAssembly && "Invalid action!");
390  return TargetMachine::CGFT_AssemblyFile;
391  }
392 }
393 
394 static void initTargetOptions(llvm::TargetOptions &Options,
395  const CodeGenOptions &CodeGenOpts,
396  const clang::TargetOptions &TargetOpts,
397  const LangOptions &LangOpts,
398  const HeaderSearchOptions &HSOpts) {
399  Options.ThreadModel =
400  llvm::StringSwitch<llvm::ThreadModel::Model>(CodeGenOpts.ThreadModel)
401  .Case("posix", llvm::ThreadModel::POSIX)
402  .Case("single", llvm::ThreadModel::Single);
403 
404  // Set float ABI type.
405  assert((CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp" ||
406  CodeGenOpts.FloatABI == "hard" || CodeGenOpts.FloatABI.empty()) &&
407  "Invalid Floating Point ABI!");
408  Options.FloatABIType =
409  llvm::StringSwitch<llvm::FloatABI::ABIType>(CodeGenOpts.FloatABI)
410  .Case("soft", llvm::FloatABI::Soft)
411  .Case("softfp", llvm::FloatABI::Soft)
412  .Case("hard", llvm::FloatABI::Hard)
413  .Default(llvm::FloatABI::Default);
414 
415  // Set FP fusion mode.
416  switch (LangOpts.getDefaultFPContractMode()) {
418  // Preserve any contraction performed by the front-end. (Strict performs
419  // splitting of the muladd instrinsic in the backend.)
420  Options.AllowFPOpFusion = llvm::FPOpFusion::Standard;
421  break;
422  case LangOptions::FPC_On:
423  Options.AllowFPOpFusion = llvm::FPOpFusion::Standard;
424  break;
426  Options.AllowFPOpFusion = llvm::FPOpFusion::Fast;
427  break;
428  }
429 
430  Options.UseInitArray = CodeGenOpts.UseInitArray;
431  Options.DisableIntegratedAS = CodeGenOpts.DisableIntegratedAS;
432  Options.CompressDebugSections = CodeGenOpts.getCompressDebugSections();
433  Options.RelaxELFRelocations = CodeGenOpts.RelaxELFRelocations;
434 
435  // Set EABI version.
436  Options.EABIVersion = TargetOpts.EABIVersion;
437 
438  if (LangOpts.SjLjExceptions)
439  Options.ExceptionModel = llvm::ExceptionHandling::SjLj;
440  if (LangOpts.SEHExceptions)
441  Options.ExceptionModel = llvm::ExceptionHandling::WinEH;
442  if (LangOpts.DWARFExceptions)
443  Options.ExceptionModel = llvm::ExceptionHandling::DwarfCFI;
444 
445  Options.NoInfsFPMath = CodeGenOpts.NoInfsFPMath;
446  Options.NoNaNsFPMath = CodeGenOpts.NoNaNsFPMath;
447  Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS;
448  Options.UnsafeFPMath = CodeGenOpts.UnsafeFPMath;
449  Options.StackAlignmentOverride = CodeGenOpts.StackAlignment;
450  Options.FunctionSections = CodeGenOpts.FunctionSections;
451  Options.DataSections = CodeGenOpts.DataSections;
452  Options.UniqueSectionNames = CodeGenOpts.UniqueSectionNames;
453  Options.EmulatedTLS = CodeGenOpts.EmulatedTLS;
454  Options.ExplicitEmulatedTLS = CodeGenOpts.ExplicitEmulatedTLS;
455  Options.DebuggerTuning = CodeGenOpts.getDebuggerTuning();
456  Options.EmitStackSizeSection = CodeGenOpts.StackSizeSection;
457  Options.EmitAddrsig = CodeGenOpts.Addrsig;
458 
459  if (CodeGenOpts.EnableSplitDwarf)
460  Options.MCOptions.SplitDwarfFile = CodeGenOpts.SplitDwarfFile;
461  Options.MCOptions.MCRelaxAll = CodeGenOpts.RelaxAll;
462  Options.MCOptions.MCSaveTempLabels = CodeGenOpts.SaveTempLabels;
463  Options.MCOptions.MCUseDwarfDirectory = !CodeGenOpts.NoDwarfDirectoryAsm;
464  Options.MCOptions.MCNoExecStack = CodeGenOpts.NoExecStack;
465  Options.MCOptions.MCIncrementalLinkerCompatible =
466  CodeGenOpts.IncrementalLinkerCompatible;
467  Options.MCOptions.MCPIECopyRelocations = CodeGenOpts.PIECopyRelocations;
468  Options.MCOptions.MCFatalWarnings = CodeGenOpts.FatalWarnings;
469  Options.MCOptions.AsmVerbose = CodeGenOpts.AsmVerbose;
470  Options.MCOptions.PreserveAsmComments = CodeGenOpts.PreserveAsmComments;
471  Options.MCOptions.ABIName = TargetOpts.ABI;
472  for (const auto &Entry : HSOpts.UserEntries)
473  if (!Entry.IsFramework &&
474  (Entry.Group == frontend::IncludeDirGroup::Quoted ||
475  Entry.Group == frontend::IncludeDirGroup::Angled ||
476  Entry.Group == frontend::IncludeDirGroup::System))
477  Options.MCOptions.IASSearchPaths.push_back(
478  Entry.IgnoreSysRoot ? Entry.Path : HSOpts.Sysroot + Entry.Path);
479 }
481  if (CodeGenOpts.DisableGCov)
482  return None;
483  if (!CodeGenOpts.EmitGcovArcs && !CodeGenOpts.EmitGcovNotes)
484  return None;
485  // Not using 'GCOVOptions::getDefault' allows us to avoid exiting if
486  // LLVM's -default-gcov-version flag is set to something invalid.
487  GCOVOptions Options;
488  Options.EmitNotes = CodeGenOpts.EmitGcovNotes;
489  Options.EmitData = CodeGenOpts.EmitGcovArcs;
490  llvm::copy(CodeGenOpts.CoverageVersion, std::begin(Options.Version));
491  Options.UseCfgChecksum = CodeGenOpts.CoverageExtraChecksum;
492  Options.NoRedZone = CodeGenOpts.DisableRedZone;
493  Options.FunctionNamesInData = !CodeGenOpts.CoverageNoFunctionNamesInData;
494  Options.ExitBlockBeforeBody = CodeGenOpts.CoverageExitBlockBeforeBody;
495  return Options;
496 }
497 
498 void EmitAssemblyHelper::CreatePasses(legacy::PassManager &MPM,
499  legacy::FunctionPassManager &FPM) {
500  // Handle disabling of all LLVM passes, where we want to preserve the
501  // internal module before any optimization.
