clang  9.0.0svn
PlistDiagnostics.cpp
Go to the documentation of this file.
1 //===--- PlistDiagnostics.cpp - Plist Diagnostics for Paths -----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the PlistDiagnostics object.
10 //
11 //===----------------------------------------------------------------------===//
12 
16 #include "clang/Basic/Version.h"
17 #include "clang/Lex/Preprocessor.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/ADT/SmallPtrSet.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/Support/Casting.h"
28 
29 using namespace clang;
30 using namespace ento;
31 using namespace markup;
32 
33 //===----------------------------------------------------------------------===//
34 // Declarations of helper classes and functions for emitting bug reports in
35 // plist format.
36 //===----------------------------------------------------------------------===//
37 
38 namespace {
39  class PlistDiagnostics : public PathDiagnosticConsumer {
40  const std::string OutputFile;
41  const Preprocessor &PP;
42  AnalyzerOptions &AnOpts;
43  const bool SupportsCrossFileDiagnostics;
44  public:
45  PlistDiagnostics(AnalyzerOptions &AnalyzerOpts,
46  const std::string& prefix,
47  const Preprocessor &PP,
48  bool supportsMultipleFiles);
49 
50  ~PlistDiagnostics() override {}
51 
52  void FlushDiagnosticsImpl(std::vector<const PathDiagnostic *> &Diags,
53  FilesMade *filesMade) override;
54 
55  StringRef getName() const override {
56  return "PlistDiagnostics";
57  }
58 
59  PathGenerationScheme getGenerationScheme() const override {
60  return Extensive;
61  }
62  bool supportsLogicalOpControlFlow() const override { return true; }
63  bool supportsCrossFileDiagnostics() const override {
64  return SupportsCrossFileDiagnostics;
65  }
66  };
67 } // end anonymous namespace
68 
69 namespace {
70 
71 /// A helper class for emitting a single report.
72 class PlistPrinter {
73  const FIDMap& FM;
74  AnalyzerOptions &AnOpts;
75  const Preprocessor &PP;
77 
78 public:
79  PlistPrinter(const FIDMap& FM, AnalyzerOptions &AnOpts,
80  const Preprocessor &PP)
81  : FM(FM), AnOpts(AnOpts), PP(PP) {
82  }
83 
84  void ReportDiag(raw_ostream &o, const PathDiagnosticPiece& P) {
85  ReportPiece(o, P, /*indent*/ 4, /*depth*/ 0, /*includeControlFlow*/ true);
86 
87  // Don't emit a warning about an unused private field.
88  (void)AnOpts;
89  }
90 
91  /// Print the expansions of the collected macro pieces.
92  ///
93  /// Each time ReportDiag is called on a PathDiagnosticMacroPiece (or, if one
94  /// is found through a call piece, etc), it's subpieces are reported, and the
95  /// piece itself is collected. Call this function after the entire bugpath
96  /// was reported.
97  void ReportMacroExpansions(raw_ostream &o, unsigned indent);
98 
99 private:
100  void ReportPiece(raw_ostream &o, const PathDiagnosticPiece &P,
101  unsigned indent, unsigned depth, bool includeControlFlow,
102  bool isKeyEvent = false) {
103  switch (P.getKind()) {
105  if (includeControlFlow)
106  ReportControlFlow(o, cast<PathDiagnosticControlFlowPiece>(P), indent);
107  break;
109  ReportCall(o, cast<PathDiagnosticCallPiece>(P), indent,
110  depth);
111  break;
113  ReportEvent(o, cast<PathDiagnosticEventPiece>(P), indent, depth,
114  isKeyEvent);
115  break;
117  ReportMacroSubPieces(o, cast<PathDiagnosticMacroPiece>(P), indent,
118  depth);
119  break;
121  ReportNote(o, cast<PathDiagnosticNotePiece>(P), indent);
122  break;
123  }
124  }
125 
126  void EmitRanges(raw_ostream &o, const ArrayRef<SourceRange> Ranges,
127  unsigned indent);
128  void EmitMessage(raw_ostream &o, StringRef Message, unsigned indent);
129 
130  void ReportControlFlow(raw_ostream &o,
131  const PathDiagnosticControlFlowPiece& P,
132  unsigned indent);
133  void ReportEvent(raw_ostream &o, const PathDiagnosticEventPiece& P,
134  unsigned indent, unsigned depth, bool isKeyEvent = false);
135  void ReportCall(raw_ostream &o, const PathDiagnosticCallPiece &P,
136  unsigned indent, unsigned depth);
137  void ReportMacroSubPieces(raw_ostream &o, const PathDiagnosticMacroPiece& P,
138  unsigned indent, unsigned depth);
139  void ReportNote(raw_ostream &o, const PathDiagnosticNotePiece& P,
140  unsigned indent);
141 };
142 
143 } // end of anonymous namespace
144 
145 namespace {
146 
147 struct ExpansionInfo {
148  std::string MacroName;
149  std::string Expansion;
150  ExpansionInfo(std::string N, std::string E)
151  : MacroName(std::move(N)), Expansion(std::move(E)) {}
152 };
153 
154 } // end of anonymous namespace
155 
156 static void printBugPath(llvm::raw_ostream &o, const FIDMap& FM,
157  AnalyzerOptions &AnOpts,
158  const Preprocessor &PP,
159  const PathPieces &Path);
160 
161 /// Print coverage information to output stream {@code o}.
162 /// May modify the used list of files {@code Fids} by inserting new ones.
163 static void printCoverage(const PathDiagnostic *D,
164  unsigned InputIndentLevel,
166  FIDMap &FM,
167  llvm::raw_fd_ostream &o);
168 
169 static ExpansionInfo getExpandedMacro(SourceLocation MacroLoc,
170  const Preprocessor &PP);
171 
172 //===----------------------------------------------------------------------===//
173 // Methods of PlistPrinter.
174 //===----------------------------------------------------------------------===//
175 
176 void PlistPrinter::EmitRanges(raw_ostream &o,
177  const ArrayRef<SourceRange> Ranges,
178  unsigned indent) {
179 
180  if (Ranges.empty())
181  return;
182 
183  Indent(o, indent) << "<key>ranges</key>\n";
184  Indent(o, indent) << "<array>\n";
185  ++indent;
186 
187  const SourceManager &SM = PP.getSourceManager();
188  const LangOptions &LangOpts = PP.getLangOpts();
189 
190  for (auto &R : Ranges)
191  EmitRange(o, SM,
192  Lexer::getAsCharRange(SM.getExpansionRange(R), SM, LangOpts),
193  FM, indent + 1);
194  --indent;
195  Indent(o, indent) << "</array>\n";
196 }
197 
198 void PlistPrinter::EmitMessage(raw_ostream &o, StringRef Message,
199  unsigned indent) {
200  // Output the text.
201  assert(!Message.empty());
202  Indent(o, indent) << "<key>extended_message</key>\n";
203  Indent(o, indent);
204  EmitString(o, Message) << '\n';
205 
206  // Output the short text.
207  // FIXME: Really use a short string.
208  Indent(o, indent) << "<key>message</key>\n";
209  Indent(o, indent);
210  EmitString(o, Message) << '\n';
211 }
212 
213 void PlistPrinter::ReportControlFlow(raw_ostream &o,
214  const PathDiagnosticControlFlowPiece& P,
215  unsigned indent) {
216 
217  const SourceManager &SM = PP.getSourceManager();
218  const LangOptions &LangOpts = PP.getLangOpts();
219 
220  Indent(o, indent) << "<dict>\n";
221  ++indent;
222 
223  Indent(o, indent) << "<key>kind</key><string>control</string>\n";
224 
225  // Emit edges.
226  Indent(o, indent) << "<key>edges</key>\n";
227  ++indent;
228  Indent(o, indent) << "<array>\n";
229  ++indent;
230  for (PathDiagnosticControlFlowPiece::const_iterator I=P.begin(), E=P.end();
231  I!=E; ++I) {
232  Indent(o, indent) << "<dict>\n";
233  ++indent;
234 
235  // Make the ranges of the start and end point self-consistent with adjacent edges
236  // by forcing to use only the beginning of the range. This simplifies the layout
237  // logic for clients.
238  Indent(o, indent) << "<key>start</key>\n";
239  SourceRange StartEdge(
240  SM.getExpansionLoc(I->getStart().asRange().getBegin()));
241  EmitRange(o, SM, Lexer::getAsCharRange(StartEdge, SM, LangOpts), FM,
242  indent + 1);
243 
244  Indent(o, indent) << "<key>end</key>\n";
245  SourceRange EndEdge(SM.getExpansionLoc(I->getEnd().asRange().getBegin()));
246  EmitRange(o, SM, Lexer::getAsCharRange(EndEdge, SM, LangOpts), FM,
247  indent + 1);
248 
249  --indent;
250  Indent(o, indent) << "</dict>\n";
251  }
252  --indent;
253  Indent(o, indent) << "</array>\n";
254  --indent;
255 
256  // Output any helper text.
257  const auto &s = P.getString();
258  if (!s.empty()) {
259  Indent(o, indent) << "<key>alternate</key>";
260  EmitString(o, s) << '\n';
261  }
262 
263  --indent;
264  Indent(o, indent) << "</dict>\n";
265 }
266 
267 void PlistPrinter::ReportEvent(raw_ostream &o, const PathDiagnosticEventPiece& P,
268  unsigned indent, unsigned depth,
269  bool isKeyEvent) {
270 
271  const SourceManager &SM = PP.getSourceManager();
272 
273  Indent(o, indent) << "<dict>\n";
274  ++indent;
275 
276  Indent(o, indent) << "<key>kind</key><string>event</string>\n";
277 
278  if (isKeyEvent) {
279  Indent(o, indent) << "<key>key_event</key><true/>\n";
280  }
281 
282  // Output the location.
283  FullSourceLoc L = P.getLocation().asLocation();
284 
285  Indent(o, indent) << "<key>location</key>\n";
286  EmitLocation(o, SM, L, FM, indent);
287 
288  // Output the ranges (if any).
289  ArrayRef<SourceRange> Ranges = P.getRanges();
290  EmitRanges(o, Ranges, indent);
291 
292  // Output the call depth.
293  Indent(o, indent) << "<key>depth</key>";
294  EmitInteger(o, depth) << '\n';
295 
296  // Output the text.
297  EmitMessage(o, P.getString(), indent);
298 
299  // Finish up.
300  --indent;
301  Indent(o, indent); o << "</dict>\n";
302 }
303 
304 void PlistPrinter::ReportCall(raw_ostream &o, const PathDiagnosticCallPiece &P,
305  unsigned indent,
306  unsigned depth) {
307 
308  if (auto callEnter = P.getCallEnterEvent())
309  ReportPiece(o, *callEnter, indent, depth, /*includeControlFlow*/ true,
310  P.isLastInMainSourceFile());
311 
312 
313  ++depth;
314 
315  if (auto callEnterWithinCaller = P.getCallEnterWithinCallerEvent())
316  ReportPiece(o, *callEnterWithinCaller, indent, depth,
317  /*includeControlFlow*/ true);
318 
319  for (PathPieces::const_iterator I = P.path.begin(), E = P.path.end();I!=E;++I)
320  ReportPiece(o, **I, indent, depth, /*includeControlFlow*/ true);
321 
322  --depth;
323 
324  if (auto callExit = P.getCallExitEvent())
325  ReportPiece(o, *callExit, indent, depth, /*includeControlFlow*/ true);
326 }
327 
328 void PlistPrinter::ReportMacroSubPieces(raw_ostream &o,
329  const PathDiagnosticMacroPiece& P,
330  unsigned indent, unsigned depth) {
331  MacroPieces.push_back(&P);
332 
333  for (PathPieces::const_iterator I = P.subPieces.begin(),
334  E = P.subPieces.end();
335  I != E; ++I) {
336  ReportPiece(o, **I, indent, depth, /*includeControlFlow*/ false);
337  }
338 }
339 
340 void PlistPrinter::ReportMacroExpansions(raw_ostream &o, unsigned indent) {
341 
342  for (const PathDiagnosticMacroPiece *P : MacroPieces) {
343  const SourceManager &SM = PP.getSourceManager();
344  ExpansionInfo EI = getExpandedMacro(P->getLocation().asLocation(), PP);
345 
346  Indent(o, indent) << "<dict>\n";
347  ++indent;
348 
349  // Output the location.
350  FullSourceLoc L = P->getLocation().asLocation();
351 
352  Indent(o, indent) << "<key>location</key>\n";
353  EmitLocation(o, SM, L, FM, indent);
354 
355  // Output the ranges (if any).
356  ArrayRef<SourceRange> Ranges = P->getRanges();
357  EmitRanges(o, Ranges, indent);
358 
359  // Output the macro name.
360  Indent(o, indent) << "<key>name</key>";
361  EmitString(o, EI.MacroName) << '\n';
362 
363  // Output what it expands into.
364  Indent(o, indent) << "<key>expansion</key>";
365  EmitString(o, EI.Expansion) << '\n';
366 
367  // Finish up.