502  if (CodeGenOpts.DisableLLVMPasses)
503  return;
504 
505  // Figure out TargetLibraryInfo. This needs to be added to MPM and FPM
506  // manually (and not via PMBuilder), since some passes (eg. InstrProfiling)
507  // are inserted before PMBuilder ones - they'd get the default-constructed
508  // TLI with an unknown target otherwise.
509  Triple TargetTriple(TheModule->getTargetTriple());
510  std::unique_ptr<TargetLibraryInfoImpl> TLII(
511  createTLII(TargetTriple, CodeGenOpts));
512 
513  PassManagerBuilderWrapper PMBuilder(TargetTriple, CodeGenOpts, LangOpts);
514 
515  // At O0 and O1 we only run the always inliner which is more efficient. At
516  // higher optimization levels we run the normal inliner.
517  if (CodeGenOpts.OptimizationLevel <= 1) {
518  bool InsertLifetimeIntrinsics = (CodeGenOpts.OptimizationLevel != 0 &&
519  !CodeGenOpts.DisableLifetimeMarkers);
520  PMBuilder.Inliner = createAlwaysInlinerLegacyPass(InsertLifetimeIntrinsics);
521  } else {
522  // We do not want to inline hot callsites for SamplePGO module-summary build
523  // because profile annotation will happen again in ThinLTO backend, and we
524  // want the IR of the hot path to match the profile.
525  PMBuilder.Inliner = createFunctionInliningPass(
526  CodeGenOpts.OptimizationLevel, CodeGenOpts.OptimizeSize,
527  (!CodeGenOpts.SampleProfileFile.empty() &&
528  CodeGenOpts.PrepareForThinLTO));
529  }
530 
531  PMBuilder.OptLevel = CodeGenOpts.OptimizationLevel;
532  PMBuilder.SizeLevel = CodeGenOpts.OptimizeSize;
533  PMBuilder.SLPVectorize = CodeGenOpts.VectorizeSLP;
534  PMBuilder.LoopVectorize = CodeGenOpts.VectorizeLoop;
535 
536  PMBuilder.DisableUnrollLoops = !CodeGenOpts.UnrollLoops;
537  PMBuilder.MergeFunctions = CodeGenOpts.MergeFunctions;
538  PMBuilder.PrepareForThinLTO = CodeGenOpts.PrepareForThinLTO;
539  PMBuilder.PrepareForLTO = CodeGenOpts.PrepareForLTO;
540  PMBuilder.RerollLoops = CodeGenOpts.RerollLoops;
541 
542  MPM.add(new TargetLibraryInfoWrapperPass(*TLII));
543 
544  if (TM)
545  TM->adjustPassManager(PMBuilder);
546 
547  if (CodeGenOpts.DebugInfoForProfiling ||
548  !CodeGenOpts.SampleProfileFile.empty())
549  PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible,
551 
552  // In ObjC ARC mode, add the main ARC optimization passes.
553  if (LangOpts.ObjCAutoRefCount) {
554  PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible,
556  PMBuilder.addExtension(PassManagerBuilder::EP_ModuleOptimizerEarly,
558  PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate,
560  }
561 
562  if (LangOpts.CoroutinesTS)
563  addCoroutinePassesToExtensionPoints(PMBuilder);
564 
565  if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) {
566  PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate,
568  PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
570  }
571 
572  if (CodeGenOpts.SanitizeCoverageType ||
573  CodeGenOpts.SanitizeCoverageIndirectCalls ||
574  CodeGenOpts.SanitizeCoverageTraceCmp) {
575  PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
577  PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
579  }
580 
581  if (LangOpts.Sanitize.has(SanitizerKind::Address)) {
582  PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
584  PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
586  }
587 
588  if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) {
589  PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
591  PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
593  }
594 
595  if (LangOpts.Sanitize.has(SanitizerKind::HWAddress)) {
596  PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
598  PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
600  }
601 
602  if (LangOpts.Sanitize.has(SanitizerKind::KernelHWAddress)) {
603  PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
605  PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
607  }
608 
609  if (LangOpts.Sanitize.has(SanitizerKind::Memory)) {
610  PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
612  PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
614  }
615 
616  if (LangOpts.Sanitize.has(SanitizerKind::Thread)) {
617  PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
619  PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
621  }
622 
623  if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) {
624  PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
626  PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
628  }
629 
630  if (LangOpts.Sanitize.hasOneOf(SanitizerKind::Efficiency)) {
631  PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
633  PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
635  }
636 
637  // Set up the per-function pass manager.
638  FPM.add(new TargetLibraryInfoWrapperPass(*TLII));
639  if (CodeGenOpts.VerifyModule)
640  FPM.add(createVerifierPass());
641 
642  // Set up the per-module pass manager.
643  if (!CodeGenOpts.RewriteMapFiles.empty())
644  addSymbolRewriterPass(CodeGenOpts, &MPM);
645 
646  if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) {
647  MPM.add(createGCOVProfilerPass(*Options));
648  if (CodeGenOpts.getDebugInfo() == codegenoptions::NoDebugInfo)
649  MPM.add(createStripSymbolsPass(true));
650  }
651 
652  if (CodeGenOpts.hasProfileClangInstr()) {
653  InstrProfOptions Options;
654  Options.NoRedZone = CodeGenOpts.DisableRedZone;
655  Options.InstrProfileOutput = CodeGenOpts.InstrProfileOutput;
656  MPM.add(createInstrProfilingLegacyPass(Options));
657  }
658  if (CodeGenOpts.hasProfileIRInstr()) {
659  PMBuilder.EnablePGOInstrGen = true;
660  if (!CodeGenOpts.InstrProfileOutput.empty())
661  PMBuilder.PGOInstrGen = CodeGenOpts.InstrProfileOutput;
662  else
663  PMBuilder.PGOInstrGen = DefaultProfileGenName;
664  }
665  if (CodeGenOpts.hasProfileIRUse())
666  PMBuilder.PGOInstrUse = CodeGenOpts.ProfileInstrumentUsePath;
667 
668  if (!CodeGenOpts.SampleProfileFile.empty())
669  PMBuilder.PGOSampleUse = CodeGenOpts.SampleProfileFile;
670 
671  PMBuilder.populateFunctionPassManager(FPM);
672  PMBuilder.populateModulePassManager(MPM);
673 }
674 
675 static void setCommandLineOpts(const CodeGenOptions &CodeGenOpts) {
676  SmallVector<const char *, 16> BackendArgs;
677  BackendArgs.push_back("clang"); // Fake program name.
678  if (!CodeGenOpts.DebugPass.empty()) {
679  BackendArgs.push_back("-debug-pass");
680  BackendArgs.push_back(CodeGenOpts.DebugPass.c_str());
681  }
682  if (!CodeGenOpts.LimitFloatPrecision.empty()) {
683  BackendArgs.push_back("-limit-float-precision");
684  BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str());
685  }
686  BackendArgs.push_back(nullptr);
687  llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1,
688  BackendArgs.data());
689 }
690 
691 void EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) {
692  // Create the TargetMachine for generating code.
693  std::string Error;
694  std::string Triple = TheModule->getTargetTriple();
695  const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error);
696  if (!TheTarget) {
697  if (MustCreateTM)
698  Diags.Report(diag::err_fe_unable_to_create_target) << Error;
699  return;
700  }
701 
703  std::string FeaturesStr =
704  llvm::join(TargetOpts.Features.begin(), TargetOpts.Features.end(), ",");
705  llvm::Reloc::Model RM = CodeGenOpts.RelocationModel;
706  CodeGenOpt::Level OptLevel = getCGOptLevel(CodeGenOpts);
707 
708  llvm::TargetOptions Options;
709  initTargetOptions(Options, CodeGenOpts, TargetOpts, LangOpts, HSOpts);
710  TM.reset(TheTarget->createTargetMachine(Triple, TargetOpts.CPU, FeaturesStr,
711  Options, RM, CM, OptLevel));
712 }
713 
714 bool EmitAssemblyHelper::AddEmitPasses(legacy::PassManager &CodeGenPasses,
715  BackendAction Action,
716  raw_pwrite_stream &OS,
717  raw_pwrite_stream *DwoOS) {
718  // Add LibraryInfo.
719  llvm::Triple TargetTriple(TheModule->getTargetTriple());
720  std::unique_ptr<TargetLibraryInfoImpl> TLII(
721  createTLII(TargetTriple, CodeGenOpts));
722  CodeGenPasses.add(new TargetLibraryInfoWrapperPass(*TLII));
723 
724  // Normal mode, emit a .s or .o file by running the code generator. Note,
725  // this also adds codegenerator level optimization passes.
726  TargetMachine::CodeGenFileType CGFT = getCodeGenFileType(Action);
727 
728  // Add ObjC ARC final-cleanup optimizations. This is done as part of the
729  // "codegen" passes so that it isn't run multiple times when there is
730  // inlining happening.
731  if (CodeGenOpts.OptimizationLevel > 0)
732  CodeGenPasses.add(createObjCARCContractPass());
733 
734  if (TM->addPassesToEmitFile(CodeGenPasses, OS, DwoOS, CGFT,
735  /*DisableVerify=*/!CodeGenOpts.VerifyModule)) {
736  Diags.Report(diag::err_fe_unable_to_interface_with_target);
737  return false;
738  }
739 
740  return true;
741 }
742 
744  std::unique_ptr<raw_pwrite_stream> OS) {
745  TimeRegion Region(FrontendTimesIsEnabled ? &CodeGenerationTime : nullptr);
746 
747  setCommandLineOpts(CodeGenOpts);
748 
749  bool UsesCodeGen = (Action != Backend_EmitNothing &&
750  Action != Backend_EmitBC &&
751  Action != Backend_EmitLL);
752  CreateTargetMachine(UsesCodeGen);
753 
754  if (UsesCodeGen && !TM)
755  return;
756  if (TM)
757  TheModule->setDataLayout(TM->createDataLayout());
758 
759  legacy::PassManager PerModulePasses;
760  PerModulePasses.add(
761  createTargetTransformInfoWrapperPass(getTargetIRAnalysis()));
762 
763  legacy::FunctionPassManager PerFunctionPasses(TheModule);
764  PerFunctionPasses.add(
765  createTargetTransformInfoWrapperPass(getTargetIRAnalysis()));
766 
767  CreatePasses(PerModulePasses, PerFunctionPasses);
768 
769  legacy::PassManager CodeGenPasses;
770  CodeGenPasses.add(
771  createTargetTransformInfoWrapperPass(getTargetIRAnalysis()));
772 
773  std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS;
774 
775  switch (Action) {
776  case Backend_EmitNothing:
777  break;
778 
779  case Backend_EmitBC:
780  if (CodeGenOpts.PrepareForThinLTO) {
781  if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) {
782  ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile);
783  if (!ThinLinkOS)
784  return;
785  }
786  PerModulePasses.add(createWriteThinLTOBitcodePass(
787  *OS, ThinLinkOS ? &ThinLinkOS->os() : nullptr));
788  } else {
789  // Emit a module summary by default for Regular LTO except for ld64
790  // targets
791  bool EmitLTOSummary =
792  (CodeGenOpts.PrepareForLTO &&
793  llvm::Triple(TheModule->getTargetTriple()).getVendor() !=
794  llvm::Triple::Apple);
795  if (EmitLTOSummary && !TheModule->getModuleFlag("ThinLTO"))
796  TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0));
797 
798  PerModulePasses.add(
799  createBitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists,
800  EmitLTOSummary));
801  }
802  break;
803 
804  case Backend_EmitLL:
805  PerModulePasses.add(
806  createPrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists));
807  break;
808 
809  default:
810  if (!CodeGenOpts.SplitDwarfFile.empty()) {
811  DwoOS = openOutputFile(CodeGenOpts.SplitDwarfFile);
812  if (!DwoOS)
813  return;
814  }
815  if (!AddEmitPasses(CodeGenPasses, Action, *OS,
816  DwoOS ? &DwoOS->os() : nullptr))
817  return;
818  }
819 
820  // Before executing passes, print the final values of the LLVM options.
821  cl::PrintOptionValues();
822 
823  // Run passes. For now we do all passes at once, but eventually we
824  // would like to have the option of streaming code generation.
825 
826  {
827  PrettyStackTraceString CrashInfo("Per-function optimization");
828 
829  PerFunctionPasses.doInitialization();
830  for (Function &F : *TheModule)
831  if (!F.isDeclaration())
832  PerFunctionPasses.run(F);
833  PerFunctionPasses.doFinalization();
834  }
835 
836  {
837  PrettyStackTraceString CrashInfo("Per-module optimization passes");
838  PerModulePasses.run(*TheModule);
839  }
840 
841  {
842  PrettyStackTraceString CrashInfo("Code generation");
843  CodeGenPasses.run(*TheModule);
844  }
845 
846  if (ThinLinkOS)
847  ThinLinkOS->keep();
848  if (DwoOS)
849  DwoOS->keep();
850 }
851 
852 static PassBuilder::OptimizationLevel mapToLevel(const CodeGenOptions &Opts) {
853  switch (Opts.OptimizationLevel) {
854  default:
855  llvm_unreachable("Invalid optimization level!");
856 
857  case 1:
858  return PassBuilder::O1;
859 
860  case 2:
861  switch (Opts.OptimizeSize) {
862  default:
863  llvm_unreachable("Invalid optimization level for size!");
864 
865  case 0:
866  return PassBuilder::O2;
867 
868  case 1:
869  return PassBuilder::Os;
870 
871  case 2:
872  return PassBuilder::Oz;
873  }
874 
875  case 3:
876  return PassBuilder::O3;
877  }
878 }
879 
880 /// A clean version of `EmitAssembly` that uses the new pass manager.