368  --indent;
369  Indent(o, indent);
370  o << "</dict>\n";
371  }
372 }
373 
374 void PlistPrinter::ReportNote(raw_ostream &o, const PathDiagnosticNotePiece& P,
375  unsigned indent) {
376 
377  const SourceManager &SM = PP.getSourceManager();
378 
379  Indent(o, indent) << "<dict>\n";
380  ++indent;
381 
382  // Output the location.
383  FullSourceLoc L = P.getLocation().asLocation();
384 
385  Indent(o, indent) << "<key>location</key>\n";
386  EmitLocation(o, SM, L, FM, indent);
387 
388  // Output the ranges (if any).
389  ArrayRef<SourceRange> Ranges = P.getRanges();
390  EmitRanges(o, Ranges, indent);
391 
392  // Output the text.
393  EmitMessage(o, P.getString(), indent);
394 
395  // Finish up.
396  --indent;
397  Indent(o, indent); o << "</dict>\n";
398 }
399 
400 //===----------------------------------------------------------------------===//
401 // Static function definitions.
402 //===----------------------------------------------------------------------===//
403 
404 /// Print coverage information to output stream {@code o}.
405 /// May modify the used list of files {@code Fids} by inserting new ones.
406 static void printCoverage(const PathDiagnostic *D,
407  unsigned InputIndentLevel,
409  FIDMap &FM,
410  llvm::raw_fd_ostream &o) {
411  unsigned IndentLevel = InputIndentLevel;
412 
413  Indent(o, IndentLevel) << "<key>ExecutedLines</key>\n";
414  Indent(o, IndentLevel) << "<dict>\n";
415  IndentLevel++;
416 
417  // Mapping from file IDs to executed lines.
418  const FilesToLineNumsMap &ExecutedLines = D->getExecutedLines();
419  for (auto I = ExecutedLines.begin(), E = ExecutedLines.end(); I != E; ++I) {
420  unsigned FileKey = AddFID(FM, Fids, I->first);
421  Indent(o, IndentLevel) << "<key>" << FileKey << "</key>\n";
422  Indent(o, IndentLevel) << "<array>\n";
423  IndentLevel++;
424  for (unsigned LineNo : I->second) {
425  Indent(o, IndentLevel);
426  EmitInteger(o, LineNo) << "\n";
427  }
428  IndentLevel--;
429  Indent(o, IndentLevel) << "</array>\n";
430  }
431  IndentLevel--;
432  Indent(o, IndentLevel) << "</dict>\n";
433 
434  assert(IndentLevel == InputIndentLevel);
435 }
436 
437 static void printBugPath(llvm::raw_ostream &o, const FIDMap& FM,
438  AnalyzerOptions &AnOpts,
439  const Preprocessor &PP,
440  const PathPieces &Path) {
441  PlistPrinter Printer(FM, AnOpts, PP);
442  assert(std::is_partitioned(
443  Path.begin(), Path.end(),
444  [](const std::shared_ptr<PathDiagnosticPiece> &E)
445  { return E->getKind() == PathDiagnosticPiece::Note; }) &&
446  "PathDiagnostic is not partitioned so that notes precede the rest");
447 
448  PathPieces::const_iterator FirstNonNote = std::partition_point(
449  Path.begin(), Path.end(),
450  [](const std::shared_ptr<PathDiagnosticPiece> &E)
451  { return E->getKind() == PathDiagnosticPiece::Note; });
452 
453  PathPieces::const_iterator I = Path.begin();
454 
455  if (FirstNonNote != Path.begin()) {
456  o << " <key>notes</key>\n"
457  " <array>\n";
458 
459  for (; I != FirstNonNote; ++I)
460  Printer.ReportDiag(o, **I);
461 
462  o << " </array>\n";
463  }
464 
465  o << " <key>path</key>\n";
466 
467  o << " <array>\n";
468 
469  for (PathPieces::const_iterator E = Path.end(); I != E; ++I)
470  Printer.ReportDiag(o, **I);
471 
472  o << " </array>\n";
473 
474  if (!AnOpts.ShouldDisplayMacroExpansions)
475  return;
476 
477  o << " <key>macro_expansions</key>\n"
478  " <array>\n";
479  Printer.ReportMacroExpansions(o, /* indent */ 4);
480  o << " </array>\n";
481 }
482 
483 //===----------------------------------------------------------------------===//
484 // Methods of PlistDiagnostics.
485 //===----------------------------------------------------------------------===//
486 
487 PlistDiagnostics::PlistDiagnostics(AnalyzerOptions &AnalyzerOpts,
488  const std::string& output,
489  const Preprocessor &PP,
490  bool supportsMultipleFiles)
491  : OutputFile(output), PP(PP), AnOpts(AnalyzerOpts),
492  SupportsCrossFileDiagnostics(supportsMultipleFiles) {}
493 
494 void ento::createPlistDiagnosticConsumer(AnalyzerOptions &AnalyzerOpts,
496  const std::string& s,
497  const Preprocessor &PP) {
498  C.push_back(new PlistDiagnostics(AnalyzerOpts, s, PP,
499  /*supportsMultipleFiles*/ false));
500 }
501 
502 void ento::createPlistMultiFileDiagnosticConsumer(AnalyzerOptions &AnalyzerOpts,
504  const std::string &s,
505  const Preprocessor &PP) {
506  C.push_back(new PlistDiagnostics(AnalyzerOpts, s, PP,
507  /*supportsMultipleFiles*/ true));
508 }
509 void PlistDiagnostics::FlushDiagnosticsImpl(
510  std::vector<const PathDiagnostic *> &Diags,
511  FilesMade *filesMade) {
512  // Build up a set of FIDs that we use by scanning the locations and
513  // ranges of the diagnostics.
514  FIDMap FM;
516  const SourceManager& SM = PP.getSourceManager();
517  const LangOptions &LangOpts = PP.getLangOpts();
518 
519  auto AddPieceFID = [&FM, &Fids, &SM](const PathDiagnosticPiece &Piece) {
520  AddFID(FM, Fids, SM, Piece.getLocation().asLocation());
521  ArrayRef<SourceRange> Ranges = Piece.getRanges();
522  for (const SourceRange &Range : Ranges) {
523  AddFID(FM, Fids, SM, Range.getBegin());
524  AddFID(FM, Fids, SM, Range.getEnd());
525  }
526  };
527 
528  for (const PathDiagnostic *D : Diags) {
529 
531  WorkList.push_back(&D->path);
532 
533  while (!WorkList.empty()) {
534  const PathPieces &Path = *WorkList.pop_back_val();
535 
536  for (const auto &Iter : Path) {
537  const PathDiagnosticPiece &Piece = *Iter;
538  AddPieceFID(Piece);
539 
540  if (const PathDiagnosticCallPiece *Call =
541  dyn_cast<PathDiagnosticCallPiece>(&Piece)) {
542  if (auto CallEnterWithin = Call->getCallEnterWithinCallerEvent())
543  AddPieceFID(*CallEnterWithin);
544 
545  if (auto CallEnterEvent = Call->getCallEnterEvent())
546  AddPieceFID(*CallEnterEvent);
547 
548  WorkList.push_back(&Call->path);
549  } else if (const PathDiagnosticMacroPiece *Macro =
550  dyn_cast<PathDiagnosticMacroPiece>(&Piece)) {
551  WorkList.push_back(&Macro->subPieces);
552  }
553  }
554  }
555  }
556 
557  // Open the file.
558  std::error_code EC;
559  llvm::raw_fd_ostream o(OutputFile, EC, llvm::sys::fs::F_Text);
560  if (EC) {
561  llvm::errs() << "warning: could not create file: " << EC.message() << '\n';
562  return;
563  }
564 
565  EmitPlistHeader(o);
566 
567  // Write the root object: a <dict> containing...
568  // - "clang_version", the string representation of clang version
569  // - "files", an <array> mapping from FIDs to file names
570  // - "diagnostics", an <array> containing the path diagnostics
571  o << "<dict>\n" <<
572  " <key>clang_version</key>\n";
573  EmitString(o, getClangFullVersion()) << '\n';
574  o << " <key>diagnostics</key>\n"
575  " <array>\n";
576 
577  for (std::vector<const PathDiagnostic*>::iterator DI=Diags.begin(),
578  DE = Diags.end(); DI!=DE; ++DI) {
579 
580  o << " <dict>\n";
581 
582  const PathDiagnostic *D = *DI;
583  printBugPath(o, FM, AnOpts, PP, D->path);
584 
585  // Output the bug type and bug category.
586  o << " <key>description</key>";
587  EmitString(o, D->getShortDescription()) << '\n';
588  o << " <key>category</key>";
589  EmitString(o, D->getCategory()) << '\n';
590  o << " <key>type</key>";
591  EmitString(o, D->getBugType()) << '\n';
592  o << " <key>check_name</key>";
593  EmitString(o, D->getCheckName()) << '\n';
594 
595  o << " <!-- This hash is experimental and going to change! -->\n";
596  o << " <key>issue_hash_content_of_line_in_context</key>";
597  PathDiagnosticLocation UPDLoc = D->getUniqueingLoc();
598  FullSourceLoc L(SM.getExpansionLoc(UPDLoc.isValid()
599  ? UPDLoc.asLocation()
600  : D->getLocation().asLocation()),
601  SM);
602  const Decl *DeclWithIssue = D->getDeclWithIssue();
603  EmitString(o, GetIssueHash(SM, L, D->getCheckName(), D->getBugType(),
604  DeclWithIssue, LangOpts))
605  << '\n';
606 
607  // Output information about the semantic context where
608  // the issue occurred.
609  if (const Decl *DeclWithIssue = D->getDeclWithIssue()) {
610  // FIXME: handle blocks, which have no name.
611  if (const NamedDecl *ND = dyn_cast<NamedDecl>(DeclWithIssue)) {
612  StringRef declKind;
613  switch (ND->getKind()) {
614  case Decl::CXXRecord:
615  declKind = "C++ class";
616  break;
617  case Decl::CXXMethod:
618  declKind = "C++ method";
619  break;
620  case Decl::ObjCMethod:
621  declKind = "Objective-C method";
622  break;
623  case Decl::Function:
624  declKind = "function";
625  break;
626  default:
627  break;
628  }
629  if (!declKind.empty()) {
630  const std::string &declName = ND->getDeclName().getAsString();
631  o << " <key>issue_context_kind</key>";
632  EmitString(o, declKind) << '\n';
633  o << " <key>issue_context</key>";
634  EmitString(o, declName) << '\n';
635  }
636 
637  // Output the bug hash for issue unique-ing. Currently, it's just an
638  // offset from the beginning of the function.
639  if (const Stmt *Body = DeclWithIssue->getBody()) {
640 
641  // If the bug uniqueing location exists, use it for the hash.
642  // For example, this ensures that two leaks reported on the same line
643  // will have different issue_hashes and that the hash will identify
644  // the leak location even after code is added between the allocation
645  // site and the end of scope (leak report location).
646  if (UPDLoc.isValid()) {
647  FullSourceLoc UFunL(
648  SM.getExpansionLoc(
649  D->getUniqueingDecl()->getBody()->getBeginLoc()),
650  SM);
651  o << " <key>issue_hash_function_offset</key><string>"
652  << L.getExpansionLineNumber() - UFunL.getExpansionLineNumber()
653  << "</string>\n";
654 
655  // Otherwise, use the location on which the bug is reported.
656  } else {
657  FullSourceLoc FunL(SM.getExpansionLoc(Body->getBeginLoc()), SM);
658  o << " <key>issue_hash_function_offset</key><string>"
659  << L.getExpansionLineNumber() - FunL.getExpansionLineNumber()
660  << "</string>\n";
661  }
662 
663  }
664  }
665  }
666 
667  // Output the location of the bug.
668  o << " <key>location</key>\n";
669  EmitLocation(o, SM, D->getLocation().asLocation(), FM, 2);
670 
671  // Output the diagnostic to the sub-diagnostic client, if any.
672  if (!filesMade->empty()) {
673  StringRef lastName;
674  PDFileEntry::ConsumerFiles *files = filesMade->getFiles(*D);
675  if (files) {
676  for (PDFileEntry::ConsumerFiles::const_iterator CI = files->begin(),
677  CE = files->end(); CI != CE; ++CI) {
678  StringRef newName = CI->first;
679  if (newName != lastName) {
680  if (!lastName.empty()) {
681  o << " </array>\n";
682  }
683  lastName = newName;
684  o << " <key>" << lastName << "_files</key>\n";
685  o << " <array>\n";
686  }
687  o << " <string>" << CI->second << "</string>\n";
688  }
689  o << " </array>\n";
690  }
691  }
692 
693  printCoverage(D, /*IndentLevel=*/2, Fids, FM, o);
694 
695  // Close up the entry.
696  o << " </dict>\n";
697  }
698 
699  o << " </array>\n";
700 
701  o << " <key>files</key>\n"
702  " <array>\n";
703  for (FileID FID : Fids)
704  EmitString(o << " ", SM.getFileEntryForID(FID)->getName()) << '\n';
705  o << " </array>\n";
706 
707  if (llvm::AreStatisticsEnabled() && AnOpts.ShouldSerializeStats) {
708  o << " <key>statistics</key>\n";
709  std::string stats;
710  llvm::raw_string_ostream os(stats);
711  llvm::PrintStatisticsJSON(os);
712  os.flush();
713  EmitString(o, html::EscapeText(stats)) << '\n';
714  }
715 
716  // Finish.