881 ///
882 /// Not all features are currently supported in this system, but where
883 /// necessary it falls back to the legacy pass manager to at least provide
884 /// basic functionality.
885 ///
886 /// This API is planned to have its functionality finished and then to replace
887 /// `EmitAssembly` at some point in the future when the default switches.
888 void EmitAssemblyHelper::EmitAssemblyWithNewPassManager(
889  BackendAction Action, std::unique_ptr<raw_pwrite_stream> OS) {
890  TimeRegion Region(FrontendTimesIsEnabled ? &CodeGenerationTime : nullptr);
891  setCommandLineOpts(CodeGenOpts);
892 
893  // The new pass manager always makes a target machine available to passes
894  // during construction.
895  CreateTargetMachine(/*MustCreateTM*/ true);
896  if (!TM)
897  // This will already be diagnosed, just bail.
898  return;
899  TheModule->setDataLayout(TM->createDataLayout());
900 
901  Optional<PGOOptions> PGOOpt;
902 
903  if (CodeGenOpts.hasProfileIRInstr())
904  // -fprofile-generate.
905  PGOOpt = PGOOptions(CodeGenOpts.InstrProfileOutput.empty()
906  ? DefaultProfileGenName
907  : CodeGenOpts.InstrProfileOutput,
908  "", "", true, CodeGenOpts.DebugInfoForProfiling);
909  else if (CodeGenOpts.hasProfileIRUse())
910  // -fprofile-use.
911  PGOOpt = PGOOptions("", CodeGenOpts.ProfileInstrumentUsePath, "", false,
912  CodeGenOpts.DebugInfoForProfiling);
913  else if (!CodeGenOpts.SampleProfileFile.empty())
914  // -fprofile-sample-use
915  PGOOpt = PGOOptions("", "", CodeGenOpts.SampleProfileFile, false,
916  CodeGenOpts.DebugInfoForProfiling);
917  else if (CodeGenOpts.DebugInfoForProfiling)
918  // -fdebug-info-for-profiling
919  PGOOpt = PGOOptions("", "", "", false, true);
920 
921  PassBuilder PB(TM.get(), PGOOpt);
922 
923  LoopAnalysisManager LAM(CodeGenOpts.DebugPassManager);
924  FunctionAnalysisManager FAM(CodeGenOpts.DebugPassManager);
925  CGSCCAnalysisManager CGAM(CodeGenOpts.DebugPassManager);
926  ModuleAnalysisManager MAM(CodeGenOpts.DebugPassManager);
927 
928  // Register the AA manager first so that our version is the one used.
929  FAM.registerPass([&] { return PB.buildDefaultAAPipeline(); });
930 
931  // Register the target library analysis directly and give it a customized
932  // preset TLI.
933  Triple TargetTriple(TheModule->getTargetTriple());
934  std::unique_ptr<TargetLibraryInfoImpl> TLII(
935  createTLII(TargetTriple, CodeGenOpts));
936  FAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); });
937  MAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); });
938 
939  // Register all the basic analyses with the managers.
940  PB.registerModuleAnalyses(MAM);
941  PB.registerCGSCCAnalyses(CGAM);
942  PB.registerFunctionAnalyses(FAM);
943  PB.registerLoopAnalyses(LAM);
944  PB.crossRegisterProxies(LAM, FAM, CGAM, MAM);
945 
946  ModulePassManager MPM(CodeGenOpts.DebugPassManager);
947 
948  if (!CodeGenOpts.DisableLLVMPasses) {
949  bool IsThinLTO = CodeGenOpts.PrepareForThinLTO;
950  bool IsLTO = CodeGenOpts.PrepareForLTO;
951 
952  if (CodeGenOpts.OptimizationLevel == 0) {
953  if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts))
954  MPM.addPass(GCOVProfilerPass(*Options));
955 
956  // Build a minimal pipeline based on the semantics required by Clang,
957  // which is just that always inlining occurs.
958  MPM.addPass(AlwaysInlinerPass());
959 
960  // At -O0 we directly run necessary sanitizer passes.
961  if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds))
962  MPM.addPass(createModuleToFunctionPassAdaptor(BoundsCheckingPass()));
963 
964  // Lastly, add a semantically necessary pass for LTO.
965  if (IsLTO || IsThinLTO)
966  MPM.addPass(NameAnonGlobalPass());
967  } else {
968  // Map our optimization levels into one of the distinct levels used to
969  // configure the pipeline.
970  PassBuilder::OptimizationLevel Level = mapToLevel(CodeGenOpts);
971 
972  // Register callbacks to schedule sanitizer passes at the appropriate part of
973  // the pipeline.
974  if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds))
975  PB.registerScalarOptimizerLateEPCallback(
976  [](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) {
977  FPM.addPass(BoundsCheckingPass());
978  });
979  if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts))
980  PB.registerPipelineStartEPCallback([Options](ModulePassManager &MPM) {
981  MPM.addPass(GCOVProfilerPass(*Options));
982  });
983 
984  if (IsThinLTO) {
985  MPM = PB.buildThinLTOPreLinkDefaultPipeline(
986  Level, CodeGenOpts.DebugPassManager);
987  MPM.addPass(NameAnonGlobalPass());
988  } else if (IsLTO) {
989  MPM = PB.buildLTOPreLinkDefaultPipeline(Level,
990  CodeGenOpts.DebugPassManager);
991  MPM.addPass(NameAnonGlobalPass());
992  } else {
993  MPM = PB.buildPerModuleDefaultPipeline(Level,
994  CodeGenOpts.DebugPassManager);
995  }
996  }
997  }
998 
999  // FIXME: We still use the legacy pass manager to do code generation. We
1000  // create that pass manager here and use it as needed below.
1001  legacy::PassManager CodeGenPasses;
1002  bool NeedCodeGen = false;
1003  std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS;
1004 
1005  // Append any output we need to the pass manager.