717  o << "</dict>\n</plist>";
718 }
719 
720 //===----------------------------------------------------------------------===//
721 // Declarations of helper functions and data structures for expanding macros.
722 //===----------------------------------------------------------------------===//
723 
724 namespace {
725 
726 using ExpArgTokens = llvm::SmallVector<Token, 2>;
727 
728 /// Maps unexpanded macro arguments to expanded arguments. A macro argument may
729 /// need to expanded further when it is nested inside another macro.
730 class MacroArgMap : public std::map<const IdentifierInfo *, ExpArgTokens> {
731 public:
732  void expandFromPrevMacro(const MacroArgMap &Super);
733 };
734 
735 struct MacroNameAndArgs {
736  std::string Name;
737  const MacroInfo *MI = nullptr;
738  MacroArgMap Args;
739 
740  MacroNameAndArgs(std::string N, const MacroInfo *MI, MacroArgMap M)
741  : Name(std::move(N)), MI(MI), Args(std::move(M)) {}
742 };
743 
744 class TokenPrinter {
745  llvm::raw_ostream &OS;
746  const Preprocessor &PP;
747 
748  Token PrevTok, PrevPrevTok;
749  TokenConcatenation ConcatInfo;
750 
751 public:
752  TokenPrinter(llvm::raw_ostream &OS, const Preprocessor &PP)
753  : OS(OS), PP(PP), ConcatInfo(PP) {
754  PrevTok.setKind(tok::unknown);
755  PrevPrevTok.setKind(tok::unknown);
756  }
757 
758  void printToken(const Token &Tok);
759 };
760 
761 } // end of anonymous namespace
762 
763 /// The implementation method of getMacroExpansion: It prints the expansion of
764 /// a macro to \p Printer, and returns with the name of the macro.
765 ///
766 /// Since macros can be nested in one another, this function may call itself
767 /// recursively.
768 ///
769 /// Unfortunately, macro arguments have to expanded manually. To understand why,
770 /// observe the following example:
771 ///
772 /// #define PRINT(x) print(x)
773 /// #define DO_SOMETHING(str) PRINT(str)
774 ///
775 /// DO_SOMETHING("Cute panda cubs.");
776 ///
777 /// As we expand the last line, we'll immediately replace PRINT(str) with
778 /// print(x). The information that both 'str' and 'x' refers to the same string
779 /// is an information we have to forward, hence the argument \p PrevArgs.
780 ///
781 /// To avoid infinite recursion we maintain the already processed tokens in
782 /// a set. This is carried as a parameter through the recursive calls. The set
783 /// is extended with the currently processed token and after processing it, the
784 /// token is removed. If the token is already in the set, then recursion stops:
785 ///
786 /// #define f(y) x
787 /// #define x f(x)
788 static std::string getMacroNameAndPrintExpansion(
789  TokenPrinter &Printer,
790  SourceLocation MacroLoc,
791  const Preprocessor &PP,
792  const MacroArgMap &PrevArgs,
793  llvm::SmallPtrSet<IdentifierInfo *, 8> &AlreadyProcessedTokens);
794 
795 /// Retrieves the name of the macro and what it's arguments expand into
796 /// at \p ExpanLoc.
797 ///
798 /// For example, for the following macro expansion:
799 ///
800 /// #define SET_TO_NULL(x) x = 0
801 /// #define NOT_SUSPICIOUS(a) \
802 /// { \
803 /// int b = 0; \
804 /// } \
805 /// SET_TO_NULL(a)
806 ///
807 /// int *ptr = new int(4);
808 /// NOT_SUSPICIOUS(&ptr);
809 /// *ptr = 5;
810 ///
811 /// When \p ExpanLoc references the last line, the macro name "NOT_SUSPICIOUS"
812 /// and the MacroArgMap map { (a, &ptr) } will be returned.
813 ///
814 /// When \p ExpanLoc references "SET_TO_NULL(a)" within the definition of
815 /// "NOT_SUSPICOUS", the macro name "SET_TO_NULL" and the MacroArgMap map
816 /// { (x, a) } will be returned.
817 static MacroNameAndArgs getMacroNameAndArgs(SourceLocation ExpanLoc,
818  const Preprocessor &PP);
819 
820 /// Retrieves the ')' token that matches '(' \p It points to.
821 static MacroInfo::tokens_iterator getMatchingRParen(
824 
825 /// Retrieves the macro info for \p II refers to at \p Loc. This is important
826 /// because macros can be redefined or undefined.
827 static const MacroInfo *getMacroInfoForLocation(const Preprocessor &PP,
828  const SourceManager &SM,
829  const IdentifierInfo *II,
830  SourceLocation Loc);
831 
832 //===----------------------------------------------------------------------===//
833 // Definitions of helper functions and methods for expanding macros.
834 //===----------------------------------------------------------------------===//
835 
836 static ExpansionInfo getExpandedMacro(SourceLocation MacroLoc,
837  const Preprocessor &PP) {
838 
839  llvm::SmallString<200> ExpansionBuf;
840  llvm::raw_svector_ostream OS(ExpansionBuf);
841  TokenPrinter Printer(OS, PP);
842  llvm::SmallPtrSet<IdentifierInfo*, 8> AlreadyProcessedTokens;
843 
844  std::string MacroName =
845  getMacroNameAndPrintExpansion(Printer, MacroLoc, PP, MacroArgMap{},
846  AlreadyProcessedTokens);
847  return { MacroName, OS.str() };
848 }
849 
850 static std::string getMacroNameAndPrintExpansion(
851  TokenPrinter &Printer,
852  SourceLocation MacroLoc,
853  const Preprocessor &PP,
854  const MacroArgMap &PrevArgs,
855  llvm::SmallPtrSet<IdentifierInfo *, 8> &AlreadyProcessedTokens) {
856 
857  const SourceManager &SM = PP.getSourceManager();
858 
859  MacroNameAndArgs Info = getMacroNameAndArgs(SM.getExpansionLoc(MacroLoc), PP);
860  IdentifierInfo* IDInfo = PP.getIdentifierInfo(Info.Name);
861 
862  // TODO: If the macro definition contains another symbol then this function is
863  // called recursively. In case this symbol is the one being defined, it will
864  // be an infinite recursion which is stopped by this "if" statement. However,
865  // in this case we don't get the full expansion text in the Plist file. See
866  // the test file where "value" is expanded to "garbage_" instead of
867  // "garbage_value".