1006  switch (Action) {
1007  case Backend_EmitNothing:
1008  break;
1009 
1010  case Backend_EmitBC:
1011  if (CodeGenOpts.PrepareForThinLTO) {
1012  if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) {
1013  ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile);
1014  if (!ThinLinkOS)
1015  return;
1016  }
1017  MPM.addPass(ThinLTOBitcodeWriterPass(*OS, ThinLinkOS ? &ThinLinkOS->os()
1018  : nullptr));
1019  } else {
1020  // Emit a module summary by default for Regular LTO except for ld64
1021  // targets
1022  bool EmitLTOSummary =
1023  (CodeGenOpts.PrepareForLTO &&
1024  llvm::Triple(TheModule->getTargetTriple()).getVendor() !=
1025  llvm::Triple::Apple);
1026  if (EmitLTOSummary && !TheModule->getModuleFlag("ThinLTO"))
1027  TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0));
1028 
1029  MPM.addPass(BitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists,
1030  EmitLTOSummary));
1031  }
1032  break;
1033 
1034  case Backend_EmitLL:
1035  MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists));
1036  break;
1037 
1038  case Backend_EmitAssembly:
1039  case Backend_EmitMCNull:
1040  case Backend_EmitObj:
1041  NeedCodeGen = true;
1042  CodeGenPasses.add(
1043  createTargetTransformInfoWrapperPass(getTargetIRAnalysis()));
1044  if (!CodeGenOpts.SplitDwarfFile.empty()) {
1045  DwoOS = openOutputFile(CodeGenOpts.SplitDwarfFile);
1046  if (!DwoOS)
1047  return;
1048  }
1049  if (!AddEmitPasses(CodeGenPasses, Action, *OS,
1050  DwoOS ? &DwoOS->os() : nullptr))
1051  // FIXME: Should we handle this error differently?
1052  return;
1053  break;
1054  }
1055 
1056  // Before executing passes, print the final values of the LLVM options.
1057  cl::PrintOptionValues();
1058 
1059  // Now that we have all of the passes ready, run them.
1060  {
1061  PrettyStackTraceString CrashInfo("Optimizer");
1062  MPM.run(*TheModule, MAM);
1063  }
1064 
1065  // Now if needed, run the legacy PM for codegen.
1066  if (NeedCodeGen) {
1067  PrettyStackTraceString CrashInfo("Code generation");
1068  CodeGenPasses.run(*TheModule);
1069  }
1070 
1071  if (ThinLinkOS)
1072  ThinLinkOS->keep();
1073  if (DwoOS)
1074  DwoOS->keep();
1075 }
1076 
1077 Expected<BitcodeModule> clang::FindThinLTOModule(MemoryBufferRef MBRef) {
1078  Expected<std::vector<BitcodeModule>> BMsOrErr = getBitcodeModuleList(MBRef);
1079  if (!BMsOrErr)
1080  return BMsOrErr.takeError();
1081 
1082  // The bitcode file may contain multiple modules, we want the one that is
1083  // marked as being the ThinLTO module.
1084  if (const BitcodeModule *Bm = FindThinLTOModule(*BMsOrErr))
1085  return *Bm;
1086 
1087  return make_error<StringError>("Could not find module summary",
1088  inconvertibleErrorCode());
1089 }
1090 
1092  for (BitcodeModule &BM : BMs) {
1093  Expected<BitcodeLTOInfo> LTOInfo = BM.getLTOInfo();
1094  if (LTOInfo && LTOInfo->IsThinLTO)
1095  return &BM;
1096  }
1097  return nullptr;
1098 }
1099 
1100 static void runThinLTOBackend(ModuleSummaryIndex *CombinedIndex, Module *M,
1101  const HeaderSearchOptions &HeaderOpts,
1102  const CodeGenOptions &CGOpts,
1103  const clang::TargetOptions &TOpts,
1104  const LangOptions &LOpts,
1105  std::unique_ptr<raw_pwrite_stream> OS,
1106  std::string SampleProfile,
1107  BackendAction Action) {
1108  StringMap<DenseMap<GlobalValue::GUID, GlobalValueSummary *>>
1109  ModuleToDefinedGVSummaries;
1110  CombinedIndex->collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries);
1111 
1112  setCommandLineOpts(CGOpts);
1113 
1114  // We can simply import the values mentioned in the combined index, since
1115  // we should only invoke this using the individual indexes written out
1116  // via a WriteIndexesThinBackend.
1117  FunctionImporter::ImportMapTy ImportList;
1118  for (auto &GlobalList : *CombinedIndex) {
1119  // Ignore entries for undefined references.
1120  if (GlobalList.second.SummaryList.empty())
1121  continue;
1122 
1123  auto GUID = GlobalList.first;
1124  assert(GlobalList.second.SummaryList.size() == 1 &&
1125  "Expected individual combined index to have one summary per GUID");
1126  auto &Summary = GlobalList.second.SummaryList[0];
1127  // Skip the summaries for the importing module. These are included to
1128  // e.g. record required linkage changes.
1129  if (Summary->modulePath() == M->getModuleIdentifier())
1130  continue;
1131  // Add an entry to provoke importing by thinBackend.
1132  ImportList[Summary->modulePath()].insert(GUID);
1133  }
1134 
1135  std::vector<std::unique_ptr<llvm::MemoryBuffer>> OwnedImports;
1136  MapVector<llvm::StringRef, llvm::BitcodeModule> ModuleMap;
1137 
1138  for (auto &I : ImportList) {
1139  ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> MBOrErr =
1140  llvm::MemoryBuffer::getFile(I.first());
1141  if (!MBOrErr) {
1142  errs() << "Error loading imported file '" << I.first()
1143  << "': " << MBOrErr.getError().message() << "\n";
1144  return;
1145  }
1146 
1147  Expected<BitcodeModule> BMOrErr = FindThinLTOModule(**MBOrErr);
1148  if (!BMOrErr) {
1149  handleAllErrors(BMOrErr.takeError(), [&](ErrorInfoBase &EIB) {
1150  errs() << "Error loading imported file '" << I.first()
1151  << "': " << EIB.message() << '\n';
1152  });
1153  return;
1154  }
1155  ModuleMap.insert({I.first(), *BMOrErr});
1156 
1157  OwnedImports.push_back(std::move(*MBOrErr));
1158  }
1159  auto AddStream = [&](size_t Task) {
1160  return llvm::make_unique<lto::NativeObjectStream>(std::move(OS));
1161  };
1162  lto::Config Conf;
1163  if (CGOpts.SaveTempsFilePrefix != "") {
1164  if (Error E = Conf.addSaveTemps(CGOpts.SaveTempsFilePrefix + ".",
1165  /* UseInputModulePath */ false)) {
1166  handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) {
1167  errs() << "Error setting up ThinLTO save-temps: " << EIB.message()
1168  << '\n';
1169  });
1170  }
1171  }
1172  Conf.CPU = TOpts.CPU;
1173  Conf.CodeModel = getCodeModel(CGOpts);
1174  Conf.MAttrs = TOpts.Features;
1175  Conf.RelocModel = CGOpts.RelocationModel;
1176  Conf.CGOptLevel = getCGOptLevel(CGOpts);
1177  initTargetOptions(Conf.Options, CGOpts, TOpts, LOpts, HeaderOpts);
1178  Conf.SampleProfile = std::move(SampleProfile);
1179  Conf.UseNewPM = CGOpts.ExperimentalNewPassManager;
1180  Conf.DebugPassManager = CGOpts.DebugPassManager;
1181  Conf.RemarksWithHotness = CGOpts.DiagnosticsWithHotness;
1182  Conf.RemarksFilename = CGOpts.OptRecordFile;
1183  Conf.DwoPath = CGOpts.SplitDwarfFile;
1184  switch (Action) {
1185  case Backend_EmitNothing:
1186  Conf.PreCodeGenModuleHook = [](size_t Task, const Module &Mod) {
1187  return false;
1188  };
1189  break;
1190  case Backend_EmitLL:
1191  Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) {
1192  M->print(*OS, nullptr, CGOpts.EmitLLVMUseLists);
1193  return false;
1194  };
1195  break;
1196  case Backend_EmitBC:
1197  Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) {
1198  WriteBitcodeToFile(*M, *OS, CGOpts.EmitLLVMUseLists);
1199  return false;
1200  };
1201  break;
1202  default:
1203  Conf.CGFileType = getCodeGenFileType(Action);
1204  break;
1205  }
1206  if (Error E = thinBackend(
1207  Conf, -1, AddStream, *M, *CombinedIndex, ImportList,
1208  ModuleToDefinedGVSummaries[M->getModuleIdentifier()], ModuleMap)) {
1209  handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) {
1210  errs() << "Error running ThinLTO backend: " << EIB.message() << '\n';
1211  });
1212  }
1213 }
1214 
1216  const HeaderSearchOptions &HeaderOpts,
1217  const CodeGenOptions &CGOpts,
1218  const clang::TargetOptions &TOpts,
1219  const LangOptions &LOpts,
1220  const llvm::DataLayout &TDesc, Module *M,
1221  BackendAction Action,
1222  std::unique_ptr<raw_pwrite_stream> OS) {
1223  std::unique_ptr<llvm::Module> EmptyModule;
1224  if (!CGOpts.ThinLTOIndexFile.empty()) {
1225  // If we are performing a ThinLTO importing compile, load the function index
1226  // into memory and pass it into runThinLTOBackend, which will run the
1227  // function importer and invoke LTO passes.
1229  llvm::getModuleSummaryIndexForFile(CGOpts.ThinLTOIndexFile,
1230  /*IgnoreEmptyThinLTOIndexFile*/true);
1231  if (!IndexOrErr) {
1232  logAllUnhandledErrors(IndexOrErr.takeError(), errs(),
1233  "Error loading index file '" +
1234  CGOpts.ThinLTOIndexFile + "': ");
1235  return;
1236  }
1237  std::unique_ptr<ModuleSummaryIndex> CombinedIndex = std::move(*IndexOrErr);
1238  // A null CombinedIndex means we should skip ThinLTO compilation
1239  // (LLVM will optionally ignore empty index files, returning null instead
1240  // of an error).
1241  if (CombinedIndex) {
1242  if (!CombinedIndex->skipModuleByDistributedBackend()) {
1243  runThinLTOBackend(CombinedIndex.get(), M, HeaderOpts, CGOpts, TOpts,
1244  LOpts, std::move(OS), CGOpts.SampleProfileFile,
1245  Action);
1246  return;
1247  }
1248  // Distributed indexing detected that nothing from the module is needed
1249  // for the final linking. So we can skip the compilation. We sill need to
1250  // output an empty object file to make sure that a linker does not fail
1251  // trying to read it. Also for some features, like CFI, we must skip
1252  // the compilation as CombinedIndex does not contain all required
1253  // information.
1254  EmptyModule = llvm::make_unique<llvm::Module>("empty", M->getContext());
1255  EmptyModule->setTargetTriple(M->getTargetTriple());
1256  M = EmptyModule.get();
1257  }
1258  }
1259 
1260  EmitAssemblyHelper AsmHelper(Diags, HeaderOpts, CGOpts, TOpts, LOpts, M);
1261 
1262  if (CGOpts.ExperimentalNewPassManager)
1263  AsmHelper.EmitAssemblyWithNewPassManager(Action, std::move(OS));
1264  else
1265  AsmHelper.EmitAssembly(Action, std::move(OS));
1266 
1267  // Verify clang's TargetInfo DataLayout against the LLVM TargetMachine's
1268  // DataLayout.
1269  if (AsmHelper.TM) {
1270  std::string DLDesc = M->getDataLayout().getStringRepresentation();
1271  if (DLDesc != TDesc.getStringRepresentation()) {
1272  unsigned DiagID = Diags.getCustomDiagID(
1273  DiagnosticsEngine::Error, "backend data layout '%0' does not match "
1274  "expected target description '%1'");
1275  Diags.Report(DiagID) << DLDesc << TDesc.getStringRepresentation();
1276  }
1277  }
1278 }
1279 
1280 static const char* getSectionNameForBitcode(const Triple &T) {
1281  switch (T.getObjectFormat()) {
1282  case Triple::MachO:
1283  return "__LLVM,__bitcode";
1284  case Triple::COFF:
1285  case Triple::ELF:
1286  case Triple::Wasm:
1287  case Triple::UnknownObjectFormat:
1288  return ".llvmbc";
1289  }
1290  llvm_unreachable("Unimplemented ObjectFormatType");
1291 }
1292 
1293 static const char* getSectionNameForCommandline(const Triple &T) {
1294  switch (T.getObjectFormat()) {
1295  case Triple::MachO:
1296  return "__LLVM,__cmdline";
1297  case Triple::COFF:
1298  case Triple::ELF:
1299  case Triple::Wasm:
1300  case Triple::UnknownObjectFormat:
1301  return ".llvmcmd";
1302  }
1303  llvm_unreachable("Unimplemented ObjectFormatType");
1304 }
1305 
1306 // With -fembed-bitcode, save a copy of the llvm IR as data in the
1307 // __LLVM,__bitcode section.