868  if (AlreadyProcessedTokens.find(IDInfo) != AlreadyProcessedTokens.end())
869  return Info.Name;
870  AlreadyProcessedTokens.insert(IDInfo);
871 
872  if (!Info.MI)
873  return Info.Name;
874 
875  // Manually expand its arguments from the previous macro.
876  Info.Args.expandFromPrevMacro(PrevArgs);
877 
878  // Iterate over the macro's tokens and stringify them.
879  for (auto It = Info.MI->tokens_begin(), E = Info.MI->tokens_end(); It != E;
880  ++It) {
881  Token T = *It;
882 
883  // If this token is not an identifier, we only need to print it.
884  if (T.isNot(tok::identifier)) {
885  Printer.printToken(T);
886  continue;
887  }
888 
889  const auto *II = T.getIdentifierInfo();
890  assert(II &&
891  "This token is an identifier but has no IdentifierInfo!");
892 
893  // If this token is a macro that should be expanded inside the current
894  // macro.
895  if (getMacroInfoForLocation(PP, SM, II, T.getLocation())) {
896  getMacroNameAndPrintExpansion(Printer, T.getLocation(), PP, Info.Args,
897  AlreadyProcessedTokens);
898 
899  // If this is a function-like macro, skip its arguments, as
900  // getExpandedMacro() already printed them. If this is the case, let's
901  // first jump to the '(' token.
902  auto N = std::next(It);
903  if (N != E && N->is(tok::l_paren))
904  It = getMatchingRParen(++It, E);
905  continue;
906  }
907 
908  // If this token is the current macro's argument, we should expand it.
909  auto ArgMapIt = Info.Args.find(II);
910  if (ArgMapIt != Info.Args.end()) {
911  for (MacroInfo::tokens_iterator ArgIt = ArgMapIt->second.begin(),
912  ArgEnd = ArgMapIt->second.end();
913  ArgIt != ArgEnd; ++ArgIt) {
914 
915  // These tokens may still be macros, if that is the case, handle it the
916  // same way we did above.
917  const auto *ArgII = ArgIt->getIdentifierInfo();
918  if (!ArgII) {
919  Printer.printToken(*ArgIt);
920  continue;
921  }
922 
923  const auto *MI = PP.getMacroInfo(ArgII);
924  if (!MI) {
925  Printer.printToken(*ArgIt);
926  continue;
927  }
928 
929  getMacroNameAndPrintExpansion(Printer, ArgIt->getLocation(), PP,
930  Info.Args, AlreadyProcessedTokens);
931  // Peek the next token if it is a tok::l_paren. This way we can decide
932  // if this is the application or just a reference to a function maxro
933  // symbol:
934  //
935  // #define apply(f) ...
936  // #define func(x) ...
937  // apply(func)
938  // apply(func(42))
939  auto N = std::next(ArgIt);
940  if (N != ArgEnd && N->is(tok::l_paren))
941  ArgIt = getMatchingRParen(++ArgIt, ArgEnd);
942  }
943  continue;
944  }
945 
946  // If control reached here, then this token isn't a macro identifier, nor an
947  // unexpanded macro argument that we need to handle, print it.
948  Printer.printToken(T);
949  }
950 
951  AlreadyProcessedTokens.erase(IDInfo);
952 
953  return Info.Name;
954 }
955 
956 static MacroNameAndArgs getMacroNameAndArgs(SourceLocation ExpanLoc,
957  const Preprocessor &PP) {
958 
959  const SourceManager &SM = PP.getSourceManager();
960  const LangOptions &LangOpts = PP.getLangOpts();
961 
962  // First, we create a Lexer to lex *at the expansion location* the tokens
963  // referring to the macro's name and its arguments.
964  std::pair<FileID, unsigned> LocInfo = SM.getDecomposedLoc(ExpanLoc);
965  const llvm::MemoryBuffer *MB = SM.getBuffer(LocInfo.first);
966  const char *MacroNameTokenPos = MB->getBufferStart() + LocInfo.second;
967 
968  Lexer RawLexer(SM.getLocForStartOfFile(LocInfo.first), LangOpts,
969  MB->getBufferStart(), MacroNameTokenPos, MB->getBufferEnd());
970 
971  // Acquire the macro's name.
972  Token TheTok;
973  RawLexer.LexFromRawLexer(TheTok);
974 
975  std::string MacroName = PP.getSpelling(TheTok);
976 
977  const auto *II = PP.getIdentifierInfo(MacroName);
978  assert(II && "Failed to acquire the IndetifierInfo for the macro!");
979 
980  const MacroInfo *MI = getMacroInfoForLocation(PP, SM, II, ExpanLoc);
981  // assert(MI && "The macro must've been defined at it's expansion location!");
982  //
983  // We should always be able to obtain the MacroInfo in a given TU, but if
984  // we're running the analyzer with CTU, the Preprocessor won't contain the
985  // directive history (or anything for that matter) from another TU.
986  // TODO: assert when we're not running with CTU.
987  if (!MI)
988  return { MacroName, MI, {} };
989 
990  // Acquire the macro's arguments.
991  //
992  // The rough idea here is to lex from the first left parentheses to the last
993  // right parentheses, and map the macro's unexpanded arguments to what they
994  // will be expanded to. An expanded macro argument may contain several tokens
995  // (like '3 + 4'), so we'll lex until we find a tok::comma or tok::r_paren, at
996  // which point we start lexing the next argument or finish.
998  if (MacroArgs.empty())
999  return { MacroName, MI, {} };
1000 
1001  RawLexer.LexFromRawLexer(TheTok);
1002  // When this is a token which expands to another macro function then its
1003  // parentheses are not at its expansion locaiton. For example:
1004  //
1005  // #define foo(x) int bar() { return x; }
1006  // #define apply_zero(f) f(0)
1007  // apply_zero(foo)
1008  // ^
1009  // This is not a tok::l_paren, but foo is a function.
1010  if (TheTok.isNot(tok::l_paren))
1011  return { MacroName, MI, {} };
1012 
1013  MacroArgMap Args;
1014 
1015  // When the macro's argument is a function call, like
1016  // CALL_FN(someFunctionName(param1, param2))
1017  // we will find tok::l_paren, tok::r_paren, and tok::comma that do not divide
1018  // actual macro arguments, or do not represent the macro argument's closing
1019  // parentheses, so we'll count how many parentheses aren't closed yet.
1020  // If ParanthesesDepth
1021  // * = 0, then there are no more arguments to lex.
1022  // * = 1, then if we find a tok::comma, we can start lexing the next arg.
1023  // * > 1, then tok::comma is a part of the current arg.
1024  int ParenthesesDepth = 1;
1025 
1026  // If we encounter __VA_ARGS__, we will lex until the closing tok::r_paren,
1027  // even if we lex a tok::comma and ParanthesesDepth == 1.