1308 void clang::EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts,
1309  llvm::MemoryBufferRef Buf) {
1310  if (CGOpts.getEmbedBitcode() == CodeGenOptions::Embed_Off)
1311  return;
1312 
1313  // Save llvm.compiler.used and remote it.
1314  SmallVector<Constant*, 2> UsedArray;
1315  SmallPtrSet<GlobalValue*, 4> UsedGlobals;
1316  Type *UsedElementType = Type::getInt8Ty(M->getContext())->getPointerTo(0);
1317  GlobalVariable *Used = collectUsedGlobalVariables(*M, UsedGlobals, true);
1318  for (auto *GV : UsedGlobals) {
1319  if (GV->getName() != "llvm.embedded.module" &&
1320  GV->getName() != "llvm.cmdline")
1321  UsedArray.push_back(
1322  ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType));
1323  }
1324  if (Used)
1325  Used->eraseFromParent();
1326 
1327  // Embed the bitcode for the llvm module.
1328  std::string Data;
1329  ArrayRef<uint8_t> ModuleData;
1330  Triple T(M->getTargetTriple());
1331  // Create a constant that contains the bitcode.
1332  // In case of embedding a marker, ignore the input Buf and use the empty
1333  // ArrayRef. It is also legal to create a bitcode marker even Buf is empty.
1334  if (CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Marker) {
1335  if (!isBitcode((const unsigned char *)Buf.getBufferStart(),
1336  (const unsigned char *)Buf.getBufferEnd())) {
1337  // If the input is LLVM Assembly, bitcode is produced by serializing
1338  // the module. Use-lists order need to be perserved in this case.
1339  llvm::raw_string_ostream OS(Data);
1340  llvm::WriteBitcodeToFile(*M, OS, /* ShouldPreserveUseListOrder */ true);
1341  ModuleData =
1342  ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size());
1343  } else
1344  // If the input is LLVM bitcode, write the input byte stream directly.
1345  ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(),
1346  Buf.getBufferSize());
1347  }
1348  llvm::Constant *ModuleConstant =
1349  llvm::ConstantDataArray::get(M->getContext(), ModuleData);
1350  llvm::GlobalVariable *GV = new llvm::GlobalVariable(
1351  *M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage,
1352  ModuleConstant);
1353  GV->setSection(getSectionNameForBitcode(T));
1354  UsedArray.push_back(
1355  ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType));
1356  if (llvm::GlobalVariable *Old =
1357  M->getGlobalVariable("llvm.embedded.module", true)) {
1358  assert(Old->hasOneUse() &&
1359  "llvm.embedded.module can only be used once in llvm.compiler.used");
1360  GV->takeName(Old);
1361  Old->eraseFromParent();
1362  } else {
1363  GV->setName("llvm.embedded.module");
1364  }
1365 
1366  // Skip if only bitcode needs to be embedded.
1367  if (CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Bitcode) {
1368  // Embed command-line options.
1369  ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CGOpts.CmdArgs.data()),
1370  CGOpts.CmdArgs.size());
1371  llvm::Constant *CmdConstant =
1372  llvm::ConstantDataArray::get(M->getContext(), CmdData);
1373  GV = new llvm::GlobalVariable(*M, CmdConstant->getType(), true,
1374  llvm::GlobalValue::PrivateLinkage,
1375  CmdConstant);
1376  GV->setSection(getSectionNameForCommandline(T));
1377  UsedArray.push_back(
1378  ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType));
1379  if (llvm::GlobalVariable *Old =
1380  M->getGlobalVariable("llvm.cmdline", true)) {
1381  assert(Old->hasOneUse() &&
1382  "llvm.cmdline can only be used once in llvm.compiler.used");
1383  GV->takeName(Old);
1384  Old->eraseFromParent();
1385  } else {
1386  GV->setName("llvm.cmdline");
1387  }
1388  }
1389 
1390  if (UsedArray.empty())
1391  return;
1392 
1393  // Recreate llvm.compiler.used.
1394  ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size());
1395  auto *NewUsed = new GlobalVariable(
1396  *M, ATy, false, llvm::GlobalValue::AppendingLinkage,
1397  llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used");
1398  NewUsed->setSection("llvm.metadata");
1399 }
std::string ProfileInstrumentUsePath
Name of the profile file to use as input for -fprofile-instr-use.
static void runThinLTOBackend(ModuleSummaryIndex *CombinedIndex, Module *M, const HeaderSearchOptions &HeaderOpts, const CodeGenOptions &CGOpts, const clang::TargetOptions &TOpts, const LangOptions &LOpts, std::unique_ptr< raw_pwrite_stream > OS, std::string SampleProfile, BackendAction Action)
Paths for &#39;#include <>&#39; added by &#39;-I&#39;.
static void addObjCARCExpandPass(const PassManagerBuilder &Builder, PassManagerBase &PM)
if(T->getSizeExpr()) TRY_TO(TraverseStmt(T -> getSizeExpr()))
std::string SaveTempsFilePrefix
Prefix to use for -save-temps output.
Emit human-readable LLVM assembly.
Definition: BackendUtil.h:34
DominatorTree GraphTraits specialization so the DominatorTree can be iterable by generic graph iterat...
Definition: Dominators.h:30
Run CodeGen, but don&#39;t emit anything.
Definition: BackendUtil.h:36
SanitizerSet Sanitize
Set of enabled sanitizers.
Definition: LangOptions.h:142
The base class of the type hierarchy.
Definition: Type.h:1428
std::string SampleProfileFile
Name of the profile file to use with -fprofile-sample-use.
DiagnosticBuilder Report(SourceLocation Loc, unsigned DiagID)
Issue the message to the client.
Definition: Diagnostic.h:1294
Represents an array type, per C99 6.7.5.2 - Array Declarators.
Definition: Type.h:2662
static void addAddressSanitizerPasses(const PassManagerBuilder &Builder, legacy::PassManagerBase &PM)
static Optional< GCOVOptions > getGCOVOptions(const CodeGenOptions &CodeGenOpts)
std::vector< std::string > RewriteMapFiles
Set of files defining the rules for the symbol rewriting.
Don&#39;t emit anything (benchmarking mode)
Definition: BackendUtil.h:35
Options for controlling the target.
Definition: TargetOptions.h:26
std::string SplitDwarfFile
The name for the split debug info file that we&#39;ll break out.
std::string DebugPass
Enable additional debugging information.
SanitizerSet SanitizeRecover
Set of sanitizer checks that are non-fatal (i.e.
bool hasOneOf(SanitizerMask K) const
Check if one or more sanitizers are enabled.