1028  const IdentifierInfo *__VA_ARGS__II = PP.getIdentifierInfo("__VA_ARGS__");
1029 
1030  for (const IdentifierInfo *UnexpArgII : MacroArgs) {
1031  MacroArgMap::mapped_type ExpandedArgTokens;
1032 
1033  // One could also simply not supply a single argument to __VA_ARGS__ -- this
1034  // results in a preprocessor warning, but is not an error:
1035  // #define VARIADIC(ptr, ...) \
1036  // someVariadicTemplateFunction(__VA_ARGS__)
1037  //
1038  // int *ptr;
1039  // VARIADIC(ptr); // Note that there are no commas, this isn't just an
1040  // // empty parameter -- there are no parameters for '...'.
1041  // In any other case, ParenthesesDepth mustn't be 0 here.
1042  if (ParenthesesDepth != 0) {
1043 
1044  // Lex the first token of the next macro parameter.
1045  RawLexer.LexFromRawLexer(TheTok);
1046 
1047  while (!(ParenthesesDepth == 1 &&
1048  (UnexpArgII == __VA_ARGS__II ? false : TheTok.is(tok::comma)))) {
1049  assert(TheTok.isNot(tok::eof) &&
1050  "EOF encountered while looking for expanded macro args!");
1051 
1052  if (TheTok.is(tok::l_paren))
1053  ++ParenthesesDepth;
1054 
1055  if (TheTok.is(tok::r_paren))
1056  --ParenthesesDepth;
1057 
1058  if (ParenthesesDepth == 0)
1059  break;
1060 
1061  if (TheTok.is(tok::raw_identifier))
1062  PP.LookUpIdentifierInfo(TheTok);
1063 
1064  ExpandedArgTokens.push_back(TheTok);
1065  RawLexer.LexFromRawLexer(TheTok);
1066  }
1067  } else {
1068  assert(UnexpArgII == __VA_ARGS__II);
1069  }
1070 
1071  Args.emplace(UnexpArgII, std::move(ExpandedArgTokens));
1072  }
1073 
1074  assert(TheTok.is(tok::r_paren) &&
1075  "Expanded macro argument acquisition failed! After the end of the loop"
1076  " this token should be ')'!");
1077 
1078  return { MacroName, MI, Args };
1079 }
1080 
1081 static MacroInfo::tokens_iterator getMatchingRParen(
1084 
1085  assert(It->is(tok::l_paren) && "This token should be '('!");
1086 
1087  // Skip until we find the closing ')'.
1088  int ParenthesesDepth = 1;
1089  while (ParenthesesDepth != 0) {
1090  ++It;
1091 
1092  assert(It->isNot(tok::eof) &&
1093  "Encountered EOF while attempting to skip macro arguments!");
1094  assert(It != End &&
1095  "End of the macro definition reached before finding ')'!");
1096 
1097  if (It->is(tok::l_paren))
1098  ++ParenthesesDepth;
1099 
1100  if (It->is(tok::r_paren))
1101  --ParenthesesDepth;
1102  }
1103  return It;
1104 }
1105 
1106 static const MacroInfo *getMacroInfoForLocation(const Preprocessor &PP,
1107  const SourceManager &SM,
1108  const IdentifierInfo *II,
1109  SourceLocation Loc) {
1110 
1111  const MacroDirective *MD = PP.getLocalMacroDirectiveHistory(II);
1112  if (!MD)
1113  return nullptr;
1114 
1115  return MD->findDirectiveAtLoc(Loc, SM).getMacroInfo();
1116 }
1117 
1118 void MacroArgMap::expandFromPrevMacro(const MacroArgMap &Super) {
1119 
1120  for (value_type &Pair : *this) {
1121  ExpArgTokens &CurrExpArgTokens = Pair.second;
1122 
1123  // For each token in the expanded macro argument.
1124  auto It = CurrExpArgTokens.begin();
1125  while (It != CurrExpArgTokens.end()) {
1126  if (It->isNot(tok::identifier)) {
1127  ++It;
1128  continue;
1129  }
1130 
1131  const auto *II = It->getIdentifierInfo();
1132  assert(II);
1133 
1134  // Is this an argument that "Super" expands further?
1135  if (!Super.count(II)) {
1136  ++It;
1137  continue;
1138  }
1139 
1140  const ExpArgTokens &SuperExpArgTokens = Super.at(II);
1141 
1142  It = CurrExpArgTokens.insert(
1143  It, SuperExpArgTokens.begin(), SuperExpArgTokens.end());
1144  std::advance(It, SuperExpArgTokens.size());
1145  It = CurrExpArgTokens.erase(It);
1146  }
1147  }
1148 }
1149 
1150 void TokenPrinter::printToken(const Token &Tok) {
1151  // If this is the first token to be printed, don't print space.
1152  if (PrevTok.isNot(tok::unknown)) {
1153  // If the tokens were already space separated, or if they must be to avoid
1154  // them being implicitly pasted, add a space between them.
1155  if(Tok.hasLeadingSpace() || ConcatInfo.AvoidConcat(PrevPrevTok, PrevTok,
1156  Tok)) {
1157  // AvoidConcat doesn't check for ##, don't print a space around it.
1158  if (PrevTok.isNot(tok::hashhash) && Tok.isNot(tok::hashhash)) {
1159  OS << ' ';
1160  }
1161  }
1162  }
1163 
1164  if (!Tok.isOneOf(tok::hash, tok::hashhash)) {
1165  if (PrevTok.is(tok::hash))
1166  OS << '\"' << PP.getSpelling(Tok) << '\"';
1167  else
1168  OS << PP.getSpelling(Tok);
1169  }
1170 
1171  PrevPrevTok = PrevTok;
1172  PrevTok = Tok;
1173 }
SourceLocation getLocForStartOfFile(FileID FID) const
Return the source location corresponding to the first byte of the specified file. ...
Lexer - This provides a simple interface that turns a text buffer into a stream of tokens...
Definition: Lexer.h:76
void EmitLocation(raw_ostream &o, const SourceManager &SM, SourceLocation L, const FIDMap &FM, unsigned indent)
Definition: PlistSupport.h:107
IdentifierInfo * getIdentifierInfo(StringRef Name) const
Return information about the specified preprocessor identifier token.
Defines the clang::FileManager interface and associated types.
std::string getClangFullVersion()
Retrieves a string representing the complete clang version, which includes the clang version number...
Definition: Version.cpp:117
virtual Stmt * getBody() const
getBody - If this Decl represents a declaration for a body of code, such as a function or method defi...
Definition: DeclBase.h:979
Stmt - This represents one statement.
Definition: Stmt.h:65
bool is(tok::TokenKind K) const
is/isNot - Predicates to check if this token is a specific kind, as in "if (Tok.is(tok::l_brace)) {...
Definition: Token.h:97
Defines the SourceManager interface.
TokenConcatenation class, which answers the question of "Is it safe to emit two tokens without a whit...
Decl - This represents one declaration (or definition), e.g.
Definition: DeclBase.h:88
StringRef P
llvm::SmallString< 32 > GetIssueHash(const SourceManager &SM, FullSourceLoc &IssueLoc, llvm::StringRef CheckerName, llvm::StringRef BugType, const Decl *D, const LangOptions &LangOpts)
Get an MD5 hash to help identify bugs.
constexpr XRayInstrMask Function
Definition: XRayInstr.h:38
raw_ostream & EmitInteger(raw_ostream &o, int64_t value)
Definition: PlistSupport.h:71
std::string getName(ArrayRef< StringRef > Parts) const
Get the platform-specific name separator.
One of these records is kept for each identifier that is lexed.
unsigned AddFID(FIDMap &FIDs, SmallVectorImpl< FileID > &V, FileID FID)
Definition: PlistSupport.h:27
Definition: Format.h:2222
Token - This structure provides full information about a lexed token.
Definition: Token.h:34
void setKind(tok::TokenKind K)
Definition: Token.h:93
Keeps track of the various options that can be enabled, which controls the dialect of C or C++ that i...
Definition: LangOptions.h:49
const LangOptions & getLangOpts() const
Definition: Preprocessor.h:903
StringRef getSpelling(SourceLocation loc, SmallVectorImpl< char > &buffer, bool *invalid=nullptr) const
Return the &#39;spelling&#39; of the token at the given location; does not go up to the spelling location or ...
const FormatToken & Tok
SourceLocation getExpansionLoc(SourceLocation Loc) const
Given a SourceLocation object Loc, return the expansion location referenced by the ID...
SmallVectorImpl< Token >::const_iterator tokens_iterator
Definition: MacroInfo.h:240
std::vector< PathDiagnosticLocationPair >::const_iterator const_iterator
IdentifierInfo * LookUpIdentifierInfo(Token &Identifier) const
Given a tok::raw_identifier token, look up the identifier information for the token and install it in...
SourceLocation End
const FileEntry * getFileEntryForID(FileID FID) const
Returns the FileEntry record for the provided FileID.
MacroArgs - An instance of this class captures information about the formal arguments specified to a ...
Definition: MacroArgs.h:29
Defines version macros and version-related utility functions for Clang.
SourceLocation getLocation() const
Return a source location identifier for the specified offset in the current file. ...
Definition: Token.h:126
Defines the clang::Preprocessor interface.
const MacroInfo * getMacroInfo(const IdentifierInfo *II) const
SourceLocation getEnd() const
std::map< FileID, std::set< unsigned > > FilesToLineNumsMap
File IDs mapped to sets of line numbers.
static void printBugPath(llvm::raw_ostream &o, const FIDMap &FM, AnalyzerOptions &AnOpts, const Preprocessor &PP, const PathPieces &Path)
const SourceManager & SM
Definition: Format.cpp:1568
llvm::DenseMap< FileID, unsigned > FIDMap
Definition: PlistSupport.h:25
SourceManager & getSourceManager() const
Definition: Preprocessor.h:907
const DefInfo findDirectiveAtLoc(SourceLocation L, const SourceManager &SM) const
Find macro definition active in the specified source location.
Definition: MacroInfo.cpp:202
Encapsulates changes to the "macros namespace" (the location where the macro name became active...
Definition: MacroInfo.h:290
Encodes a location in the source.
StringRef getName() const
Definition: FileManager.h:83
std::vector< PathDiagnosticConsumer * > PathDiagnosticConsumers
MacroDirective * getLocalMacroDirectiveHistory(const IdentifierInfo *II) const
Given an identifier, return the latest non-imported macro directive for that identifier.
void EscapeText(Rewriter &R, FileID FID, bool EscapeSpaces=false, bool ReplaceTabs=false)
EscapeText - HTMLize a specified file so that special characters are are translated so that they are ...
IdentifierInfo * getIdentifierInfo() const
Definition: Token.h:179
raw_ostream & EmitPlistHeader(raw_ostream &o)
Definition: PlistSupport.h:62
An opaque identifier used by SourceManager which refers to a source file (MemoryBuffer) along with it...
bool isNot(tok::TokenKind K) const
Definition: Token.h:98
const llvm::MemoryBuffer * getBuffer(FileID FID, SourceLocation Loc, bool *Invalid=nullptr) const
Return the buffer for the specified FileID.
Dataflow Directional Tag Classes.
bool isOneOf(tok::TokenKind K1, tok::TokenKind K2) const
Definition: Token.h:99
PathDiagnosticLocation()=default
Create an invalid location.
void EmitRange(raw_ostream &o, const SourceManager &SM, CharSourceRange R, const FIDMap &FM, unsigned indent)
Definition: PlistSupport.h:123
unsigned getExpansionLineNumber(bool *Invalid=nullptr) const
Encapsulates the data about a macro definition (e.g.
Definition: MacroInfo.h:39
static CharSourceRange getAsCharRange(SourceRange Range, const SourceManager &SM, const LangOptions &LangOpts)
Given a token range, produce a corresponding CharSourceRange that is not a token range.
Definition: Lexer.h:379
Indicates that the tracking object is a descendant of a referenced-counted OSObject, used in the Darwin kernel.
bool AvoidConcat(const Token &PrevPrevTok, const Token &PrevTok, const Token &Tok) const
AvoidConcat - If printing PrevTok immediately followed by Tok would cause the two individual tokens t...
CharSourceRange getExpansionRange(SourceLocation Loc) const
Given a SourceLocation object, return the range of tokens covered by the expansion in the ultimate fi...
raw_ostream & EmitString(raw_ostream &o, StringRef s)
Definition: PlistSupport.h:78
Stores options for the analyzer from the command line.
A SourceLocation and its associated SourceManager.
A trivial tuple used to represent a source range.
This represents a decl that may have a name.
Definition: Decl.h:248
SourceLocation getBegin() const
bool hasLeadingSpace() const
Return true if this token has whitespace before it.
Definition: Token.h:272
This class handles loading and caching of source files into memory.
std::pair< FileID, unsigned > getDecomposedLoc(SourceLocation Loc) const
Decompose the specified location into a raw FileID + Offset pair.
Engages in a tight little dance with the lexer to efficiently preprocess tokens.
Definition: Preprocessor.h:124
ArrayRef< const IdentifierInfo * > params() const
Definition: MacroInfo.h:183