Definition: Sanitizers.h:58
Emit LLVM bitcode files.
Definition: BackendUtil.h:33
std::vector< Entry > UserEntries
User specified include entries.
std::vector< uint8_t > CmdArgs
List of backend command-line options for -fembed-bitcode.
Keeps track of the various options that can be enabled, which controls the dialect of C or C++ that i...
Definition: LangOptions.h:50
std::string CodeModel
The code model to use (-mcmodel).
Describes a module or submodule.
Definition: Module.h:65
BackendAction
Definition: BackendUtil.h:31
Concrete class used by the front-end to report problems and issues.
Definition: Diagnostic.h:149
static void addThreadSanitizerPass(const PassManagerBuilder &Builder, legacy::PassManagerBase &PM)
Defines the Diagnostic-related interfaces.
static CodeGenOpt::Level getCGOptLevel(const CodeGenOptions &CodeGenOpts)
static void setCommandLineOpts(const CodeGenOptions &CodeGenOpts)
static void addSanitizerCoveragePass(const PassManagerBuilder &Builder, legacy::PassManagerBase &PM)
std::string FloatABI
The ABI to use for passing floating point arguments.
std::string ThreadModel
The thread model to use.
char CoverageVersion[4]
The version string to put into coverage files.
std::string LimitFloatPrecision
The float precision limit to use, if non-empty.
Defines the clang::LangOptions interface.
static void addHWAddressSanitizerPasses(const PassManagerBuilder &Builder, legacy::PassManagerBase &PM)
static void addObjCARCAPElimPass(const PassManagerBuilder &Builder, PassManagerBase &PM)
void print(raw_ostream &OS, unsigned Indent=0) const
Print the module map for this module to the given stream.
Definition: Module.cpp:373
static TargetLibraryInfoImpl * createTLII(llvm::Triple &TargetTriple, const CodeGenOptions &CodeGenOpts)
static void addKernelHWAddressSanitizerPasses(const PassManagerBuilder &Builder, legacy::PassManagerBase &PM)
Emit native object files.
Definition: BackendUtil.h:37
Emit native assembly files.
Definition: BackendUtil.h:32
std::string CPU
If given, the name of the target CPU to generate code for.
Definition: TargetOptions.h:36
std::string ABI
If given, the name of the target ABI to use.
Definition: TargetOptions.h:42
static void addKernelAddressSanitizerPasses(const PassManagerBuilder &Builder, legacy::PassManagerBase &PM)
static void addSymbolRewriterPass(const CodeGenOptions &Opts, legacy::PassManager *MPM)
static void addDataFlowSanitizerPass(const PassManagerBuilder &Builder, legacy::PassManagerBase &PM)
Defines the clang::TargetOptions class.
std::vector< std::string > Features
The list of target specific features to enable or disable – this should be a list of strings startin...
Definition: TargetOptions.h:55
static void initTargetOptions(llvm::TargetOptions &Options, const CodeGenOptions &CodeGenOpts, const clang::TargetOptions &TargetOpts, const LangOptions &LangOpts, const HeaderSearchOptions &HSOpts)
static bool asanUseGlobalsGC(const Triple &T, const CodeGenOptions &CGOpts)
unsigned getCustomDiagID(Level L, const char(&FormatString)[N])
Return an ID for a diagnostic with the specified format string and level.
Definition: Diagnostic.h:775
llvm::EABI EABIVersion
The EABI version to use.
Definition: TargetOptions.h:45
&#39;#include ""&#39; paths, added by &#39;gcc -iquote&#39;.
std::string ThinLTOIndexFile
Name of the function summary index file to use for ThinLTO function importing.
Like Angled, but marks system directories.
static TargetMachine::CodeGenFileType getCodeGenFileType(BackendAction Action)
void EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts, llvm::MemoryBufferRef Buf)
Dataflow Directional Tag Classes.
bool FrontendTimesIsEnabled
If the user specifies the -ftime-report argument on an Clang command line then the value of this bool...
llvm::Reloc::Model RelocationModel
The name of the relocation model to use.
bool hasProfileIRUse() const
Check if IR level profile use is on.
void EmitBackendOutput(DiagnosticsEngine &Diags, const HeaderSearchOptions &, const CodeGenOptions &CGOpts, const TargetOptions &TOpts, const LangOptions &LOpts, const llvm::DataLayout &TDesc, llvm::Module *M, BackendAction Action, std::unique_ptr< raw_pwrite_stream > OS)
bool hasProfileClangInstr() const
Check if Clang profile instrumenation is on.
llvm::Expected< llvm::BitcodeModule > FindThinLTOModule(llvm::MemoryBufferRef MBRef)
static const char * getSectionNameForBitcode(const Triple &T)
static const char * getSectionNameForCommandline(const Triple &T)
void BuryPointer(const void *Ptr)
static void addBoundsCheckingPass(const PassManagerBuilder &Builder, legacy::PassManagerBase &PM)
static void addEfficiencySanitizerPass(const PassManagerBuilder &Builder, legacy::PassManagerBase &PM)
static Optional< llvm::CodeModel::Model > getCodeModel(const CodeGenOptions &CodeGenOpts)
CodeGenOptions - Track various options which control how the code is optimized and passed to the back...
static void addObjCARCOptPass(const PassManagerBuilder &Builder, PassManagerBase &PM)
bool hasProfileIRInstr() const
Check if IR level profile instrumentation is on.
const std::vector< std::string > & getNoBuiltinFuncs() const
bool has(SanitizerMask K) const
Check if a certain (single) sanitizer is enabled.
Definition: Sanitizers.h:52
StringLiteral - This represents a string literal expression, e.g.
Definition: Expr.h:1566
static void addAddDiscriminatorsPass(const PassManagerBuilder &Builder, legacy::PassManagerBase &PM)
HeaderSearchOptions - Helper class for storing options related to the initialization of the HeaderSea...
std::string InstrProfileOutput
Name of the profile file to use as output for -fprofile-instr-generate and -fprofile-generate.
std::string OptRecordFile
The name of the file to which the backend should save YAML optimization records.
std::string ThinLinkBitcodeFile
Name of a file that can optionally be written with minimized bitcode to be used as input for the Thin...
std::vector< std::string > SanitizerBlacklistFiles
Paths to blacklist files specifying which objects (files, functions, variables) should not be instrum...
Definition: LangOptions.h:146
std::string Sysroot
If non-empty, the directory to use as a "virtual system root" for include paths.
static void addMemorySanitizerPass(const PassManagerBuilder &Builder, legacy::PassManagerBase &PM)
static PassBuilder::OptimizationLevel mapToLevel(const CodeGenOptions &Opts)